rc-main.c 41.3 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16
#include <linux/atomic.h>
17 18
#include <linux/spinlock.h>
#include <linux/delay.h>
19
#include <linux/input.h>
20
#include <linux/leds.h>
21
#include <linux/slab.h>
22
#include <linux/idr.h>
23
#include <linux/device.h>
24
#include <linux/module.h>
25
#include "rc-core-priv.h"
26

27 28 29
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
30
#define RC_DEV_MAX	256
31

32 33 34
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

35
/* Used to keep track of known keymaps */
36 37
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
38
static struct led_trigger *led_feedback;
39

40 41 42
/* Used to keep track of rc devices */
static DEFINE_IDA(rc_ida);

43
static struct rc_map_list *seek_rc_map(const char *name)
44
{
45
	struct rc_map_list *map = NULL;
46 47 48 49 50 51 52 53 54 55 56 57 58

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

59
struct rc_map *rc_map_get(const char *name)
60 61
{

62
	struct rc_map_list *map;
63 64

	map = seek_rc_map(name);
65
#ifdef CONFIG_MODULES
66
	if (!map) {
67
		int rc = request_module("%s", name);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
86
EXPORT_SYMBOL_GPL(rc_map_get);
87

88
int rc_map_register(struct rc_map_list *map)
89 90 91 92 93 94
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
95
EXPORT_SYMBOL_GPL(rc_map_register);
96

97
void rc_map_unregister(struct rc_map_list *map)
98 99 100 101 102
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
103
EXPORT_SYMBOL_GPL(rc_map_unregister);
104 105


106
static struct rc_map_table empty[] = {
107 108 109
	{ 0x2a, KEY_COFFEE },
};

110
static struct rc_map_list empty_map = {
111 112 113
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
114
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
115 116 117 118
		.name    = RC_MAP_EMPTY,
	}
};

119 120
/**
 * ir_create_table() - initializes a scancode table
121
 * @rc_map:	the rc_map to initialize
122
 * @name:	name to assign to the table
123
 * @rc_type:	ir type to assign to the new table
124 125 126
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
127
 * This routine will initialize the rc_map and will allocate
128
 * memory to hold at least the specified number of elements.
129
 */
130
static int ir_create_table(struct rc_map *rc_map,
131
			   const char *name, u64 rc_type, size_t size)
132
{
133 134 135
	rc_map->name = kstrdup(name, GFP_KERNEL);
	if (!rc_map->name)
		return -ENOMEM;
136
	rc_map->rc_type = rc_type;
137 138
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
139
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
140 141 142
	if (!rc_map->scan) {
		kfree(rc_map->name);
		rc_map->name = NULL;
143
		return -ENOMEM;
144
	}
145 146

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
147
		   rc_map->size, rc_map->alloc);
148 149 150 151 152
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
153
 * @rc_map:	the table whose mappings need to be freed
154 155 156 157
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
158
static void ir_free_table(struct rc_map *rc_map)
159
{
160
	rc_map->size = 0;
161
	kfree(rc_map->name);
162 163
	kfree(rc_map->scan);
	rc_map->scan = NULL;
164 165
}

166
/**
167
 * ir_resize_table() - resizes a scancode table if necessary
168
 * @rc_map:	the rc_map to resize
169
 * @gfp_flags:	gfp flags to use when allocating memory
170
 * @return:	zero on success or a negative error code
171
 *
172
 * This routine will shrink the rc_map if it has lots of
173
 * unused entries and grow it if it is full.
174
 */
175
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
176
{
177
	unsigned int oldalloc = rc_map->alloc;
178
	unsigned int newalloc = oldalloc;
179 180
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
181

182
	if (rc_map->size == rc_map->len) {
183
		/* All entries in use -> grow keytable */
184
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
185
			return -ENOMEM;
186

187 188 189
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
190

191
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
192 193 194 195
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
196

197 198
	if (newalloc == oldalloc)
		return 0;
199

200
	newscan = kmalloc(newalloc, gfp_flags);
201 202 203 204
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
205

206
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
207 208
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
209
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
210 211
	kfree(oldscan);
	return 0;
212 213
}

214
/**
215
 * ir_update_mapping() - set a keycode in the scancode->keycode table
216
 * @dev:	the struct rc_dev device descriptor
217
 * @rc_map:	scancode table to be adjusted
218 219 220 221
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
222
 * This routine is used to update scancode->keycode mapping at given
223 224
 * position.
 */
225
static unsigned int ir_update_mapping(struct rc_dev *dev,
226
				      struct rc_map *rc_map,
227 228 229
				      unsigned int index,
				      unsigned int new_keycode)
{
230
	int old_keycode = rc_map->scan[index].keycode;
231 232 233 234 235
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
236 237 238
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
239
			(rc_map->len - index) * sizeof(struct rc_map_table));
240 241 242 243
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
244 245
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
246
		__set_bit(new_keycode, dev->input_dev->keybit);
247 248 249 250
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
251
		__clear_bit(old_keycode, dev->input_dev->keybit);
252
		/* ... but another scancode might use the same keycode */
253 254
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
255
				__set_bit(old_keycode, dev->input_dev->keybit);
256 257 258 259 260
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
261
		ir_resize_table(rc_map, GFP_ATOMIC);
262 263 264 265 266 267
	}

	return old_keycode;
}

/**
268
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
269
 * @dev:	the struct rc_dev device descriptor
270
 * @rc_map:	scancode table to be searched
271 272
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
273
 *		accommodate not yet present scancodes
274 275
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
276
 *
277
 * This routine is used to locate given scancode in rc_map.
278 279
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
280
 */
281
static unsigned int ir_establish_scancode(struct rc_dev *dev,
282
					  struct rc_map *rc_map,
283 284
					  unsigned int scancode,
					  bool resize)
285
{
286
	unsigned int i;
287 288 289 290 291 292

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
293 294
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
295
	 */
296 297
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
298 299

	/* First check if we already have a mapping for this ir command */
300 301
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
302 303
			return i;

304
		/* Keytable is sorted from lowest to highest scancode */
305
		if (rc_map->scan[i].scancode >= scancode)
306 307
			break;
	}
308

309
	/* No previous mapping found, we might need to grow the table */
310 311
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
312 313
			return -1U;
	}
314

315
	/* i is the proper index to insert our new keycode */
316 317
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
318
			(rc_map->len - i) * sizeof(struct rc_map_table));
319 320 321
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
322

323
	return i;
324 325
}

326
/**
327
 * ir_setkeycode() - set a keycode in the scancode->keycode table
328
 * @idev:	the struct input_dev device descriptor
329
 * @scancode:	the desired scancode
330 331
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
332
 *
333
 * This routine is used to handle evdev EVIOCSKEY ioctl.
334
 */
335
static int ir_setkeycode(struct input_dev *idev,
336 337
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
338
{
339
	struct rc_dev *rdev = input_get_drvdata(idev);
340
	struct rc_map *rc_map = &rdev->rc_map;
341 342
	unsigned int index;
	unsigned int scancode;
343
	int retval = 0;
344
	unsigned long flags;
345

346
	spin_lock_irqsave(&rc_map->lock, flags);
347 348 349

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
350
		if (index >= rc_map->len) {
351 352 353 354 355 356 357 358
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

359 360
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
361 362 363 364 365
			retval = -ENOMEM;
			goto out;
		}
	}

366
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
367 368

out:
369
	spin_unlock_irqrestore(&rc_map->lock, flags);
370
	return retval;
371 372 373
}

/**
374
 * ir_setkeytable() - sets several entries in the scancode->keycode table
375
 * @dev:	the struct rc_dev device descriptor
376 377
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
378
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
379
 *
380
 * This routine is used to handle table initialization.
381
 */
382
static int ir_setkeytable(struct rc_dev *dev,
383
			  const struct rc_map *from)
384
{
385
	struct rc_map *rc_map = &dev->rc_map;
386 387 388
	unsigned int i, index;
	int rc;

389
	rc = ir_create_table(rc_map, from->name,
390
			     from->rc_type, from->size);
391 392 393 394
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
395
		   rc_map->size, rc_map->alloc);
396

397
	for (i = 0; i < from->size; i++) {
398
		index = ir_establish_scancode(dev, rc_map,
399
					      from->scan[i].scancode, false);
400
		if (index >= rc_map->len) {
401
			rc = -ENOMEM;
402
			break;
403 404
		}

405
		ir_update_mapping(dev, rc_map, index,
406
				  from->scan[i].keycode);
407
	}
408 409

	if (rc)
410
		ir_free_table(rc_map);
411

412
	return rc;
413 414
}

415 416
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
417
 * @rc_map:	the struct rc_map to search
418 419 420 421 422 423
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
424
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
425 426
					  unsigned int scancode)
{
427
	int start = 0;
428
	int end = rc_map->len - 1;
429
	int mid;
430 431 432

	while (start <= end) {
		mid = (start + end) / 2;
433
		if (rc_map->scan[mid].scancode < scancode)
434
			start = mid + 1;
435
		else if (rc_map->scan[mid].scancode > scancode)
436 437 438 439 440 441 442 443
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

444
/**
445
 * ir_getkeycode() - get a keycode from the scancode->keycode table
446
 * @idev:	the struct input_dev device descriptor
447
 * @scancode:	the desired scancode
448 449
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
450
 *
451
 * This routine is used to handle evdev EVIOCGKEY ioctl.
452
 */
453
static int ir_getkeycode(struct input_dev *idev,
454
			 struct input_keymap_entry *ke)
455
{
456
	struct rc_dev *rdev = input_get_drvdata(idev);
457
	struct rc_map *rc_map = &rdev->rc_map;
458
	struct rc_map_table *entry;
459 460 461 462
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
463

464
	spin_lock_irqsave(&rc_map->lock, flags);
465 466 467 468 469 470 471 472

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

473
		index = ir_lookup_by_scancode(rc_map, scancode);
474 475
	}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
493 494
		retval = -EINVAL;
		goto out;
495 496
	}

497 498
	retval = 0;

499
out:
500
	spin_unlock_irqrestore(&rc_map->lock, flags);
501
	return retval;
502 503 504
}

/**
505
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
506 507 508
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
509
 *
510 511 512
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
513
 */
514
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
515
{
516
	struct rc_map *rc_map = &dev->rc_map;
517 518 519 520
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

521
	spin_lock_irqsave(&rc_map->lock, flags);
522

523 524 525
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
526

527
	spin_unlock_irqrestore(&rc_map->lock, flags);
528

529 530
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
531
			   dev->input_name, scancode, keycode);
532

533
	return keycode;
534
}
535
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
536

537
/**
538
 * ir_do_keyup() - internal function to signal the release of a keypress
539
 * @dev:	the struct rc_dev descriptor of the device
540
 * @sync:	whether or not to call input_sync
541
 *
542 543
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
544
 */
545
static void ir_do_keyup(struct rc_dev *dev, bool sync)
546
{
547
	if (!dev->keypressed)
548 549
		return;

550 551
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
552
	led_trigger_event(led_feedback, LED_OFF);
553 554
	if (sync)
		input_sync(dev->input_dev);
555
	dev->keypressed = false;
556
}
557 558

/**
559
 * rc_keyup() - signals the release of a keypress
560
 * @dev:	the struct rc_dev descriptor of the device
561 562 563 564
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
565
void rc_keyup(struct rc_dev *dev)
566 567 568
{
	unsigned long flags;

569
	spin_lock_irqsave(&dev->keylock, flags);
570
	ir_do_keyup(dev, true);
571
	spin_unlock_irqrestore(&dev->keylock, flags);
572
}
573
EXPORT_SYMBOL_GPL(rc_keyup);
574 575 576

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
577
 * @cookie:	a pointer to the struct rc_dev for the device
578 579 580
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
581
 */
582
static void ir_timer_keyup(unsigned long cookie)
583
{
584
	struct rc_dev *dev = (struct rc_dev *)cookie;
585 586 587 588 589 590 591 592 593 594 595 596
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
597 598
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
599
		ir_do_keyup(dev, true);
600
	spin_unlock_irqrestore(&dev->keylock, flags);
601 602 603
}

/**
604
 * rc_repeat() - signals that a key is still pressed
605
 * @dev:	the struct rc_dev descriptor of the device
606 607 608 609 610
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
611
void rc_repeat(struct rc_dev *dev)
612 613
{
	unsigned long flags;
614

615
	spin_lock_irqsave(&dev->keylock, flags);
616

617
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
618
	input_sync(dev->input_dev);
619

620
	if (!dev->keypressed)
621
		goto out;
622

623 624
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
625 626

out:
627
	spin_unlock_irqrestore(&dev->keylock, flags);
628
}
629
EXPORT_SYMBOL_GPL(rc_repeat);
630 631

/**
632
 * ir_do_keydown() - internal function to process a keypress
633
 * @dev:	the struct rc_dev descriptor of the device
634
 * @protocol:	the protocol of the keypress
635 636 637
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
638
 *
639 640
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
641
 */
642 643
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
644
{
645
	bool new_event = (!dev->keypressed		 ||
646
			  dev->last_protocol != protocol ||
647
			  dev->last_scancode != scancode ||
648
			  dev->last_toggle   != toggle);
649

650 651
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
652

653
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
654

655 656 657
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
658
		dev->last_protocol = protocol;
659 660 661 662 663
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
664 665
			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
			   dev->input_name, keycode, protocol, scancode);
666
		input_report_key(dev->input_dev, keycode, 1);
667 668

		led_trigger_event(led_feedback, LED_FULL);
669
	}
670

671
	input_sync(dev->input_dev);
672
}
673

674
/**
675
 * rc_keydown() - generates input event for a key press
676
 * @dev:	the struct rc_dev descriptor of the device
677 678
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
679 680 681
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
682 683
 * This routine is used to signal that a key has been pressed on the
 * remote control.
684
 */
685
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
686 687
{
	unsigned long flags;
688
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
689

690
	spin_lock_irqsave(&dev->keylock, flags);
691
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
692

693 694 695
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
696
	}
697
	spin_unlock_irqrestore(&dev->keylock, flags);
698
}
699
EXPORT_SYMBOL_GPL(rc_keydown);
700

701
/**
702
 * rc_keydown_notimeout() - generates input event for a key press without
703
 *                          an automatic keyup event at a later time
704
 * @dev:	the struct rc_dev descriptor of the device
705 706
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
707 708 709
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
710
 * This routine is used to signal that a key has been pressed on the
711
 * remote control. The driver must manually call rc_keyup() at a later stage.
712
 */
713 714
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
715 716
{
	unsigned long flags;
717
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
718

719
	spin_lock_irqsave(&dev->keylock, flags);
720
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
721
	spin_unlock_irqrestore(&dev->keylock, flags);
722
}
723
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
724

725 726 727 728 729 730 731 732
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
733

734
	if (!rdev->users++ && rdev->open != NULL)
735 736 737 738 739 740 741 742 743 744 745
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

746
static int ir_open(struct input_dev *idev)
747
{
748
	struct rc_dev *rdev = input_get_drvdata(idev);
749

750 751 752 753 754 755 756 757
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

758
		if (!--rdev->users && rdev->close != NULL)
759 760 761 762
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
763
}
764
EXPORT_SYMBOL_GPL(rc_close);
765

766
static void ir_close(struct input_dev *idev)
767
{
768
	struct rc_dev *rdev = input_get_drvdata(idev);
769
	rc_close(rdev);
770 771
}

772
/* class for /sys/class/rc */
773
static char *rc_devnode(struct device *dev, umode_t *mode)
774 775 776 777
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

778
static struct class rc_class = {
779
	.name		= "rc",
780
	.devnode	= rc_devnode,
781 782
};

783 784 785 786 787
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
788
static const struct {
789
	u64	type;
790
	const char	*name;
791
	const char	*module_name;
792
} proto_names[] = {
793 794 795
	{ RC_BIT_NONE,		"none",		NULL			},
	{ RC_BIT_OTHER,		"other",	NULL			},
	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
796
	{ RC_BIT_RC5 |
797 798
	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
	{ RC_BIT_NEC,		"nec",		"ir-nec-decoder"	},
799 800 801 802
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
803 804
	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
805 806
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
807 808 809 810 811 812
	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
813
	{ RC_BIT_CEC,		"cec",		NULL			},
814 815 816
};

/**
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
	}
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static bool lirc_is_present(void)
{
#if defined(CONFIG_LIRC_MODULE)
	struct module *lirc;

	mutex_lock(&module_mutex);
	lirc = find_module("lirc_dev");
	mutex_unlock(&module_mutex);

	return lirc ? true : false;
#elif defined(CONFIG_LIRC)
	return true;
#else
	return false;
#endif
}

858 859
/**
 * show_protocols() - shows the current/wakeup IR protocol(s)
860
 * @device:	the device descriptor
861
 * @mattr:	the device attribute struct
862 863 864
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
865
 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
866 867
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
868 869 870
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
871
 */
872
static ssize_t show_protocols(struct device *device,
873 874
			      struct device_attribute *mattr, char *buf)
{
875
	struct rc_dev *dev = to_rc_dev(device);
876
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
877 878 879 880 881
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
882
	if (!dev)
883 884
		return -EINVAL;

885 886 887
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

888 889
	mutex_lock(&dev->lock);

890
	if (fattr->type == RC_FILTER_NORMAL) {
891
		enabled = dev->enabled_protocols;
892 893
		allowed = dev->allowed_protocols;
		if (dev->raw && !allowed)
894 895
			allowed = ir_raw_get_allowed_protocols();
	} else {
896 897
		enabled = dev->enabled_wakeup_protocols;
		allowed = dev->allowed_wakeup_protocols;
898
	}
899

900 901 902 903
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
904 905 906 907 908 909

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
910 911 912

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
913 914
	}

915
	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
916 917
		tmp += sprintf(tmp, "[lirc] ");

918 919 920
	if (tmp != buf)
		tmp--;
	*tmp = '\n';
921

922 923 924 925
	return tmp + 1 - buf;
}

/**
926 927 928
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
929
 *
930 931
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
932 933
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
934
 * Returns the number of changes performed or a negative error code.
935
 */
936
static int parse_protocol_change(u64 *protocols, const char *buf)
937 938
{
	const char *tmp;
939 940
	unsigned count = 0;
	bool enable, disable;
941
	u64 mask;
942
	int i;
943

944
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

961 962 963 964
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
965 966 967
			}
		}

968
		if (i == ARRAY_SIZE(proto_names)) {
969 970 971 972 973 974
			if (!strcasecmp(tmp, "lirc"))
				mask = 0;
			else {
				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
				return -EINVAL;
			}
975 976 977 978
		}

		count++;

979
		if (enable)
980
			*protocols |= mask;
981
		else if (disable)
982
			*protocols &= ~mask;
983
		else
984
			*protocols = mask;
985 986 987 988
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
989 990 991 992 993 994
		return -EINVAL;
	}

	return count;
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static void ir_raw_load_modules(u64 *protocols)

{
	u64 available;
	int i, ret;

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (proto_names[i].type == RC_BIT_NONE ||
		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
			continue;

		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		if (!proto_names[i].module_name) {
			pr_err("Can't enable IR protocol %s\n",
			       proto_names[i].name);
			*protocols &= ~proto_names[i].type;
			continue;
		}

		ret = request_module("%s", proto_names[i].module_name);
		if (ret < 0) {
			pr_err("Couldn't load IR protocol module %s\n",
			       proto_names[i].module_name);
			*protocols &= ~proto_names[i].type;
			continue;
		}
		msleep(20);
		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		pr_err("Loaded IR protocol module %s, \
		       but protocol %s still not available\n",
		       proto_names[i].module_name,
		       proto_names[i].name);
		*protocols &= ~proto_names[i].type;
	}
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
	u64 *current_protocols;
	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
	struct rc_scancode_filter *filter;
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
	u64 old_protocols, new_protocols;
	ssize_t rc;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1069 1070 1071
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1072 1073
	if (fattr->type == RC_FILTER_NORMAL) {
		IR_dprintk(1, "Normal protocol change requested\n");
1074
		current_protocols = &dev->enabled_protocols;
1075
		change_protocol = dev->change_protocol;
1076
		filter = &dev->scancode_filter;
1077 1078 1079
		set_filter = dev->s_filter;
	} else {
		IR_dprintk(1, "Wakeup protocol change requested\n");
1080
		current_protocols = &dev->enabled_wakeup_protocols;
1081
		change_protocol = dev->change_wakeup_protocol;
1082
		filter = &dev->scancode_wakeup_filter;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		set_filter = dev->s_wakeup_filter;
	}

	if (!change_protocol) {
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

	rc = change_protocol(dev, &new_protocols);
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1103
		goto out;
1104 1105
	}

1106 1107 1108
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_load_modules(&new_protocols);

1109 1110 1111 1112
	if (new_protocols != old_protocols) {
		*current_protocols = new_protocols;
		IR_dprintk(1, "Protocols changed to 0x%llx\n",
			   (long long)new_protocols);
1113 1114
	}

1115
	/*
1116 1117 1118
	 * If a protocol change was attempted the filter may need updating, even
	 * if the actual protocol mask hasn't changed (since the driver may have
	 * cleared the filter).
1119 1120 1121
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1122 1123 1124 1125 1126
	if (set_filter && filter->mask) {
		if (new_protocols)
			rc = set_filter(dev, filter);
		else
			rc = -1;
1127

1128 1129 1130 1131 1132
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
			set_filter(dev, filter);
		}
1133 1134
	}

1135
	rc = len;
1136 1137 1138

out:
	mutex_unlock(&dev->lock);
1139
	return rc;
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1165
	struct rc_scancode_filter *filter;
1166 1167 1168 1169 1170 1171
	u32 val;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1172 1173 1174
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1175 1176
	mutex_lock(&dev->lock);

1177
	if (fattr->type == RC_FILTER_NORMAL)
1178
		filter = &dev->scancode_filter;
1179
	else
1180
		filter = &dev->scancode_wakeup_filter;
1181 1182 1183

	if (fattr->mask)
		val = filter->mask;
1184
	else
1185
		val = filter->data;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1212
			    const char *buf, size_t len)
1213 1214 1215
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1216
	struct rc_scancode_filter new_filter, *filter;
1217 1218
	int ret;
	unsigned long val;
1219
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1220
	u64 *enabled_protocols;
1221 1222 1223 1224 1225

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1226 1227 1228
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1229 1230 1231 1232
	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1233 1234
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1235 1236
		enabled_protocols = &dev->enabled_protocols;
		filter = &dev->scancode_filter;
1237 1238
	} else {
		set_filter = dev->s_wakeup_filter;
1239 1240
		enabled_protocols = &dev->enabled_wakeup_protocols;
		filter = &dev->scancode_wakeup_filter;
1241 1242
	}

1243 1244
	if (!set_filter)
		return -EINVAL;
1245 1246 1247

	mutex_lock(&dev->lock);

1248
	new_filter = *filter;
1249
	if (fattr->mask)
1250
		new_filter.mask = val;
1251
	else
1252
		new_filter.data = val;
1253

1254
	if (!*enabled_protocols && val) {
1255 1256 1257 1258
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1259

1260
	ret = set_filter(dev, &new_filter);
1261 1262
	if (ret < 0)
		goto unlock;
1263

1264
	*filter = new_filter;
1265 1266 1267

unlock:
	mutex_unlock(&dev->lock);
1268
	return (ret < 0) ? ret : len;
1269 1270
}

1271 1272
static void rc_dev_release(struct device *device)
{
1273 1274 1275
	struct rc_dev *dev = to_rc_dev(device);

	kfree(dev);
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1287
	struct rc_dev *dev = to_rc_dev(device);
1288

1289 1290
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1291 1292
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1293 1294 1295 1296 1297 1298 1299

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1300 1301 1302 1303
static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_NORMAL);
static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1304 1305 1306 1307 1308 1309 1310 1311
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1312

1313
static struct attribute *rc_dev_protocol_attrs[] = {
1314
	&dev_attr_protocols.attr.attr,
1315 1316 1317 1318 1319 1320 1321 1322
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1323
	&dev_attr_wakeup_protocols.attr.attr,
1324 1325 1326 1327 1328 1329 1330 1331
	NULL,
};

static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
	.attrs	= rc_dev_wakeup_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1332 1333
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1334 1335 1336
	NULL,
};

1337 1338
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1339 1340
};

1341 1342 1343 1344 1345 1346 1347 1348
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1349 1350 1351
};

static struct device_type rc_dev_type = {
1352
	.release	= rc_dev_release,
1353 1354 1355
	.uevent		= rc_dev_uevent,
};

1356
struct rc_dev *rc_allocate_device(void)
1357
{
1358
	struct rc_dev *dev;
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1370 1371
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1372 1373
	input_set_drvdata(dev->input_dev, dev);

1374
	spin_lock_init(&dev->rc_map.lock);
1375
	spin_lock_init(&dev->keylock);
1376
	mutex_init(&dev->lock);
1377
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1378

1379
	dev->dev.type = &rc_dev_type;
1380
	dev->dev.class = &rc_class;
1381 1382 1383 1384 1385 1386 1387 1388
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1389
{
1390 1391 1392
	if (!dev)
		return;

1393
	input_free_device(dev->input_dev);
1394 1395 1396

	put_device(&dev->dev);

1397 1398 1399
	/* kfree(dev) will be called by the callback function
	   rc_dev_release() */

1400
	module_put(THIS_MODULE);
1401 1402 1403 1404 1405
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1406
	static bool raw_init = false; /* raw decoders loaded? */
1407
	struct rc_map *rc_map;
1408
	const char *path;
1409 1410 1411
	int attr = 0;
	int minor;
	int rc;
1412

1413 1414
	if (!dev || !dev->map_name)
		return -EINVAL;
1415

1416
	rc_map = rc_map_get(dev->map_name);
1417
	if (!rc_map)
1418
		rc_map = rc_map_get(RC_MAP_EMPTY);
1419
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1431 1432 1433 1434 1435 1436 1437
	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
	if (minor < 0)
		return minor;

	dev->minor = minor;
	dev_set_name(&dev->dev, "rc%u", dev->minor);
	dev_set_drvdata(&dev->dev, dev);
1438
	atomic_set(&dev->initialized, 0);
1439

1440 1441 1442
	dev->dev.groups = dev->sysfs_groups;
	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
	if (dev->s_filter)
1443
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1444 1445 1446 1447 1448 1449
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	if (dev->change_wakeup_protocol)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1450 1451
	rc = device_add(&dev->dev);
	if (rc)
1452
		goto out_unlock;
1453

1454
	rc = ir_setkeytable(dev, rc_map);
1455 1456 1457 1458 1459 1460 1461
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1462

1463
	/*
L
Lucas De Marchi 已提交
1464
	 * Default delay of 250ms is too short for some protocols, especially
1465 1466 1467 1468 1469 1470
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1471 1472 1473 1474 1475 1476 1477
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1478 1479 1480 1481 1482
	/* rc_open will be called here */
	rc = input_register_device(dev->input_dev);
	if (rc)
		goto out_table;

1483
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1484 1485
	dev_info(&dev->dev, "%s as %s\n",
		dev->input_name ?: "Unspecified device", path ?: "N/A");
1486 1487
	kfree(path);

1488
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1489
		if (!raw_init) {
1490
			request_module_nowait("ir-lirc-codec");
1491 1492
			raw_init = true;
		}
1493 1494 1495 1496 1497 1498
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1499
		u64 rc_type = (1ll << rc_map->rc_type);
1500
		rc = dev->change_protocol(dev, &rc_type);
1501 1502
		if (rc < 0)
			goto out_raw;
1503
		dev->enabled_protocols = rc_type;
1504 1505
	}

1506 1507
	/* Allow the RC sysfs nodes to be accessible */
	atomic_set(&dev->initialized, 1);
1508

1509 1510
	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
		   dev->minor,
1511
		   dev->driver_name ? dev->driver_name : "unknown",
1512
		   rc_map->name ? rc_map->name : "unknown",
1513 1514
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1515
	return 0;
1516 1517 1518 1519 1520 1521 1522 1523

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1524
	ir_free_table(&dev->rc_map);
1525 1526
out_dev:
	device_del(&dev->dev);
1527
out_unlock:
1528
	ida_simple_remove(&rc_ida, minor);
1529
	return rc;
1530
}
1531
EXPORT_SYMBOL_GPL(rc_register_device);
1532

1533
void rc_unregister_device(struct rc_dev *dev)
1534
{
1535 1536
	if (!dev)
		return;
1537

1538
	del_timer_sync(&dev->timer_keyup);
1539

1540 1541 1542
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1543 1544 1545 1546
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1547 1548 1549
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1550
	device_del(&dev->dev);
1551

1552 1553
	ida_simple_remove(&rc_ida, dev->minor);

1554
	rc_free_device(dev);
1555
}
1556

1557
EXPORT_SYMBOL_GPL(rc_unregister_device);
1558 1559 1560 1561 1562

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1563
static int __init rc_core_init(void)
1564
{
1565
	int rc = class_register(&rc_class);
1566
	if (rc) {
1567
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1568 1569 1570
		return rc;
	}

1571
	led_trigger_register_simple("rc-feedback", &led_feedback);
1572
	rc_map_register(&empty_map);
1573 1574 1575 1576

	return 0;
}

1577
static void __exit rc_core_exit(void)
1578
{
1579
	class_unregister(&rc_class);
1580
	led_trigger_unregister_simple(led_feedback);
1581
	rc_map_unregister(&empty_map);
1582 1583
}

1584
subsys_initcall(rc_core_init);
1585
module_exit(rc_core_exit);
1586

1587 1588 1589
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1590

1591
MODULE_AUTHOR("Mauro Carvalho Chehab");
1592
MODULE_LICENSE("GPL");