rc-main.c 41.2 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16 17
#include <linux/spinlock.h>
#include <linux/delay.h>
18
#include <linux/input.h>
19
#include <linux/leds.h>
20
#include <linux/slab.h>
21
#include <linux/idr.h>
22
#include <linux/device.h>
23
#include <linux/module.h>
24
#include "rc-core-priv.h"
25

26 27 28
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
29
#define RC_DEV_MAX	256
30

31 32 33
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

34
/* Used to keep track of known keymaps */
35 36
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
37
static struct led_trigger *led_feedback;
38

39 40 41
/* Used to keep track of rc devices */
static DEFINE_IDA(rc_ida);

42
static struct rc_map_list *seek_rc_map(const char *name)
43
{
44
	struct rc_map_list *map = NULL;
45 46 47 48 49 50 51 52 53 54 55 56 57

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

58
struct rc_map *rc_map_get(const char *name)
59 60
{

61
	struct rc_map_list *map;
62 63

	map = seek_rc_map(name);
64
#ifdef CONFIG_MODULES
65
	if (!map) {
66
		int rc = request_module("%s", name);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
85
EXPORT_SYMBOL_GPL(rc_map_get);
86

87
int rc_map_register(struct rc_map_list *map)
88 89 90 91 92 93
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
94
EXPORT_SYMBOL_GPL(rc_map_register);
95

96
void rc_map_unregister(struct rc_map_list *map)
97 98 99 100 101
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
102
EXPORT_SYMBOL_GPL(rc_map_unregister);
103 104


105
static struct rc_map_table empty[] = {
106 107 108
	{ 0x2a, KEY_COFFEE },
};

109
static struct rc_map_list empty_map = {
110 111 112
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
113
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
114 115 116 117
		.name    = RC_MAP_EMPTY,
	}
};

118 119
/**
 * ir_create_table() - initializes a scancode table
120
 * @rc_map:	the rc_map to initialize
121
 * @name:	name to assign to the table
122
 * @rc_type:	ir type to assign to the new table
123 124 125
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
126
 * This routine will initialize the rc_map and will allocate
127
 * memory to hold at least the specified number of elements.
128
 */
129
static int ir_create_table(struct rc_map *rc_map,
130
			   const char *name, u64 rc_type, size_t size)
131
{
132 133
	rc_map->name = name;
	rc_map->rc_type = rc_type;
134 135
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
136 137
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
138 139 140
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
141
		   rc_map->size, rc_map->alloc);
142 143 144 145 146
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
147
 * @rc_map:	the table whose mappings need to be freed
148 149 150 151
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
152
static void ir_free_table(struct rc_map *rc_map)
153
{
154 155 156
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
157 158
}

159
/**
160
 * ir_resize_table() - resizes a scancode table if necessary
161
 * @rc_map:	the rc_map to resize
162
 * @gfp_flags:	gfp flags to use when allocating memory
163
 * @return:	zero on success or a negative error code
164
 *
165
 * This routine will shrink the rc_map if it has lots of
166
 * unused entries and grow it if it is full.
167
 */
168
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
169
{
170
	unsigned int oldalloc = rc_map->alloc;
171
	unsigned int newalloc = oldalloc;
172 173
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
174

175
	if (rc_map->size == rc_map->len) {
176
		/* All entries in use -> grow keytable */
177
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
178
			return -ENOMEM;
179

180 181 182
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
183

184
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
185 186 187 188
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
189

190 191
	if (newalloc == oldalloc)
		return 0;
192

193
	newscan = kmalloc(newalloc, gfp_flags);
194 195 196 197
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
198

199
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
200 201
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
202
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
203 204
	kfree(oldscan);
	return 0;
205 206
}

207
/**
208
 * ir_update_mapping() - set a keycode in the scancode->keycode table
209
 * @dev:	the struct rc_dev device descriptor
210
 * @rc_map:	scancode table to be adjusted
211 212 213 214
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
215
 * This routine is used to update scancode->keycode mapping at given
216 217
 * position.
 */
218
static unsigned int ir_update_mapping(struct rc_dev *dev,
219
				      struct rc_map *rc_map,
220 221 222
				      unsigned int index,
				      unsigned int new_keycode)
{
223
	int old_keycode = rc_map->scan[index].keycode;
224 225 226 227 228
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
229 230 231
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
232
			(rc_map->len - index) * sizeof(struct rc_map_table));
233 234 235 236
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
237 238
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
239
		__set_bit(new_keycode, dev->input_dev->keybit);
240 241 242 243
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
244
		__clear_bit(old_keycode, dev->input_dev->keybit);
245
		/* ... but another scancode might use the same keycode */
246 247
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
248
				__set_bit(old_keycode, dev->input_dev->keybit);
249 250 251 252 253
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
254
		ir_resize_table(rc_map, GFP_ATOMIC);
255 256 257 258 259 260
	}

	return old_keycode;
}

/**
261
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
262
 * @dev:	the struct rc_dev device descriptor
263
 * @rc_map:	scancode table to be searched
264 265
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
266
 *		accommodate not yet present scancodes
267 268
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
269
 *
270
 * This routine is used to locate given scancode in rc_map.
271 272
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
273
 */
274
static unsigned int ir_establish_scancode(struct rc_dev *dev,
275
					  struct rc_map *rc_map,
276 277
					  unsigned int scancode,
					  bool resize)
278
{
279
	unsigned int i;
280 281 282 283 284 285

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
286 287
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
288
	 */
289 290
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
291 292

	/* First check if we already have a mapping for this ir command */
293 294
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
295 296
			return i;

297
		/* Keytable is sorted from lowest to highest scancode */
298
		if (rc_map->scan[i].scancode >= scancode)
299 300
			break;
	}
301

302
	/* No previous mapping found, we might need to grow the table */
303 304
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
305 306
			return -1U;
	}
307

308
	/* i is the proper index to insert our new keycode */
309 310
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
311
			(rc_map->len - i) * sizeof(struct rc_map_table));
312 313 314
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
315

316
	return i;
317 318
}

319
/**
320
 * ir_setkeycode() - set a keycode in the scancode->keycode table
321
 * @idev:	the struct input_dev device descriptor
322
 * @scancode:	the desired scancode
323 324
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
325
 *
326
 * This routine is used to handle evdev EVIOCSKEY ioctl.
327
 */
328
static int ir_setkeycode(struct input_dev *idev,
329 330
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
331
{
332
	struct rc_dev *rdev = input_get_drvdata(idev);
333
	struct rc_map *rc_map = &rdev->rc_map;
334 335
	unsigned int index;
	unsigned int scancode;
336
	int retval = 0;
337
	unsigned long flags;
338

339
	spin_lock_irqsave(&rc_map->lock, flags);
340 341 342

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
343
		if (index >= rc_map->len) {
344 345 346 347 348 349 350 351
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

352 353
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
354 355 356 357 358
			retval = -ENOMEM;
			goto out;
		}
	}

359
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
360 361

out:
362
	spin_unlock_irqrestore(&rc_map->lock, flags);
363
	return retval;
364 365 366
}

/**
367
 * ir_setkeytable() - sets several entries in the scancode->keycode table
368
 * @dev:	the struct rc_dev device descriptor
369 370
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
371
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
372
 *
373
 * This routine is used to handle table initialization.
374
 */
375
static int ir_setkeytable(struct rc_dev *dev,
376
			  const struct rc_map *from)
377
{
378
	struct rc_map *rc_map = &dev->rc_map;
379 380 381
	unsigned int i, index;
	int rc;

382
	rc = ir_create_table(rc_map, from->name,
383
			     from->rc_type, from->size);
384 385 386 387
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
388
		   rc_map->size, rc_map->alloc);
389

390
	for (i = 0; i < from->size; i++) {
391
		index = ir_establish_scancode(dev, rc_map,
392
					      from->scan[i].scancode, false);
393
		if (index >= rc_map->len) {
394
			rc = -ENOMEM;
395
			break;
396 397
		}

398
		ir_update_mapping(dev, rc_map, index,
399
				  from->scan[i].keycode);
400
	}
401 402

	if (rc)
403
		ir_free_table(rc_map);
404

405
	return rc;
406 407
}

408 409
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
410
 * @rc_map:	the struct rc_map to search
411 412 413 414 415 416
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
417
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
418 419
					  unsigned int scancode)
{
420
	int start = 0;
421
	int end = rc_map->len - 1;
422
	int mid;
423 424 425

	while (start <= end) {
		mid = (start + end) / 2;
426
		if (rc_map->scan[mid].scancode < scancode)
427
			start = mid + 1;
428
		else if (rc_map->scan[mid].scancode > scancode)
429 430 431 432 433 434 435 436
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

437
/**
438
 * ir_getkeycode() - get a keycode from the scancode->keycode table
439
 * @idev:	the struct input_dev device descriptor
440
 * @scancode:	the desired scancode
441 442
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
443
 *
444
 * This routine is used to handle evdev EVIOCGKEY ioctl.
445
 */
446
static int ir_getkeycode(struct input_dev *idev,
447
			 struct input_keymap_entry *ke)
448
{
449
	struct rc_dev *rdev = input_get_drvdata(idev);
450
	struct rc_map *rc_map = &rdev->rc_map;
451
	struct rc_map_table *entry;
452 453 454 455
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
456

457
	spin_lock_irqsave(&rc_map->lock, flags);
458 459 460 461 462 463 464 465

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

466
		index = ir_lookup_by_scancode(rc_map, scancode);
467 468
	}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
486 487
		retval = -EINVAL;
		goto out;
488 489
	}

490 491
	retval = 0;

492
out:
493
	spin_unlock_irqrestore(&rc_map->lock, flags);
494
	return retval;
495 496 497
}

/**
498
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
499 500 501
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
502
 *
503 504 505
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
506
 */
507
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
508
{
509
	struct rc_map *rc_map = &dev->rc_map;
510 511 512 513
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

514
	spin_lock_irqsave(&rc_map->lock, flags);
515

516 517 518
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
519

520
	spin_unlock_irqrestore(&rc_map->lock, flags);
521

522 523
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
524
			   dev->input_name, scancode, keycode);
525

526
	return keycode;
527
}
528
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
529

530
/**
531
 * ir_do_keyup() - internal function to signal the release of a keypress
532
 * @dev:	the struct rc_dev descriptor of the device
533
 * @sync:	whether or not to call input_sync
534
 *
535 536
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
537
 */
538
static void ir_do_keyup(struct rc_dev *dev, bool sync)
539
{
540
	if (!dev->keypressed)
541 542
		return;

543 544
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
545
	led_trigger_event(led_feedback, LED_OFF);
546 547
	if (sync)
		input_sync(dev->input_dev);
548
	dev->keypressed = false;
549
}
550 551

/**
552
 * rc_keyup() - signals the release of a keypress
553
 * @dev:	the struct rc_dev descriptor of the device
554 555 556 557
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
558
void rc_keyup(struct rc_dev *dev)
559 560 561
{
	unsigned long flags;

562
	spin_lock_irqsave(&dev->keylock, flags);
563
	ir_do_keyup(dev, true);
564
	spin_unlock_irqrestore(&dev->keylock, flags);
565
}
566
EXPORT_SYMBOL_GPL(rc_keyup);
567 568 569

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
570
 * @cookie:	a pointer to the struct rc_dev for the device
571 572 573
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
574
 */
575
static void ir_timer_keyup(unsigned long cookie)
576
{
577
	struct rc_dev *dev = (struct rc_dev *)cookie;
578 579 580 581 582 583 584 585 586 587 588 589
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
590 591
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
592
		ir_do_keyup(dev, true);
593
	spin_unlock_irqrestore(&dev->keylock, flags);
594 595 596
}

/**
597
 * rc_repeat() - signals that a key is still pressed
598
 * @dev:	the struct rc_dev descriptor of the device
599 600 601 602 603
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
604
void rc_repeat(struct rc_dev *dev)
605 606
{
	unsigned long flags;
607

608
	spin_lock_irqsave(&dev->keylock, flags);
609

610
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
611
	input_sync(dev->input_dev);
612

613
	if (!dev->keypressed)
614
		goto out;
615

616 617
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
618 619

out:
620
	spin_unlock_irqrestore(&dev->keylock, flags);
621
}
622
EXPORT_SYMBOL_GPL(rc_repeat);
623 624

/**
625
 * ir_do_keydown() - internal function to process a keypress
626
 * @dev:	the struct rc_dev descriptor of the device
627
 * @protocol:	the protocol of the keypress
628 629 630
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
631
 *
632 633
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
634
 */
635 636
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
637
{
638
	bool new_event = (!dev->keypressed		 ||
639
			  dev->last_protocol != protocol ||
640
			  dev->last_scancode != scancode ||
641
			  dev->last_toggle   != toggle);
642

643 644
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
645

646
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
647

648 649 650
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
651
		dev->last_protocol = protocol;
652 653 654 655 656
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
657 658
			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
			   dev->input_name, keycode, protocol, scancode);
659
		input_report_key(dev->input_dev, keycode, 1);
660 661

		led_trigger_event(led_feedback, LED_FULL);
662
	}
663

664
	input_sync(dev->input_dev);
665
}
666

667
/**
668
 * rc_keydown() - generates input event for a key press
669
 * @dev:	the struct rc_dev descriptor of the device
670 671
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
672 673 674
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
675 676
 * This routine is used to signal that a key has been pressed on the
 * remote control.
677
 */
678
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
679 680
{
	unsigned long flags;
681
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
682

683
	spin_lock_irqsave(&dev->keylock, flags);
684
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
685

686 687 688
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
689
	}
690
	spin_unlock_irqrestore(&dev->keylock, flags);
691
}
692
EXPORT_SYMBOL_GPL(rc_keydown);
693

694
/**
695
 * rc_keydown_notimeout() - generates input event for a key press without
696
 *                          an automatic keyup event at a later time
697
 * @dev:	the struct rc_dev descriptor of the device
698 699
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
700 701 702
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
703
 * This routine is used to signal that a key has been pressed on the
704
 * remote control. The driver must manually call rc_keyup() at a later stage.
705
 */
706 707
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
708 709
{
	unsigned long flags;
710
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
711

712
	spin_lock_irqsave(&dev->keylock, flags);
713
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
714
	spin_unlock_irqrestore(&dev->keylock, flags);
715
}
716
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
717

718 719 720 721 722 723 724 725
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
726
	if (!rdev->users++ && rdev->open != NULL)
727 728 729 730 731 732 733 734 735 736 737
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

738
static int ir_open(struct input_dev *idev)
739
{
740
	struct rc_dev *rdev = input_get_drvdata(idev);
741

742 743 744 745 746 747 748 749
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

750
		if (!--rdev->users && rdev->close != NULL)
751 752 753 754
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
755
}
756
EXPORT_SYMBOL_GPL(rc_close);
757

758
static void ir_close(struct input_dev *idev)
759
{
760
	struct rc_dev *rdev = input_get_drvdata(idev);
761
	rc_close(rdev);
762 763
}

764
/* class for /sys/class/rc */
765
static char *rc_devnode(struct device *dev, umode_t *mode)
766 767 768 769
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

770
static struct class rc_class = {
771
	.name		= "rc",
772
	.devnode	= rc_devnode,
773 774
};

775 776 777 778 779
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
780
static const struct {
781
	u64	type;
782
	const char	*name;
783
	const char	*module_name;
784
} proto_names[] = {
785 786 787
	{ RC_BIT_NONE,		"none",		NULL			},
	{ RC_BIT_OTHER,		"other",	NULL			},
	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
788
	{ RC_BIT_RC5 |
789 790
	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
	{ RC_BIT_NEC,		"nec",		"ir-nec-decoder"	},
791 792 793 794
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
795 796
	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
797 798
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
799 800 801 802 803 804
	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
805 806 807
};

/**
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
	}
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static bool lirc_is_present(void)
{
#if defined(CONFIG_LIRC_MODULE)
	struct module *lirc;

	mutex_lock(&module_mutex);
	lirc = find_module("lirc_dev");
	mutex_unlock(&module_mutex);

	return lirc ? true : false;
#elif defined(CONFIG_LIRC)
	return true;
#else
	return false;
#endif
}

849 850
/**
 * show_protocols() - shows the current/wakeup IR protocol(s)
851
 * @device:	the device descriptor
852
 * @mattr:	the device attribute struct
853 854 855
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
856
 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
857 858
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
859 860 861
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
862
 */
863
static ssize_t show_protocols(struct device *device,
864 865
			      struct device_attribute *mattr, char *buf)
{
866
	struct rc_dev *dev = to_rc_dev(device);
867
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
868 869 870 871 872
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
873
	if (!dev)
874 875
		return -EINVAL;

876 877
	mutex_lock(&dev->lock);

878
	if (fattr->type == RC_FILTER_NORMAL) {
879
		enabled = dev->enabled_protocols;
880 881
		allowed = dev->allowed_protocols;
		if (dev->raw && !allowed)
882 883
			allowed = ir_raw_get_allowed_protocols();
	} else {
884 885
		enabled = dev->enabled_wakeup_protocols;
		allowed = dev->allowed_wakeup_protocols;
886
	}
887

888 889 890 891
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
892 893 894 895 896 897

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
898 899 900

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
901 902
	}

903
	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
904 905
		tmp += sprintf(tmp, "[lirc] ");

906 907 908
	if (tmp != buf)
		tmp--;
	*tmp = '\n';
909

910 911 912 913
	return tmp + 1 - buf;
}

/**
914 915 916
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
917
 *
918 919
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
920 921
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
922
 * Returns the number of changes performed or a negative error code.
923
 */
924
static int parse_protocol_change(u64 *protocols, const char *buf)
925 926
{
	const char *tmp;
927 928
	unsigned count = 0;
	bool enable, disable;
929
	u64 mask;
930
	int i;
931

932
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

949 950 951 952
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
953 954 955
			}
		}

956
		if (i == ARRAY_SIZE(proto_names)) {
957 958 959 960 961 962
			if (!strcasecmp(tmp, "lirc"))
				mask = 0;
			else {
				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
				return -EINVAL;
			}
963 964 965 966
		}

		count++;

967
		if (enable)
968
			*protocols |= mask;
969
		else if (disable)
970
			*protocols &= ~mask;
971
		else
972
			*protocols = mask;
973 974 975 976
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
977 978 979 980 981 982
		return -EINVAL;
	}

	return count;
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static void ir_raw_load_modules(u64 *protocols)

{
	u64 available;
	int i, ret;

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (proto_names[i].type == RC_BIT_NONE ||
		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
			continue;

		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		if (!proto_names[i].module_name) {
			pr_err("Can't enable IR protocol %s\n",
			       proto_names[i].name);
			*protocols &= ~proto_names[i].type;
			continue;
		}

		ret = request_module("%s", proto_names[i].module_name);
		if (ret < 0) {
			pr_err("Couldn't load IR protocol module %s\n",
			       proto_names[i].module_name);
			*protocols &= ~proto_names[i].type;
			continue;
		}
		msleep(20);
		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		pr_err("Loaded IR protocol module %s, \
		       but protocol %s still not available\n",
		       proto_names[i].module_name,
		       proto_names[i].name);
		*protocols &= ~proto_names[i].type;
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
	u64 *current_protocols;
	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
	struct rc_scancode_filter *filter;
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
	u64 old_protocols, new_protocols;
	ssize_t rc;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	if (fattr->type == RC_FILTER_NORMAL) {
		IR_dprintk(1, "Normal protocol change requested\n");
1059
		current_protocols = &dev->enabled_protocols;
1060
		change_protocol = dev->change_protocol;
1061
		filter = &dev->scancode_filter;
1062 1063 1064
		set_filter = dev->s_filter;
	} else {
		IR_dprintk(1, "Wakeup protocol change requested\n");
1065
		current_protocols = &dev->enabled_wakeup_protocols;
1066
		change_protocol = dev->change_wakeup_protocol;
1067
		filter = &dev->scancode_wakeup_filter;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		set_filter = dev->s_wakeup_filter;
	}

	if (!change_protocol) {
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

	rc = change_protocol(dev, &new_protocols);
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1088
		goto out;
1089 1090
	}

1091 1092 1093
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_load_modules(&new_protocols);

1094 1095 1096 1097
	if (new_protocols != old_protocols) {
		*current_protocols = new_protocols;
		IR_dprintk(1, "Protocols changed to 0x%llx\n",
			   (long long)new_protocols);
1098 1099
	}

1100
	/*
1101 1102 1103
	 * If a protocol change was attempted the filter may need updating, even
	 * if the actual protocol mask hasn't changed (since the driver may have
	 * cleared the filter).
1104 1105 1106
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1107 1108 1109 1110 1111
	if (set_filter && filter->mask) {
		if (new_protocols)
			rc = set_filter(dev, filter);
		else
			rc = -1;
1112

1113 1114 1115 1116 1117
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
			set_filter(dev, filter);
		}
1118 1119
	}

1120
	rc = len;
1121 1122 1123

out:
	mutex_unlock(&dev->lock);
1124
	return rc;
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1150
	struct rc_scancode_filter *filter;
1151 1152 1153 1154 1155 1156
	u32 val;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1157
	if (fattr->type == RC_FILTER_NORMAL)
1158
		filter = &dev->scancode_filter;
1159
	else
1160
		filter = &dev->scancode_wakeup_filter;
1161

1162
	mutex_lock(&dev->lock);
1163 1164
	if (fattr->mask)
		val = filter->mask;
1165
	else
1166
		val = filter->data;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1193
			    const char *buf, size_t len)
1194 1195 1196
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1197
	struct rc_scancode_filter new_filter, *filter;
1198 1199
	int ret;
	unsigned long val;
1200
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1201
	u64 *enabled_protocols;
1202 1203 1204 1205 1206 1207 1208 1209 1210

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1211 1212
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1213 1214
		enabled_protocols = &dev->enabled_protocols;
		filter = &dev->scancode_filter;
1215 1216
	} else {
		set_filter = dev->s_wakeup_filter;
1217 1218
		enabled_protocols = &dev->enabled_wakeup_protocols;
		filter = &dev->scancode_wakeup_filter;
1219 1220
	}

1221 1222
	if (!set_filter)
		return -EINVAL;
1223 1224 1225

	mutex_lock(&dev->lock);

1226
	new_filter = *filter;
1227
	if (fattr->mask)
1228
		new_filter.mask = val;
1229
	else
1230
		new_filter.data = val;
1231

1232
	if (!*enabled_protocols && val) {
1233 1234 1235 1236
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1237

1238
	ret = set_filter(dev, &new_filter);
1239 1240
	if (ret < 0)
		goto unlock;
1241

1242
	*filter = new_filter;
1243 1244 1245

unlock:
	mutex_unlock(&dev->lock);
1246
	return (ret < 0) ? ret : len;
1247 1248
}

1249 1250 1251 1252
static void rc_dev_release(struct device *device)
{
}

1253 1254 1255 1256 1257 1258 1259 1260 1261
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1262
	struct rc_dev *dev = to_rc_dev(device);
1263

1264 1265
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1266 1267
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1268 1269 1270 1271 1272 1273 1274

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1275 1276 1277 1278
static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_NORMAL);
static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1279 1280 1281 1282 1283 1284 1285 1286
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1287

1288
static struct attribute *rc_dev_protocol_attrs[] = {
1289
	&dev_attr_protocols.attr.attr,
1290 1291 1292 1293 1294 1295 1296 1297
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1298
	&dev_attr_wakeup_protocols.attr.attr,
1299 1300 1301 1302 1303 1304 1305 1306
	NULL,
};

static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
	.attrs	= rc_dev_wakeup_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1307 1308
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1309 1310 1311
	NULL,
};

1312 1313
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1314 1315
};

1316 1317 1318 1319 1320 1321 1322 1323
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1324 1325 1326
};

static struct device_type rc_dev_type = {
1327
	.release	= rc_dev_release,
1328 1329 1330
	.uevent		= rc_dev_uevent,
};

1331
struct rc_dev *rc_allocate_device(void)
1332
{
1333
	struct rc_dev *dev;
1334

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1345 1346
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1347 1348
	input_set_drvdata(dev->input_dev, dev);

1349
	spin_lock_init(&dev->rc_map.lock);
1350
	spin_lock_init(&dev->keylock);
1351
	mutex_init(&dev->lock);
1352
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1353

1354
	dev->dev.type = &rc_dev_type;
1355
	dev->dev.class = &rc_class;
1356 1357 1358 1359 1360 1361 1362 1363
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1364
{
1365 1366 1367
	if (!dev)
		return;

1368
	input_free_device(dev->input_dev);
1369 1370 1371 1372 1373

	put_device(&dev->dev);

	kfree(dev);
	module_put(THIS_MODULE);
1374 1375 1376 1377 1378
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1379
	static bool raw_init = false; /* raw decoders loaded? */
1380
	struct rc_map *rc_map;
1381
	const char *path;
1382 1383 1384
	int attr = 0;
	int minor;
	int rc;
1385

1386 1387
	if (!dev || !dev->map_name)
		return -EINVAL;
1388

1389
	rc_map = rc_map_get(dev->map_name);
1390
	if (!rc_map)
1391
		rc_map = rc_map_get(RC_MAP_EMPTY);
1392
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1404 1405 1406 1407 1408 1409 1410
	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
	if (minor < 0)
		return minor;

	dev->minor = minor;
	dev_set_name(&dev->dev, "rc%u", dev->minor);
	dev_set_drvdata(&dev->dev, dev);
1411

1412 1413 1414
	dev->dev.groups = dev->sysfs_groups;
	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
	if (dev->s_filter)
1415
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1416 1417 1418 1419 1420 1421
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	if (dev->change_wakeup_protocol)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1422 1423 1424 1425 1426 1427 1428 1429
	/*
	 * Take the lock here, as the device sysfs node will appear
	 * when device_add() is called, which may trigger an ir-keytable udev
	 * rule, which will in turn call show_protocols and access
	 * dev->enabled_protocols before it has been initialized.
	 */
	mutex_lock(&dev->lock);

1430 1431
	rc = device_add(&dev->dev);
	if (rc)
1432
		goto out_unlock;
1433

1434
	rc = ir_setkeytable(dev, rc_map);
1435 1436 1437 1438 1439 1440 1441
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1442 1443 1444 1445

	/* input_register_device can call ir_open, so unlock mutex here */
	mutex_unlock(&dev->lock);

1446
	rc = input_register_device(dev->input_dev);
1447 1448 1449

	mutex_lock(&dev->lock);

1450 1451
	if (rc)
		goto out_table;
1452

1453
	/*
L
Lucas De Marchi 已提交
1454
	 * Default delay of 250ms is too short for some protocols, especially
1455 1456 1457 1458 1459 1460
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1461 1462 1463 1464 1465 1466 1467
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1468
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1469 1470
	dev_info(&dev->dev, "%s as %s\n",
		dev->input_name ?: "Unspecified device", path ?: "N/A");
1471 1472
	kfree(path);

1473
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1474 1475 1476 1477 1478 1479
		/* Load raw decoders, if they aren't already */
		if (!raw_init) {
			IR_dprintk(1, "Loading raw decoders\n");
			ir_raw_init();
			raw_init = true;
		}
1480 1481
		/* calls ir_register_device so unlock mutex here*/
		mutex_unlock(&dev->lock);
1482
		rc = ir_raw_event_register(dev);
1483
		mutex_lock(&dev->lock);
1484 1485 1486 1487 1488
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1489
		u64 rc_type = (1ll << rc_map->rc_type);
1490
		rc = dev->change_protocol(dev, &rc_type);
1491 1492
		if (rc < 0)
			goto out_raw;
1493
		dev->enabled_protocols = rc_type;
1494 1495
	}

1496 1497
	mutex_unlock(&dev->lock);

1498 1499
	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
		   dev->minor,
1500
		   dev->driver_name ? dev->driver_name : "unknown",
1501
		   rc_map->name ? rc_map->name : "unknown",
1502 1503
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1504
	return 0;
1505 1506 1507 1508 1509 1510 1511 1512

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1513
	ir_free_table(&dev->rc_map);
1514 1515
out_dev:
	device_del(&dev->dev);
1516 1517
out_unlock:
	mutex_unlock(&dev->lock);
1518
	ida_simple_remove(&rc_ida, minor);
1519
	return rc;
1520
}
1521
EXPORT_SYMBOL_GPL(rc_register_device);
1522

1523
void rc_unregister_device(struct rc_dev *dev)
1524
{
1525 1526
	if (!dev)
		return;
1527

1528
	del_timer_sync(&dev->timer_keyup);
1529

1530 1531 1532
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1533 1534 1535 1536
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1537 1538 1539
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1540
	device_del(&dev->dev);
1541

1542 1543
	ida_simple_remove(&rc_ida, dev->minor);

1544
	rc_free_device(dev);
1545
}
1546

1547
EXPORT_SYMBOL_GPL(rc_unregister_device);
1548 1549 1550 1551 1552

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1553
static int __init rc_core_init(void)
1554
{
1555
	int rc = class_register(&rc_class);
1556
	if (rc) {
1557
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1558 1559 1560
		return rc;
	}

1561
	led_trigger_register_simple("rc-feedback", &led_feedback);
1562
	rc_map_register(&empty_map);
1563 1564 1565 1566

	return 0;
}

1567
static void __exit rc_core_exit(void)
1568
{
1569
	class_unregister(&rc_class);
1570
	led_trigger_unregister_simple(led_feedback);
1571
	rc_map_unregister(&empty_map);
1572 1573
}

1574
subsys_initcall(rc_core_init);
1575
module_exit(rc_core_exit);
1576

1577 1578 1579
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1580

1581
MODULE_AUTHOR("Mauro Carvalho Chehab");
1582
MODULE_LICENSE("GPL");