rc-main.c 30.4 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16 17
#include <linux/spinlock.h>
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/slab.h>
20
#include <linux/device.h>
21
#include "rc-core-priv.h"
22

23 24 25
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
26

27 28 29
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

30
/* Used to keep track of known keymaps */
31 32 33
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);

34
static struct rc_map_list *seek_rc_map(const char *name)
35
{
36
	struct rc_map_list *map = NULL;
37 38 39 40 41 42 43 44 45 46 47 48 49

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

50
struct rc_map *rc_map_get(const char *name)
51 52
{

53
	struct rc_map_list *map;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

	map = seek_rc_map(name);
#ifdef MODULE
	if (!map) {
		int rc = request_module(name);
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
77
EXPORT_SYMBOL_GPL(rc_map_get);
78

79
int rc_map_register(struct rc_map_list *map)
80 81 82 83 84 85
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
86
EXPORT_SYMBOL_GPL(rc_map_register);
87

88
void rc_map_unregister(struct rc_map_list *map)
89 90 91 92 93
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
94
EXPORT_SYMBOL_GPL(rc_map_unregister);
95 96


97
static struct rc_map_table empty[] = {
98 99 100
	{ 0x2a, KEY_COFFEE },
};

101
static struct rc_map_list empty_map = {
102 103 104
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
105
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
106 107 108 109
		.name    = RC_MAP_EMPTY,
	}
};

110 111
/**
 * ir_create_table() - initializes a scancode table
112
 * @rc_map:	the rc_map to initialize
113
 * @name:	name to assign to the table
114
 * @rc_type:	ir type to assign to the new table
115 116 117
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
118
 * This routine will initialize the rc_map and will allocate
119
 * memory to hold at least the specified number of elements.
120
 */
121
static int ir_create_table(struct rc_map *rc_map,
122
			   const char *name, u64 rc_type, size_t size)
123
{
124 125
	rc_map->name = name;
	rc_map->rc_type = rc_type;
126 127
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128 129
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
130 131 132
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133
		   rc_map->size, rc_map->alloc);
134 135 136 137 138
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
139
 * @rc_map:	the table whose mappings need to be freed
140 141 142 143
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
144
static void ir_free_table(struct rc_map *rc_map)
145
{
146 147 148
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
149 150
}

151
/**
152
 * ir_resize_table() - resizes a scancode table if necessary
153
 * @rc_map:	the rc_map to resize
154
 * @gfp_flags:	gfp flags to use when allocating memory
155
 * @return:	zero on success or a negative error code
156
 *
157
 * This routine will shrink the rc_map if it has lots of
158
 * unused entries and grow it if it is full.
159
 */
160
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161
{
162
	unsigned int oldalloc = rc_map->alloc;
163
	unsigned int newalloc = oldalloc;
164 165
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
166

167
	if (rc_map->size == rc_map->len) {
168
		/* All entries in use -> grow keytable */
169
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170
			return -ENOMEM;
171

172 173 174
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
175

176
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177 178 179 180
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
181

182 183
	if (newalloc == oldalloc)
		return 0;
184

185
	newscan = kmalloc(newalloc, gfp_flags);
186 187 188 189
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
190

191
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192 193
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
194
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195 196
	kfree(oldscan);
	return 0;
197 198
}

199
/**
200
 * ir_update_mapping() - set a keycode in the scancode->keycode table
201
 * @dev:	the struct rc_dev device descriptor
202
 * @rc_map:	scancode table to be adjusted
203 204 205 206
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
207
 * This routine is used to update scancode->keycode mapping at given
208 209
 * position.
 */
210
static unsigned int ir_update_mapping(struct rc_dev *dev,
211
				      struct rc_map *rc_map,
212 213 214
				      unsigned int index,
				      unsigned int new_keycode)
{
215
	int old_keycode = rc_map->scan[index].keycode;
216 217 218 219 220
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221 222 223
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224
			(rc_map->len - index) * sizeof(struct rc_map_table));
225 226 227 228
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
229 230
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
231
		__set_bit(new_keycode, dev->input_dev->keybit);
232 233 234 235
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
236
		__clear_bit(old_keycode, dev->input_dev->keybit);
237
		/* ... but another scancode might use the same keycode */
238 239
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
240
				__set_bit(old_keycode, dev->input_dev->keybit);
241 242 243 244 245
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
246
		ir_resize_table(rc_map, GFP_ATOMIC);
247 248 249 250 251 252
	}

	return old_keycode;
}

/**
253
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
254
 * @dev:	the struct rc_dev device descriptor
255
 * @rc_map:	scancode table to be searched
256 257
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
258
 *		accommodate not yet present scancodes
259 260
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
261
 *
262
 * This routine is used to locate given scancode in rc_map.
263 264
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
265
 */
266
static unsigned int ir_establish_scancode(struct rc_dev *dev,
267
					  struct rc_map *rc_map,
268 269
					  unsigned int scancode,
					  bool resize)
270
{
271
	unsigned int i;
272 273 274 275 276 277

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
278 279
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
280
	 */
281 282
	if (dev->scanmask)
		scancode &= dev->scanmask;
283 284

	/* First check if we already have a mapping for this ir command */
285 286
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
287 288
			return i;

289
		/* Keytable is sorted from lowest to highest scancode */
290
		if (rc_map->scan[i].scancode >= scancode)
291 292
			break;
	}
293

294
	/* No previous mapping found, we might need to grow the table */
295 296
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297 298
			return -1U;
	}
299

300
	/* i is the proper index to insert our new keycode */
301 302
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303
			(rc_map->len - i) * sizeof(struct rc_map_table));
304 305 306
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
307

308
	return i;
309 310
}

311
/**
312
 * ir_setkeycode() - set a keycode in the scancode->keycode table
313
 * @idev:	the struct input_dev device descriptor
314
 * @scancode:	the desired scancode
315 316
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
317
 *
318
 * This routine is used to handle evdev EVIOCSKEY ioctl.
319
 */
320
static int ir_setkeycode(struct input_dev *idev,
321 322
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
323
{
324
	struct rc_dev *rdev = input_get_drvdata(idev);
325
	struct rc_map *rc_map = &rdev->rc_map;
326 327
	unsigned int index;
	unsigned int scancode;
328
	int retval = 0;
329
	unsigned long flags;
330

331
	spin_lock_irqsave(&rc_map->lock, flags);
332 333 334

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
335
		if (index >= rc_map->len) {
336 337 338 339 340 341 342 343
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

344 345
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
346 347 348 349 350
			retval = -ENOMEM;
			goto out;
		}
	}

351
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352 353

out:
354
	spin_unlock_irqrestore(&rc_map->lock, flags);
355
	return retval;
356 357 358
}

/**
359
 * ir_setkeytable() - sets several entries in the scancode->keycode table
360
 * @dev:	the struct rc_dev device descriptor
361 362
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
363
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
364
 *
365
 * This routine is used to handle table initialization.
366
 */
367
static int ir_setkeytable(struct rc_dev *dev,
368
			  const struct rc_map *from)
369
{
370
	struct rc_map *rc_map = &dev->rc_map;
371 372 373
	unsigned int i, index;
	int rc;

374
	rc = ir_create_table(rc_map, from->name,
375
			     from->rc_type, from->size);
376 377 378 379
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380
		   rc_map->size, rc_map->alloc);
381

382
	for (i = 0; i < from->size; i++) {
383
		index = ir_establish_scancode(dev, rc_map,
384
					      from->scan[i].scancode, false);
385
		if (index >= rc_map->len) {
386
			rc = -ENOMEM;
387
			break;
388 389
		}

390
		ir_update_mapping(dev, rc_map, index,
391
				  from->scan[i].keycode);
392
	}
393 394

	if (rc)
395
		ir_free_table(rc_map);
396

397
	return rc;
398 399
}

400 401
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
402
 * @rc_map:	the struct rc_map to search
403 404 405 406 407 408
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
409
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410 411
					  unsigned int scancode)
{
412
	int start = 0;
413
	int end = rc_map->len - 1;
414
	int mid;
415 416 417

	while (start <= end) {
		mid = (start + end) / 2;
418
		if (rc_map->scan[mid].scancode < scancode)
419
			start = mid + 1;
420
		else if (rc_map->scan[mid].scancode > scancode)
421 422 423 424 425 426 427 428
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

429
/**
430
 * ir_getkeycode() - get a keycode from the scancode->keycode table
431
 * @idev:	the struct input_dev device descriptor
432
 * @scancode:	the desired scancode
433 434
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
435
 *
436
 * This routine is used to handle evdev EVIOCGKEY ioctl.
437
 */
438
static int ir_getkeycode(struct input_dev *idev,
439
			 struct input_keymap_entry *ke)
440
{
441
	struct rc_dev *rdev = input_get_drvdata(idev);
442
	struct rc_map *rc_map = &rdev->rc_map;
443
	struct rc_map_table *entry;
444 445 446 447
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
448

449
	spin_lock_irqsave(&rc_map->lock, flags);
450 451 452 453 454 455 456 457

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

458
		index = ir_lookup_by_scancode(rc_map, scancode);
459 460
	}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
478 479
		retval = -EINVAL;
		goto out;
480 481
	}

482 483
	retval = 0;

484
out:
485
	spin_unlock_irqrestore(&rc_map->lock, flags);
486
	return retval;
487 488 489
}

/**
490
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491 492 493
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
494
 *
495 496 497
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
498
 */
499
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
500
{
501
	struct rc_map *rc_map = &dev->rc_map;
502 503 504 505
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

506
	spin_lock_irqsave(&rc_map->lock, flags);
507

508 509 510
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
511

512
	spin_unlock_irqrestore(&rc_map->lock, flags);
513

514 515
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516
			   dev->input_name, scancode, keycode);
517

518
	return keycode;
519
}
520
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
521

522
/**
523
 * ir_do_keyup() - internal function to signal the release of a keypress
524
 * @dev:	the struct rc_dev descriptor of the device
525
 * @sync:	whether or not to call input_sync
526
 *
527 528
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
529
 */
530
static void ir_do_keyup(struct rc_dev *dev, bool sync)
531
{
532
	if (!dev->keypressed)
533 534
		return;

535 536
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
537 538
	if (sync)
		input_sync(dev->input_dev);
539
	dev->keypressed = false;
540
}
541 542

/**
543
 * rc_keyup() - signals the release of a keypress
544
 * @dev:	the struct rc_dev descriptor of the device
545 546 547 548
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
549
void rc_keyup(struct rc_dev *dev)
550 551 552
{
	unsigned long flags;

553
	spin_lock_irqsave(&dev->keylock, flags);
554
	ir_do_keyup(dev, true);
555
	spin_unlock_irqrestore(&dev->keylock, flags);
556
}
557
EXPORT_SYMBOL_GPL(rc_keyup);
558 559 560

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
561
 * @cookie:	a pointer to the struct rc_dev for the device
562 563 564
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
565
 */
566
static void ir_timer_keyup(unsigned long cookie)
567
{
568
	struct rc_dev *dev = (struct rc_dev *)cookie;
569 570 571 572 573 574 575 576 577 578 579 580
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
581 582
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
583
		ir_do_keyup(dev, true);
584
	spin_unlock_irqrestore(&dev->keylock, flags);
585 586 587
}

/**
588
 * rc_repeat() - signals that a key is still pressed
589
 * @dev:	the struct rc_dev descriptor of the device
590 591 592 593 594
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
595
void rc_repeat(struct rc_dev *dev)
596 597
{
	unsigned long flags;
598

599
	spin_lock_irqsave(&dev->keylock, flags);
600

601
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
602
	input_sync(dev->input_dev);
603

604
	if (!dev->keypressed)
605
		goto out;
606

607 608
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
609 610

out:
611
	spin_unlock_irqrestore(&dev->keylock, flags);
612
}
613
EXPORT_SYMBOL_GPL(rc_repeat);
614 615

/**
616
 * ir_do_keydown() - internal function to process a keypress
617
 * @dev:	the struct rc_dev descriptor of the device
618 619 620
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
621
 *
622 623
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
624
 */
625
static void ir_do_keydown(struct rc_dev *dev, int scancode,
626
			  u32 keycode, u8 toggle)
627
{
628 629 630
	bool new_event = !dev->keypressed ||
			 dev->last_scancode != scancode ||
			 dev->last_toggle != toggle;
631

632 633
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
634

635
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
636

637 638 639 640 641 642 643 644 645 646 647 648
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
			   "key 0x%04x, scancode 0x%04x\n",
			   dev->input_name, keycode, scancode);
		input_report_key(dev->input_dev, keycode, 1);
	}
649

650
	input_sync(dev->input_dev);
651
}
652

653
/**
654
 * rc_keydown() - generates input event for a key press
655
 * @dev:	the struct rc_dev descriptor of the device
656 657 658 659
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
660 661
 * This routine is used to signal that a key has been pressed on the
 * remote control.
662
 */
663
void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
664 665
{
	unsigned long flags;
666
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
667

668
	spin_lock_irqsave(&dev->keylock, flags);
669 670
	ir_do_keydown(dev, scancode, keycode, toggle);

671 672 673
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
674
	}
675
	spin_unlock_irqrestore(&dev->keylock, flags);
676
}
677
EXPORT_SYMBOL_GPL(rc_keydown);
678

679
/**
680
 * rc_keydown_notimeout() - generates input event for a key press without
681
 *                          an automatic keyup event at a later time
682
 * @dev:	the struct rc_dev descriptor of the device
683 684 685 686
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
687
 * This routine is used to signal that a key has been pressed on the
688
 * remote control. The driver must manually call rc_keyup() at a later stage.
689
 */
690
void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
691 692
{
	unsigned long flags;
693
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
694

695
	spin_lock_irqsave(&dev->keylock, flags);
696
	ir_do_keydown(dev, scancode, keycode, toggle);
697
	spin_unlock_irqrestore(&dev->keylock, flags);
698
}
699
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
700

701
static int ir_open(struct input_dev *idev)
702
{
703
	struct rc_dev *rdev = input_get_drvdata(idev);
704

705
	return rdev->open(rdev);
706
}
707

708
static void ir_close(struct input_dev *idev)
709
{
710
	struct rc_dev *rdev = input_get_drvdata(idev);
711

712 713
	 if (rdev)
		rdev->close(rdev);
714 715
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/* class for /sys/class/rc */
static char *ir_devnode(struct device *dev, mode_t *mode)
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

static struct class ir_input_class = {
	.name		= "rc",
	.devnode	= ir_devnode,
};

static struct {
	u64	type;
	char	*name;
} proto_names[] = {
731 732 733 734 735 736 737 738
	{ RC_TYPE_UNKNOWN,	"unknown"	},
	{ RC_TYPE_RC5,		"rc-5"		},
	{ RC_TYPE_NEC,		"nec"		},
	{ RC_TYPE_RC6,		"rc-6"		},
	{ RC_TYPE_JVC,		"jvc"		},
	{ RC_TYPE_SONY,		"sony"		},
	{ RC_TYPE_RC5_SZ,	"rc-5-sz"	},
	{ RC_TYPE_LIRC,		"lirc"		},
739
	{ RC_TYPE_OTHER,	"other"		},
740 741 742 743 744 745
};

#define PROTO_NONE	"none"

/**
 * show_protocols() - shows the current IR protocol(s)
746
 * @device:	the device descriptor
747 748 749 750 751 752 753
 * @mattr:	the device attribute struct (unused)
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
 * it is trigged by reading /sys/class/rc/rc?/protocols.
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
754 755 756
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
757
 */
758
static ssize_t show_protocols(struct device *device,
759 760
			      struct device_attribute *mattr, char *buf)
{
761
	struct rc_dev *dev = to_rc_dev(device);
762 763 764 765 766
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
767
	if (!dev)
768 769
		return -EINVAL;

770 771
	mutex_lock(&dev->lock);

772
	if (dev->driver_type == RC_DRIVER_SCANCODE) {
773
		enabled = dev->rc_map.rc_type;
774 775 776
		allowed = dev->allowed_protos;
	} else {
		enabled = dev->raw->enabled_protocols;
777
		allowed = ir_raw_get_allowed_protocols();
778
	}
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
		   (long long)allowed,
		   (long long)enabled);

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
	}

	if (tmp != buf)
		tmp--;
	*tmp = '\n';
794 795 796

	mutex_unlock(&dev->lock);

797 798 799 800 801
	return tmp + 1 - buf;
}

/**
 * store_protocols() - changes the current IR protocol(s)
802
 * @device:	the device descriptor
803 804 805 806
 * @mattr:	the device attribute struct (unused)
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
807
 * This routine is for changing the IR protocol type.
808 809 810 811 812 813 814
 * It is trigged by writing to /sys/class/rc/rc?/protocols.
 * Writing "+proto" will add a protocol to the list of enabled protocols.
 * Writing "-proto" will remove a protocol from the list of enabled protocols.
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
 * is used, otherwise @len.
815 816 817
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
818
 */
819
static ssize_t store_protocols(struct device *device,
820 821 822 823
			       struct device_attribute *mattr,
			       const char *data,
			       size_t len)
{
824
	struct rc_dev *dev = to_rc_dev(device);
825 826 827 828 829 830
	bool enable, disable;
	const char *tmp;
	u64 type;
	u64 mask;
	int rc, i, count = 0;
	unsigned long flags;
831
	ssize_t ret;
832 833

	/* Device is being removed */
834
	if (!dev)
835 836
		return -EINVAL;

837 838
	mutex_lock(&dev->lock);

839
	if (dev->driver_type == RC_DRIVER_SCANCODE)
840
		type = dev->rc_map.rc_type;
841 842
	else if (dev->raw)
		type = dev->raw->enabled_protocols;
843 844
	else {
		IR_dprintk(1, "Protocol switching not supported\n");
845 846
		ret = -EINVAL;
		goto out;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	}

	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

		if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
			tmp += sizeof(PROTO_NONE);
			mask = 0;
			count++;
		} else {
			for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
872
				if (!strcasecmp(tmp, proto_names[i].name)) {
873 874 875 876 877 878 879
					tmp += strlen(proto_names[i].name);
					mask = proto_names[i].type;
					break;
				}
			}
			if (i == ARRAY_SIZE(proto_names)) {
				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
880 881
				ret = -EINVAL;
				goto out;
882 883 884 885 886 887 888 889 890 891 892 893 894 895
			}
			count++;
		}

		if (enable)
			type |= mask;
		else if (disable)
			type &= ~mask;
		else
			type = mask;
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
896 897
		ret = -EINVAL;
		goto out;
898 899
	}

900 901
	if (dev->change_protocol) {
		rc = dev->change_protocol(dev, type);
902 903 904
		if (rc < 0) {
			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
				   (long long)type);
905 906
			ret = -EINVAL;
			goto out;
907 908 909
		}
	}

910
	if (dev->driver_type == RC_DRIVER_SCANCODE) {
911 912 913
		spin_lock_irqsave(&dev->rc_map.lock, flags);
		dev->rc_map.rc_type = type;
		spin_unlock_irqrestore(&dev->rc_map.lock, flags);
914
	} else {
915
		dev->raw->enabled_protocols = type;
916 917 918 919 920
	}

	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
		   (long long)type);

921 922 923 924 925
	ret = len;

out:
	mutex_unlock(&dev->lock);
	return ret;
926 927
}

928 929 930 931 932 933 934 935
static void rc_dev_release(struct device *device)
{
	struct rc_dev *dev = to_rc_dev(device);

	kfree(dev);
	module_put(THIS_MODULE);
}

936 937 938 939 940 941 942 943 944
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
945
	struct rc_dev *dev = to_rc_dev(device);
946

947 948
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
949 950
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
		   show_protocols, store_protocols);

static struct attribute *rc_dev_attrs[] = {
	&dev_attr_protocols.attr,
	NULL,
};

static struct attribute_group rc_dev_attr_grp = {
	.attrs	= rc_dev_attrs,
};

static const struct attribute_group *rc_dev_attr_groups[] = {
	&rc_dev_attr_grp,
	NULL
};

static struct device_type rc_dev_type = {
	.groups		= rc_dev_attr_groups,
977
	.release	= rc_dev_release,
978 979 980
	.uevent		= rc_dev_uevent,
};

981
struct rc_dev *rc_allocate_device(void)
982
{
983
	struct rc_dev *dev;
984

985 986 987 988 989 990 991 992 993 994
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

995 996
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
997 998
	input_set_drvdata(dev->input_dev, dev);

999
	spin_lock_init(&dev->rc_map.lock);
1000
	spin_lock_init(&dev->keylock);
1001
	mutex_init(&dev->lock);
1002
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	dev->dev.type = &rc_dev_type;
	dev->dev.class = &ir_input_class;
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1014
{
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (dev) {
		input_free_device(dev->input_dev);
		put_device(&dev->dev);
	}
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
	static atomic_t devno = ATOMIC_INIT(0);
1025
	struct rc_map *rc_map;
1026
	const char *path;
1027
	int rc;
1028

1029 1030
	if (!dev || !dev->map_name)
		return -EINVAL;
1031

1032
	rc_map = rc_map_get(dev->map_name);
1033
	if (!rc_map)
1034
		rc_map = rc_map_get(RC_MAP_EMPTY);
1035
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * Take the lock here, as the device sysfs node will appear
	 * when device_add() is called, which may trigger an ir-keytable udev
	 * rule, which will in turn call show_protocols and access either
	 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
	 * been initialized.
	 */
	mutex_lock(&dev->lock);

1056 1057 1058 1059 1060
	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
	dev_set_name(&dev->dev, "rc%ld", dev->devno);
	dev_set_drvdata(&dev->dev, dev);
	rc = device_add(&dev->dev);
	if (rc)
1061
		goto out_unlock;
1062

1063
	rc = ir_setkeytable(dev, rc_map);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
	rc = input_register_device(dev->input_dev);
	if (rc)
		goto out_table;
1074

1075
	/*
L
Lucas De Marchi 已提交
1076
	 * Default delay of 250ms is too short for some protocols, especially
1077 1078 1079 1080 1081 1082
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1083 1084 1085 1086 1087 1088 1089
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1090
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1091
	printk(KERN_INFO "%s: %s as %s\n",
1092 1093
		dev_name(&dev->dev),
		dev->input_name ? dev->input_name : "Unspecified device",
1094 1095 1096
		path ? path : "N/A");
	kfree(path);

1097 1098 1099 1100 1101
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}
1102
	mutex_unlock(&dev->lock);
1103 1104

	if (dev->change_protocol) {
1105
		rc = dev->change_protocol(dev, rc_map->rc_type);
1106 1107 1108 1109 1110 1111 1112
		if (rc < 0)
			goto out_raw;
	}

	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
		   dev->devno,
		   dev->driver_name ? dev->driver_name : "unknown",
1113
		   rc_map->name ? rc_map->name : "unknown",
1114 1115
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1116
	return 0;
1117 1118 1119 1120 1121 1122 1123 1124

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1125
	ir_free_table(&dev->rc_map);
1126 1127
out_dev:
	device_del(&dev->dev);
1128 1129
out_unlock:
	mutex_unlock(&dev->lock);
1130
	return rc;
1131
}
1132
EXPORT_SYMBOL_GPL(rc_register_device);
1133

1134
void rc_unregister_device(struct rc_dev *dev)
1135
{
1136 1137
	if (!dev)
		return;
1138

1139
	del_timer_sync(&dev->timer_keyup);
1140

1141 1142 1143 1144 1145 1146
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1147
	ir_free_table(&dev->rc_map);
1148 1149 1150
	IR_dprintk(1, "Freed keycode table\n");

	device_unregister(&dev->dev);
1151
}
1152
EXPORT_SYMBOL_GPL(rc_unregister_device);
1153 1154 1155 1156 1157

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1158
static int __init rc_core_init(void)
1159 1160 1161
{
	int rc = class_register(&ir_input_class);
	if (rc) {
1162
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1163 1164 1165 1166 1167
		return rc;
	}

	/* Initialize/load the decoders/keymap code that will be used */
	ir_raw_init();
1168
	rc_map_register(&empty_map);
1169 1170 1171 1172

	return 0;
}

1173
static void __exit rc_core_exit(void)
1174 1175
{
	class_unregister(&ir_input_class);
1176
	rc_map_unregister(&empty_map);
1177 1178
}

1179 1180
module_init(rc_core_init);
module_exit(rc_core_exit);
1181

1182 1183 1184
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1185 1186 1187

MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");