rc-main.c 47.3 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

17
#include <media/rc-core.h>
18
#include <linux/atomic.h>
19 20
#include <linux/spinlock.h>
#include <linux/delay.h>
21
#include <linux/input.h>
22
#include <linux/leds.h>
23
#include <linux/slab.h>
24
#include <linux/idr.h>
25
#include <linux/device.h>
26
#include <linux/module.h>
27
#include "rc-core-priv.h"
28

29 30 31
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
32
#define RC_DEV_MAX	256
33

34 35 36
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

37
/* Used to keep track of known keymaps */
38 39
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
40
static struct led_trigger *led_feedback;
41

42 43 44
/* Used to keep track of rc devices */
static DEFINE_IDA(rc_ida);

45
static struct rc_map_list *seek_rc_map(const char *name)
46
{
47
	struct rc_map_list *map = NULL;
48 49 50 51 52 53 54 55 56 57 58 59 60

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

61
struct rc_map *rc_map_get(const char *name)
62 63
{

64
	struct rc_map_list *map;
65 66

	map = seek_rc_map(name);
67
#ifdef CONFIG_MODULES
68
	if (!map) {
69
		int rc = request_module("%s", name);
70
		if (rc < 0) {
71
			pr_err("Couldn't load IR keymap %s\n", name);
72 73 74 75 76 77 78 79
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
80
		pr_err("IR keymap %s not found\n", name);
81 82 83 84 85 86 87
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
88
EXPORT_SYMBOL_GPL(rc_map_get);
89

90
int rc_map_register(struct rc_map_list *map)
91 92 93 94 95 96
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
97
EXPORT_SYMBOL_GPL(rc_map_register);
98

99
void rc_map_unregister(struct rc_map_list *map)
100 101 102 103 104
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
105
EXPORT_SYMBOL_GPL(rc_map_unregister);
106 107


108
static struct rc_map_table empty[] = {
109 110 111
	{ 0x2a, KEY_COFFEE },
};

112
static struct rc_map_list empty_map = {
113 114 115
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
116
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
117 118 119 120
		.name    = RC_MAP_EMPTY,
	}
};

121 122
/**
 * ir_create_table() - initializes a scancode table
123
 * @rc_map:	the rc_map to initialize
124
 * @name:	name to assign to the table
125
 * @rc_type:	ir type to assign to the new table
126 127 128
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
129
 * This routine will initialize the rc_map and will allocate
130
 * memory to hold at least the specified number of elements.
131
 */
132
static int ir_create_table(struct rc_map *rc_map,
133
			   const char *name, u64 rc_type, size_t size)
134
{
135 136 137
	rc_map->name = kstrdup(name, GFP_KERNEL);
	if (!rc_map->name)
		return -ENOMEM;
138
	rc_map->rc_type = rc_type;
139 140
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
141
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
142 143 144
	if (!rc_map->scan) {
		kfree(rc_map->name);
		rc_map->name = NULL;
145
		return -ENOMEM;
146
	}
147 148

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
149
		   rc_map->size, rc_map->alloc);
150 151 152 153 154
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
155
 * @rc_map:	the table whose mappings need to be freed
156 157 158 159
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
160
static void ir_free_table(struct rc_map *rc_map)
161
{
162
	rc_map->size = 0;
163
	kfree(rc_map->name);
164
	rc_map->name = NULL;
165 166
	kfree(rc_map->scan);
	rc_map->scan = NULL;
167 168
}

169
/**
170
 * ir_resize_table() - resizes a scancode table if necessary
171
 * @rc_map:	the rc_map to resize
172
 * @gfp_flags:	gfp flags to use when allocating memory
173
 * @return:	zero on success or a negative error code
174
 *
175
 * This routine will shrink the rc_map if it has lots of
176
 * unused entries and grow it if it is full.
177
 */
178
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
179
{
180
	unsigned int oldalloc = rc_map->alloc;
181
	unsigned int newalloc = oldalloc;
182 183
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
184

185
	if (rc_map->size == rc_map->len) {
186
		/* All entries in use -> grow keytable */
187
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
188
			return -ENOMEM;
189

190 191 192
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
193

194
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
195 196 197 198
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
199

200 201
	if (newalloc == oldalloc)
		return 0;
202

203
	newscan = kmalloc(newalloc, gfp_flags);
204 205 206 207
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
208

209
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
210 211
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
212
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
213 214
	kfree(oldscan);
	return 0;
215 216
}

217
/**
218
 * ir_update_mapping() - set a keycode in the scancode->keycode table
219
 * @dev:	the struct rc_dev device descriptor
220
 * @rc_map:	scancode table to be adjusted
221 222 223 224
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
225
 * This routine is used to update scancode->keycode mapping at given
226 227
 * position.
 */
228
static unsigned int ir_update_mapping(struct rc_dev *dev,
229
				      struct rc_map *rc_map,
230 231 232
				      unsigned int index,
				      unsigned int new_keycode)
{
233
	int old_keycode = rc_map->scan[index].keycode;
234 235 236 237 238
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
239 240 241
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
242
			(rc_map->len - index) * sizeof(struct rc_map_table));
243 244 245 246
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
247 248
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
249
		__set_bit(new_keycode, dev->input_dev->keybit);
250 251 252 253
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
254
		__clear_bit(old_keycode, dev->input_dev->keybit);
255
		/* ... but another scancode might use the same keycode */
256 257
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
258
				__set_bit(old_keycode, dev->input_dev->keybit);
259 260 261 262 263
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
264
		ir_resize_table(rc_map, GFP_ATOMIC);
265 266 267 268 269 270
	}

	return old_keycode;
}

/**
271
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
272
 * @dev:	the struct rc_dev device descriptor
273
 * @rc_map:	scancode table to be searched
274 275
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
276
 *		accommodate not yet present scancodes
277 278
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
279
 *
280
 * This routine is used to locate given scancode in rc_map.
281 282
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
283
 */
284
static unsigned int ir_establish_scancode(struct rc_dev *dev,
285
					  struct rc_map *rc_map,
286 287
					  unsigned int scancode,
					  bool resize)
288
{
289
	unsigned int i;
290 291 292 293 294 295

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
296 297
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
298
	 */
299 300
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
301 302

	/* First check if we already have a mapping for this ir command */
303 304
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
305 306
			return i;

307
		/* Keytable is sorted from lowest to highest scancode */
308
		if (rc_map->scan[i].scancode >= scancode)
309 310
			break;
	}
311

312
	/* No previous mapping found, we might need to grow the table */
313 314
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
315 316
			return -1U;
	}
317

318
	/* i is the proper index to insert our new keycode */
319 320
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
321
			(rc_map->len - i) * sizeof(struct rc_map_table));
322 323 324
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
325

326
	return i;
327 328
}

329
/**
330
 * ir_setkeycode() - set a keycode in the scancode->keycode table
331
 * @idev:	the struct input_dev device descriptor
332
 * @scancode:	the desired scancode
333 334
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
335
 *
336
 * This routine is used to handle evdev EVIOCSKEY ioctl.
337
 */
338
static int ir_setkeycode(struct input_dev *idev,
339 340
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
341
{
342
	struct rc_dev *rdev = input_get_drvdata(idev);
343
	struct rc_map *rc_map = &rdev->rc_map;
344 345
	unsigned int index;
	unsigned int scancode;
346
	int retval = 0;
347
	unsigned long flags;
348

349
	spin_lock_irqsave(&rc_map->lock, flags);
350 351 352

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
353
		if (index >= rc_map->len) {
354 355 356 357 358 359 360 361
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

362 363
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
364 365 366 367 368
			retval = -ENOMEM;
			goto out;
		}
	}

369
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
370 371

out:
372
	spin_unlock_irqrestore(&rc_map->lock, flags);
373
	return retval;
374 375 376
}

/**
377
 * ir_setkeytable() - sets several entries in the scancode->keycode table
378
 * @dev:	the struct rc_dev device descriptor
379 380
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
381
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
382
 *
383
 * This routine is used to handle table initialization.
384
 */
385
static int ir_setkeytable(struct rc_dev *dev,
386
			  const struct rc_map *from)
387
{
388
	struct rc_map *rc_map = &dev->rc_map;
389 390 391
	unsigned int i, index;
	int rc;

392
	rc = ir_create_table(rc_map, from->name,
393
			     from->rc_type, from->size);
394 395 396 397
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
398
		   rc_map->size, rc_map->alloc);
399

400
	for (i = 0; i < from->size; i++) {
401
		index = ir_establish_scancode(dev, rc_map,
402
					      from->scan[i].scancode, false);
403
		if (index >= rc_map->len) {
404
			rc = -ENOMEM;
405
			break;
406 407
		}

408
		ir_update_mapping(dev, rc_map, index,
409
				  from->scan[i].keycode);
410
	}
411 412

	if (rc)
413
		ir_free_table(rc_map);
414

415
	return rc;
416 417
}

418 419
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
420
 * @rc_map:	the struct rc_map to search
421 422 423 424 425 426
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
427
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
428 429
					  unsigned int scancode)
{
430
	int start = 0;
431
	int end = rc_map->len - 1;
432
	int mid;
433 434 435

	while (start <= end) {
		mid = (start + end) / 2;
436
		if (rc_map->scan[mid].scancode < scancode)
437
			start = mid + 1;
438
		else if (rc_map->scan[mid].scancode > scancode)
439 440 441 442 443 444 445 446
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

447
/**
448
 * ir_getkeycode() - get a keycode from the scancode->keycode table
449
 * @idev:	the struct input_dev device descriptor
450
 * @scancode:	the desired scancode
451 452
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
453
 *
454
 * This routine is used to handle evdev EVIOCGKEY ioctl.
455
 */
456
static int ir_getkeycode(struct input_dev *idev,
457
			 struct input_keymap_entry *ke)
458
{
459
	struct rc_dev *rdev = input_get_drvdata(idev);
460
	struct rc_map *rc_map = &rdev->rc_map;
461
	struct rc_map_table *entry;
462 463 464 465
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
466

467
	spin_lock_irqsave(&rc_map->lock, flags);
468 469 470 471 472 473 474 475

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

476
		index = ir_lookup_by_scancode(rc_map, scancode);
477 478
	}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
496 497
		retval = -EINVAL;
		goto out;
498 499
	}

500 501
	retval = 0;

502
out:
503
	spin_unlock_irqrestore(&rc_map->lock, flags);
504
	return retval;
505 506 507
}

/**
508
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
509 510 511
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
512
 *
513 514 515
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
516
 */
517
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
518
{
519
	struct rc_map *rc_map = &dev->rc_map;
520 521 522 523
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

524
	spin_lock_irqsave(&rc_map->lock, flags);
525

526 527 528
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
529

530
	spin_unlock_irqrestore(&rc_map->lock, flags);
531

532 533
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
534
			   dev->input_name, scancode, keycode);
535

536
	return keycode;
537
}
538
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
539

540
/**
541
 * ir_do_keyup() - internal function to signal the release of a keypress
542
 * @dev:	the struct rc_dev descriptor of the device
543
 * @sync:	whether or not to call input_sync
544
 *
545 546
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
547
 */
548
static void ir_do_keyup(struct rc_dev *dev, bool sync)
549
{
550
	if (!dev->keypressed)
551 552
		return;

553 554
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
555
	led_trigger_event(led_feedback, LED_OFF);
556 557
	if (sync)
		input_sync(dev->input_dev);
558
	dev->keypressed = false;
559
}
560 561

/**
562
 * rc_keyup() - signals the release of a keypress
563
 * @dev:	the struct rc_dev descriptor of the device
564 565 566 567
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
568
void rc_keyup(struct rc_dev *dev)
569 570 571
{
	unsigned long flags;

572
	spin_lock_irqsave(&dev->keylock, flags);
573
	ir_do_keyup(dev, true);
574
	spin_unlock_irqrestore(&dev->keylock, flags);
575
}
576
EXPORT_SYMBOL_GPL(rc_keyup);
577 578 579

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
580
 * @cookie:	a pointer to the struct rc_dev for the device
581 582 583
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
584
 */
585
static void ir_timer_keyup(unsigned long cookie)
586
{
587
	struct rc_dev *dev = (struct rc_dev *)cookie;
588 589 590 591 592 593 594 595 596 597 598 599
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
600 601
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
602
		ir_do_keyup(dev, true);
603
	spin_unlock_irqrestore(&dev->keylock, flags);
604 605 606
}

/**
607
 * rc_repeat() - signals that a key is still pressed
608
 * @dev:	the struct rc_dev descriptor of the device
609 610 611 612 613
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
614
void rc_repeat(struct rc_dev *dev)
615 616
{
	unsigned long flags;
617

618
	spin_lock_irqsave(&dev->keylock, flags);
619

620
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
621
	input_sync(dev->input_dev);
622

623
	if (!dev->keypressed)
624
		goto out;
625

626 627
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
628 629

out:
630
	spin_unlock_irqrestore(&dev->keylock, flags);
631
}
632
EXPORT_SYMBOL_GPL(rc_repeat);
633 634

/**
635
 * ir_do_keydown() - internal function to process a keypress
636
 * @dev:	the struct rc_dev descriptor of the device
637
 * @protocol:	the protocol of the keypress
638 639 640
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
641
 *
642 643
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
644
 */
645 646
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
647
{
648
	bool new_event = (!dev->keypressed		 ||
649
			  dev->last_protocol != protocol ||
650
			  dev->last_scancode != scancode ||
651
			  dev->last_toggle   != toggle);
652

653 654
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
655

656
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
657

658 659 660
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
661
		dev->last_protocol = protocol;
662 663 664 665
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

666
		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
667
			   dev->input_name, keycode, protocol, scancode);
668
		input_report_key(dev->input_dev, keycode, 1);
669 670

		led_trigger_event(led_feedback, LED_FULL);
671
	}
672

673
	input_sync(dev->input_dev);
674
}
675

676
/**
677
 * rc_keydown() - generates input event for a key press
678
 * @dev:	the struct rc_dev descriptor of the device
679 680
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
681 682 683
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
684 685
 * This routine is used to signal that a key has been pressed on the
 * remote control.
686
 */
687
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
688 689
{
	unsigned long flags;
690
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
691

692
	spin_lock_irqsave(&dev->keylock, flags);
693
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
694

695 696 697
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
698
	}
699
	spin_unlock_irqrestore(&dev->keylock, flags);
700
}
701
EXPORT_SYMBOL_GPL(rc_keydown);
702

703
/**
704
 * rc_keydown_notimeout() - generates input event for a key press without
705
 *                          an automatic keyup event at a later time
706
 * @dev:	the struct rc_dev descriptor of the device
707 708
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
709 710 711
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
712
 * This routine is used to signal that a key has been pressed on the
713
 * remote control. The driver must manually call rc_keyup() at a later stage.
714
 */
715 716
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
717 718
{
	unsigned long flags;
719
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
720

721
	spin_lock_irqsave(&dev->keylock, flags);
722
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
723
	spin_unlock_irqrestore(&dev->keylock, flags);
724
}
725
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
726

S
Sean Young 已提交
727 728 729
/**
 * rc_validate_filter() - checks that the scancode and mask are valid and
 *			  provides sensible defaults
730
 * @dev:	the struct rc_dev descriptor of the device
S
Sean Young 已提交
731 732 733
 * @filter:	the scancode and mask
 * @return:	0 or -EINVAL if the filter is not valid
 */
734
static int rc_validate_filter(struct rc_dev *dev,
S
Sean Young 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
			      struct rc_scancode_filter *filter)
{
	static u32 masks[] = {
		[RC_TYPE_RC5] = 0x1f7f,
		[RC_TYPE_RC5X_20] = 0x1f7f3f,
		[RC_TYPE_RC5_SZ] = 0x2fff,
		[RC_TYPE_SONY12] = 0x1f007f,
		[RC_TYPE_SONY15] = 0xff007f,
		[RC_TYPE_SONY20] = 0x1fff7f,
		[RC_TYPE_JVC] = 0xffff,
		[RC_TYPE_NEC] = 0xffff,
		[RC_TYPE_NECX] = 0xffffff,
		[RC_TYPE_NEC32] = 0xffffffff,
		[RC_TYPE_SANYO] = 0x1fffff,
		[RC_TYPE_RC6_0] = 0xffff,
		[RC_TYPE_RC6_6A_20] = 0xfffff,
		[RC_TYPE_RC6_6A_24] = 0xffffff,
		[RC_TYPE_RC6_6A_32] = 0xffffffff,
		[RC_TYPE_RC6_MCE] = 0xffff7fff,
		[RC_TYPE_SHARP] = 0x1fff,
	};
	u32 s = filter->data;
757
	enum rc_type protocol = dev->wakeup_protocol;
S
Sean Young 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	switch (protocol) {
	case RC_TYPE_NECX:
		if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
			return -EINVAL;
		break;
	case RC_TYPE_NEC32:
		if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
			return -EINVAL;
		break;
	case RC_TYPE_RC6_MCE:
		if ((s & 0xffff0000) != 0x800f0000)
			return -EINVAL;
		break;
	case RC_TYPE_RC6_6A_32:
		if ((s & 0xffff0000) == 0x800f0000)
			return -EINVAL;
		break;
	default:
		break;
	}

	filter->data &= masks[protocol];
	filter->mask &= masks[protocol];

783 784 785 786 787 788 789
	/*
	 * If we have to raw encode the IR for wakeup, we cannot have a mask
	 */
	if (dev->encode_wakeup &&
	    filter->mask != 0 && filter->mask != masks[protocol])
		return -EINVAL;

S
Sean Young 已提交
790 791 792
	return 0;
}

793 794 795 796 797 798 799 800
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
801

802
	if (!rdev->users++ && rdev->open != NULL)
803 804 805 806 807 808 809 810 811 812 813
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

814
static int ir_open(struct input_dev *idev)
815
{
816
	struct rc_dev *rdev = input_get_drvdata(idev);
817

818 819 820 821 822 823 824 825
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

826
		if (!--rdev->users && rdev->close != NULL)
827 828 829 830
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
831
}
832
EXPORT_SYMBOL_GPL(rc_close);
833

834
static void ir_close(struct input_dev *idev)
835
{
836
	struct rc_dev *rdev = input_get_drvdata(idev);
837
	rc_close(rdev);
838 839
}

840
/* class for /sys/class/rc */
841
static char *rc_devnode(struct device *dev, umode_t *mode)
842 843 844 845
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

846
static struct class rc_class = {
847
	.name		= "rc",
848
	.devnode	= rc_devnode,
849 850
};

851 852 853 854 855
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
856
static const struct {
857
	u64	type;
858
	const char	*name;
859
	const char	*module_name;
860
} proto_names[] = {
861 862 863
	{ RC_BIT_NONE,		"none",		NULL			},
	{ RC_BIT_OTHER,		"other",	NULL			},
	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
864
	{ RC_BIT_RC5 |
865
	  RC_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
866 867 868
	{ RC_BIT_NEC |
	  RC_BIT_NECX |
	  RC_BIT_NEC32,		"nec",		"ir-nec-decoder"	},
869 870 871 872
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
873 874
	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
875 876
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
877 878 879 880 881 882
	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
883
	{ RC_BIT_CEC,		"cec",		NULL			},
884 885 886
};

/**
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static bool lirc_is_present(void)
{
#if defined(CONFIG_LIRC_MODULE)
	struct module *lirc;

	mutex_lock(&module_mutex);
	lirc = find_module("lirc_dev");
	mutex_unlock(&module_mutex);

	return lirc ? true : false;
#elif defined(CONFIG_LIRC)
	return true;
#else
	return false;
#endif
}

923
/**
924
 * show_protocols() - shows the current IR protocol(s)
925
 * @device:	the device descriptor
926
 * @mattr:	the device attribute struct
927 928 929
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
930
 * it is trigged by reading /sys/class/rc/rc?/protocols.
931 932
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
933 934 935
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
936
 */
937
static ssize_t show_protocols(struct device *device,
938 939
			      struct device_attribute *mattr, char *buf)
{
940
	struct rc_dev *dev = to_rc_dev(device);
941 942 943 944 945
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
946
	if (!dev)
947 948
		return -EINVAL;

949 950 951
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

952 953
	mutex_lock(&dev->lock);

954 955 956 957
	enabled = dev->enabled_protocols;
	allowed = dev->allowed_protocols;
	if (dev->raw && !allowed)
		allowed = ir_raw_get_allowed_protocols();
958

959 960 961 962
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
963 964 965 966 967 968

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
969 970 971

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
972 973
	}

974
	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
975 976
		tmp += sprintf(tmp, "[lirc] ");

977 978 979
	if (tmp != buf)
		tmp--;
	*tmp = '\n';
980

981 982 983 984
	return tmp + 1 - buf;
}

/**
985 986 987
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
988
 *
989 990
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
991 992
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
993
 * Returns the number of changes performed or a negative error code.
994
 */
995
static int parse_protocol_change(u64 *protocols, const char *buf)
996 997
{
	const char *tmp;
998 999
	unsigned count = 0;
	bool enable, disable;
1000
	u64 mask;
1001
	int i;
1002

1003
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

1020 1021 1022 1023
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
1024 1025 1026
			}
		}

1027
		if (i == ARRAY_SIZE(proto_names)) {
1028 1029 1030 1031 1032 1033
			if (!strcasecmp(tmp, "lirc"))
				mask = 0;
			else {
				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
				return -EINVAL;
			}
1034 1035 1036 1037
		}

		count++;

1038
		if (enable)
1039
			*protocols |= mask;
1040
		else if (disable)
1041
			*protocols &= ~mask;
1042
		else
1043
			*protocols = mask;
1044 1045 1046 1047
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
1048 1049 1050 1051 1052 1053
		return -EINVAL;
	}

	return count;
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void ir_raw_load_modules(u64 *protocols)
{
	u64 available;
	int i, ret;

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (proto_names[i].type == RC_BIT_NONE ||
		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
			continue;

		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		if (!proto_names[i].module_name) {
			pr_err("Can't enable IR protocol %s\n",
			       proto_names[i].name);
			*protocols &= ~proto_names[i].type;
			continue;
		}

		ret = request_module("%s", proto_names[i].module_name);
		if (ret < 0) {
			pr_err("Couldn't load IR protocol module %s\n",
			       proto_names[i].module_name);
			*protocols &= ~proto_names[i].type;
			continue;
		}
		msleep(20);
		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		pr_err("Loaded IR protocol module %s, \
		       but protocol %s still not available\n",
		       proto_names[i].module_name,
		       proto_names[i].name);
		*protocols &= ~proto_names[i].type;
	}
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	u64 *current_protocols;
	struct rc_scancode_filter *filter;
	u64 old_protocols, new_protocols;
	ssize_t rc;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1124 1125 1126
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1127 1128 1129
	IR_dprintk(1, "Normal protocol change requested\n");
	current_protocols = &dev->enabled_protocols;
	filter = &dev->scancode_filter;
1130

1131
	if (!dev->change_protocol) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

1144
	rc = dev->change_protocol(dev, &new_protocols);
1145 1146 1147
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1148
		goto out;
1149 1150
	}

1151 1152 1153
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_load_modules(&new_protocols);

1154 1155 1156 1157
	if (new_protocols != old_protocols) {
		*current_protocols = new_protocols;
		IR_dprintk(1, "Protocols changed to 0x%llx\n",
			   (long long)new_protocols);
1158 1159
	}

1160
	/*
1161 1162 1163
	 * If a protocol change was attempted the filter may need updating, even
	 * if the actual protocol mask hasn't changed (since the driver may have
	 * cleared the filter).
1164 1165 1166
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1167
	if (dev->s_filter && filter->mask) {
1168
		if (new_protocols)
1169
			rc = dev->s_filter(dev, filter);
1170 1171
		else
			rc = -1;
1172

1173 1174 1175
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
1176
			dev->s_filter(dev, filter);
1177
		}
1178 1179
	}

1180
	rc = len;
1181 1182 1183

out:
	mutex_unlock(&dev->lock);
1184
	return rc;
1185 1186
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1210
	struct rc_scancode_filter *filter;
1211 1212 1213 1214 1215 1216
	u32 val;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1217 1218 1219
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1220 1221
	mutex_lock(&dev->lock);

1222
	if (fattr->type == RC_FILTER_NORMAL)
1223
		filter = &dev->scancode_filter;
1224
	else
1225
		filter = &dev->scancode_wakeup_filter;
1226 1227 1228

	if (fattr->mask)
		val = filter->mask;
1229
	else
1230
		val = filter->data;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1257
			    const char *buf, size_t len)
1258 1259 1260
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1261
	struct rc_scancode_filter new_filter, *filter;
1262 1263
	int ret;
	unsigned long val;
1264
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1265 1266 1267 1268 1269

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1270 1271 1272
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1273 1274 1275 1276
	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1277 1278
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1279
		filter = &dev->scancode_filter;
1280 1281
	} else {
		set_filter = dev->s_wakeup_filter;
1282
		filter = &dev->scancode_wakeup_filter;
1283 1284
	}

1285 1286
	if (!set_filter)
		return -EINVAL;
1287 1288 1289

	mutex_lock(&dev->lock);

1290
	new_filter = *filter;
1291
	if (fattr->mask)
1292
		new_filter.mask = val;
1293
	else
1294
		new_filter.data = val;
1295

1296
	if (fattr->type == RC_FILTER_WAKEUP) {
S
Sean Young 已提交
1297 1298 1299 1300 1301
		/*
		 * Refuse to set a filter unless a protocol is enabled
		 * and the filter is valid for that protocol
		 */
		if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1302
			ret = rc_validate_filter(dev, &new_filter);
S
Sean Young 已提交
1303
		else
1304
			ret = -EINVAL;
S
Sean Young 已提交
1305 1306

		if (ret != 0)
1307 1308 1309 1310 1311
			goto unlock;
	}

	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
	    val) {
1312 1313 1314 1315
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1316

1317
	ret = set_filter(dev, &new_filter);
1318 1319
	if (ret < 0)
		goto unlock;
1320

1321
	*filter = new_filter;
1322 1323 1324

unlock:
	mutex_unlock(&dev->lock);
1325
	return (ret < 0) ? ret : len;
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/*
 * This is the list of all variants of all protocols, which is used by
 * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
 * some protocols are grouped together (e.g. nec = nec + necx + nec32).
 *
 * For wakeup we need to know the exact protocol variant so the hardware
 * can be programmed exactly what to expect.
 */
static const char * const proto_variant_names[] = {
	[RC_TYPE_UNKNOWN] = "unknown",
	[RC_TYPE_OTHER] = "other",
	[RC_TYPE_RC5] = "rc-5",
	[RC_TYPE_RC5X_20] = "rc-5x-20",
	[RC_TYPE_RC5_SZ] = "rc-5-sz",
	[RC_TYPE_JVC] = "jvc",
	[RC_TYPE_SONY12] = "sony-12",
	[RC_TYPE_SONY15] = "sony-15",
	[RC_TYPE_SONY20] = "sony-20",
	[RC_TYPE_NEC] = "nec",
	[RC_TYPE_NECX] = "nec-x",
	[RC_TYPE_NEC32] = "nec-32",
	[RC_TYPE_SANYO] = "sanyo",
	[RC_TYPE_MCE_KBD] = "mce_kbd",
	[RC_TYPE_RC6_0] = "rc-6-0",
	[RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
	[RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
	[RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
	[RC_TYPE_RC6_MCE] = "rc-6-mce",
	[RC_TYPE_SHARP] = "sharp",
	[RC_TYPE_XMP] = "xmp",
	[RC_TYPE_CEC] = "cec",
};

/**
 * show_wakeup_protocols() - shows the wakeup IR protocol
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
 * It returns the protocol names of supported protocols.
 * The enabled protocols are printed in brackets.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t show_wakeup_protocols(struct device *device,
				     struct device_attribute *mattr,
				     char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	u64 allowed;
	enum rc_type enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

	mutex_lock(&dev->lock);

	allowed = dev->allowed_wakeup_protocols;
	enabled = dev->wakeup_protocol;

	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
		   __func__, (long long)allowed, enabled);

	for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
		if (allowed & (1ULL << i)) {
			if (i == enabled)
				tmp += sprintf(tmp, "[%s] ",
						proto_variant_names[i]);
			else
				tmp += sprintf(tmp, "%s ",
						proto_variant_names[i]);
		}
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';

	return tmp + 1 - buf;
}

/**
 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_wakeup_protocols(struct device *device,
				      struct device_attribute *mattr,
				      const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	enum rc_type protocol;
	ssize_t rc;
	u64 allowed;
	int i;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

	mutex_lock(&dev->lock);

	allowed = dev->allowed_wakeup_protocols;

	if (sysfs_streq(buf, "none")) {
		protocol = RC_TYPE_UNKNOWN;
	} else {
		for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
			if ((allowed & (1ULL << i)) &&
			    sysfs_streq(buf, proto_variant_names[i])) {
				protocol = i;
				break;
			}
		}

		if (i == ARRAY_SIZE(proto_variant_names)) {
			rc = -EINVAL;
			goto out;
		}
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

		if (dev->encode_wakeup) {
			u64 mask = 1ULL << protocol;

			ir_raw_load_modules(&mask);
			if (!mask) {
				rc = -EINVAL;
				goto out;
			}
		}
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	}

	if (dev->wakeup_protocol != protocol) {
		dev->wakeup_protocol = protocol;
		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);

		if (protocol == RC_TYPE_RC6_MCE)
			dev->scancode_wakeup_filter.data = 0x800f0000;
		else
			dev->scancode_wakeup_filter.data = 0;
		dev->scancode_wakeup_filter.mask = 0;

		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
		if (rc == 0)
			rc = len;
	} else {
		rc = len;
	}

out:
	mutex_unlock(&dev->lock);
	return rc;
}

1504 1505
static void rc_dev_release(struct device *device)
{
1506 1507 1508
	struct rc_dev *dev = to_rc_dev(device);

	kfree(dev);
1509 1510
}

1511 1512 1513 1514 1515 1516 1517 1518 1519
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1520
	struct rc_dev *dev = to_rc_dev(device);
1521

1522 1523
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1524 1525
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1526 1527 1528 1529 1530 1531 1532

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1533 1534 1535
static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
		   store_wakeup_protocols);
1536 1537 1538 1539 1540 1541 1542 1543
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1544

1545
static struct attribute *rc_dev_protocol_attrs[] = {
1546
	&dev_attr_protocols.attr,
1547 1548 1549 1550 1551 1552 1553 1554
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1555 1556
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1557 1558 1559
	NULL,
};

1560 1561
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1562 1563
};

1564 1565 1566
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
1567
	&dev_attr_wakeup_protocols.attr,
1568 1569 1570 1571 1572
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1573 1574 1575
};

static struct device_type rc_dev_type = {
1576
	.release	= rc_dev_release,
1577 1578 1579
	.uevent		= rc_dev_uevent,
};

1580
struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1581
{
1582
	struct rc_dev *dev;
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1594 1595
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1596 1597
	input_set_drvdata(dev->input_dev, dev);

1598
	spin_lock_init(&dev->rc_map.lock);
1599
	spin_lock_init(&dev->keylock);
1600
	mutex_init(&dev->lock);
1601
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1602

1603
	dev->dev.type = &rc_dev_type;
1604
	dev->dev.class = &rc_class;
1605 1606
	device_initialize(&dev->dev);

1607 1608
	dev->driver_type = type;

1609 1610 1611 1612 1613 1614
	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1615
{
1616 1617 1618
	if (!dev)
		return;

1619
	input_free_device(dev->input_dev);
1620 1621 1622

	put_device(&dev->dev);

1623 1624 1625
	/* kfree(dev) will be called by the callback function
	   rc_dev_release() */

1626
	module_put(THIS_MODULE);
1627 1628 1629
}
EXPORT_SYMBOL_GPL(rc_free_device);

1630 1631 1632 1633 1634
static void devm_rc_alloc_release(struct device *dev, void *res)
{
	rc_free_device(*(struct rc_dev **)res);
}

1635 1636
struct rc_dev *devm_rc_allocate_device(struct device *dev,
				       enum rc_driver_type type)
1637 1638 1639 1640 1641 1642 1643
{
	struct rc_dev **dr, *rc;

	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
	if (!dr)
		return NULL;

1644
	rc = rc_allocate_device(type);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	if (!rc) {
		devres_free(dr);
		return NULL;
	}

	rc->dev.parent = dev;
	rc->managed_alloc = true;
	*dr = rc;
	devres_add(dev, dr);

	return rc;
}
EXPORT_SYMBOL_GPL(devm_rc_allocate_device);

1659 1660
int rc_register_device(struct rc_dev *dev)
{
1661
	static bool raw_init = false; /* raw decoders loaded? */
1662
	struct rc_map *rc_map;
1663
	const char *path;
1664 1665 1666
	int attr = 0;
	int minor;
	int rc;
1667

1668 1669
	if (!dev || !dev->map_name)
		return -EINVAL;
1670

1671
	rc_map = rc_map_get(dev->map_name);
1672
	if (!rc_map)
1673
		rc_map = rc_map_get(RC_MAP_EMPTY);
1674
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1686 1687 1688 1689 1690 1691 1692
	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
	if (minor < 0)
		return minor;

	dev->minor = minor;
	dev_set_name(&dev->dev, "rc%u", dev->minor);
	dev_set_drvdata(&dev->dev, dev);
1693
	atomic_set(&dev->initialized, 0);
1694

1695 1696 1697
	dev->dev.groups = dev->sysfs_groups;
	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
	if (dev->s_filter)
1698
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1699 1700 1701 1702
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1703 1704
	rc = device_add(&dev->dev);
	if (rc)
1705
		goto out_unlock;
1706

1707
	rc = ir_setkeytable(dev, rc_map);
1708 1709 1710 1711 1712 1713 1714
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1715

1716 1717 1718 1719
	rc = input_register_device(dev->input_dev);
	if (rc)
		goto out_table;

1720
	/*
L
Lucas De Marchi 已提交
1721
	 * Default delay of 250ms is too short for some protocols, especially
1722 1723 1724 1725 1726 1727
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1728 1729 1730 1731 1732 1733 1734
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1735
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1736 1737
	dev_info(&dev->dev, "%s as %s\n",
		dev->input_name ?: "Unspecified device", path ?: "N/A");
1738 1739
	kfree(path);

1740
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1741
		if (!raw_init) {
1742
			request_module_nowait("ir-lirc-codec");
1743 1744
			raw_init = true;
		}
1745 1746 1747 1748 1749 1750
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1751
		u64 rc_type = (1ll << rc_map->rc_type);
1752
		rc = dev->change_protocol(dev, &rc_type);
1753 1754
		if (rc < 0)
			goto out_raw;
1755
		dev->enabled_protocols = rc_type;
1756 1757
	}

1758 1759
	/* Allow the RC sysfs nodes to be accessible */
	atomic_set(&dev->initialized, 1);
1760

1761 1762
	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
		   dev->minor,
1763
		   dev->driver_name ? dev->driver_name : "unknown",
1764
		   rc_map->name ? rc_map->name : "unknown",
1765 1766
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1767
	return 0;
1768 1769 1770 1771 1772 1773 1774 1775

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1776
	ir_free_table(&dev->rc_map);
1777 1778
out_dev:
	device_del(&dev->dev);
1779
out_unlock:
1780
	ida_simple_remove(&rc_ida, minor);
1781
	return rc;
1782
}
1783
EXPORT_SYMBOL_GPL(rc_register_device);
1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static void devm_rc_release(struct device *dev, void *res)
{
	rc_unregister_device(*(struct rc_dev **)res);
}

int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
{
	struct rc_dev **dr;
	int ret;

	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
	if (!dr)
		return -ENOMEM;

	ret = rc_register_device(dev);
	if (ret) {
		devres_free(dr);
		return ret;
	}

	*dr = dev;
	devres_add(parent, dr);

	return 0;
}
EXPORT_SYMBOL_GPL(devm_rc_register_device);

1812
void rc_unregister_device(struct rc_dev *dev)
1813
{
1814 1815
	if (!dev)
		return;
1816

1817
	del_timer_sync(&dev->timer_keyup);
1818

1819 1820 1821
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1822 1823 1824 1825
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1826 1827 1828
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1829
	device_del(&dev->dev);
1830

1831 1832
	ida_simple_remove(&rc_ida, dev->minor);

1833 1834
	if (!dev->managed_alloc)
		rc_free_device(dev);
1835
}
1836

1837
EXPORT_SYMBOL_GPL(rc_unregister_device);
1838 1839 1840 1841 1842

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1843
static int __init rc_core_init(void)
1844
{
1845
	int rc = class_register(&rc_class);
1846
	if (rc) {
1847
		pr_err("rc_core: unable to register rc class\n");
1848 1849 1850
		return rc;
	}

1851
	led_trigger_register_simple("rc-feedback", &led_feedback);
1852
	rc_map_register(&empty_map);
1853 1854 1855 1856

	return 0;
}

1857
static void __exit rc_core_exit(void)
1858
{
1859
	class_unregister(&rc_class);
1860
	led_trigger_unregister_simple(led_feedback);
1861
	rc_map_unregister(&empty_map);
1862 1863
}

1864
subsys_initcall(rc_core_init);
1865
module_exit(rc_core_exit);
1866

1867 1868 1869
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1870

1871
MODULE_AUTHOR("Mauro Carvalho Chehab");
1872
MODULE_LICENSE("GPL");