rc-main.c 41.1 KB
Newer Older
1
/* rc-main.c - Remote Controller core module
2
 *
3
 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14
 */

15
#include <media/rc-core.h>
16
#include <linux/atomic.h>
17 18
#include <linux/spinlock.h>
#include <linux/delay.h>
19
#include <linux/input.h>
20
#include <linux/leds.h>
21
#include <linux/slab.h>
22
#include <linux/idr.h>
23
#include <linux/device.h>
24
#include <linux/module.h>
25
#include "rc-core-priv.h"
26

27 28 29
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
30
#define RC_DEV_MAX	256
31

32 33 34
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

35
/* Used to keep track of known keymaps */
36 37
static LIST_HEAD(rc_map_list);
static DEFINE_SPINLOCK(rc_map_lock);
38
static struct led_trigger *led_feedback;
39

40 41 42
/* Used to keep track of rc devices */
static DEFINE_IDA(rc_ida);

43
static struct rc_map_list *seek_rc_map(const char *name)
44
{
45
	struct rc_map_list *map = NULL;
46 47 48 49 50 51 52 53 54 55 56 57 58

	spin_lock(&rc_map_lock);
	list_for_each_entry(map, &rc_map_list, list) {
		if (!strcmp(name, map->map.name)) {
			spin_unlock(&rc_map_lock);
			return map;
		}
	}
	spin_unlock(&rc_map_lock);

	return NULL;
}

59
struct rc_map *rc_map_get(const char *name)
60 61
{

62
	struct rc_map_list *map;
63 64

	map = seek_rc_map(name);
65
#ifdef CONFIG_MODULES
66
	if (!map) {
67
		int rc = request_module("%s", name);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
		if (rc < 0) {
			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
			return NULL;
		}
		msleep(20);	/* Give some time for IR to register */

		map = seek_rc_map(name);
	}
#endif
	if (!map) {
		printk(KERN_ERR "IR keymap %s not found\n", name);
		return NULL;
	}

	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);

	return &map->map;
}
86
EXPORT_SYMBOL_GPL(rc_map_get);
87

88
int rc_map_register(struct rc_map_list *map)
89 90 91 92 93 94
{
	spin_lock(&rc_map_lock);
	list_add_tail(&map->list, &rc_map_list);
	spin_unlock(&rc_map_lock);
	return 0;
}
95
EXPORT_SYMBOL_GPL(rc_map_register);
96

97
void rc_map_unregister(struct rc_map_list *map)
98 99 100 101 102
{
	spin_lock(&rc_map_lock);
	list_del(&map->list);
	spin_unlock(&rc_map_lock);
}
103
EXPORT_SYMBOL_GPL(rc_map_unregister);
104 105


106
static struct rc_map_table empty[] = {
107 108 109
	{ 0x2a, KEY_COFFEE },
};

110
static struct rc_map_list empty_map = {
111 112 113
	.map = {
		.scan    = empty,
		.size    = ARRAY_SIZE(empty),
114
		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
115 116 117 118
		.name    = RC_MAP_EMPTY,
	}
};

119 120
/**
 * ir_create_table() - initializes a scancode table
121
 * @rc_map:	the rc_map to initialize
122
 * @name:	name to assign to the table
123
 * @rc_type:	ir type to assign to the new table
124 125 126
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
127
 * This routine will initialize the rc_map and will allocate
128
 * memory to hold at least the specified number of elements.
129
 */
130
static int ir_create_table(struct rc_map *rc_map,
131
			   const char *name, u64 rc_type, size_t size)
132
{
133 134
	rc_map->name = name;
	rc_map->rc_type = rc_type;
135 136
	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
137 138
	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
	if (!rc_map->scan)
139 140 141
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
142
		   rc_map->size, rc_map->alloc);
143 144 145 146 147
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
148
 * @rc_map:	the table whose mappings need to be freed
149 150 151 152
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
153
static void ir_free_table(struct rc_map *rc_map)
154
{
155 156 157
	rc_map->size = 0;
	kfree(rc_map->scan);
	rc_map->scan = NULL;
158 159
}

160
/**
161
 * ir_resize_table() - resizes a scancode table if necessary
162
 * @rc_map:	the rc_map to resize
163
 * @gfp_flags:	gfp flags to use when allocating memory
164
 * @return:	zero on success or a negative error code
165
 *
166
 * This routine will shrink the rc_map if it has lots of
167
 * unused entries and grow it if it is full.
168
 */
169
static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
170
{
171
	unsigned int oldalloc = rc_map->alloc;
172
	unsigned int newalloc = oldalloc;
173 174
	struct rc_map_table *oldscan = rc_map->scan;
	struct rc_map_table *newscan;
175

176
	if (rc_map->size == rc_map->len) {
177
		/* All entries in use -> grow keytable */
178
		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
179
			return -ENOMEM;
180

181 182 183
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
184

185
	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
186 187 188 189
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
190

191 192
	if (newalloc == oldalloc)
		return 0;
193

194
	newscan = kmalloc(newalloc, gfp_flags);
195 196 197 198
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
199

200
	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
201 202
	rc_map->scan = newscan;
	rc_map->alloc = newalloc;
203
	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
204 205
	kfree(oldscan);
	return 0;
206 207
}

208
/**
209
 * ir_update_mapping() - set a keycode in the scancode->keycode table
210
 * @dev:	the struct rc_dev device descriptor
211
 * @rc_map:	scancode table to be adjusted
212 213 214 215
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
216
 * This routine is used to update scancode->keycode mapping at given
217 218
 * position.
 */
219
static unsigned int ir_update_mapping(struct rc_dev *dev,
220
				      struct rc_map *rc_map,
221 222 223
				      unsigned int index,
				      unsigned int new_keycode)
{
224
	int old_keycode = rc_map->scan[index].keycode;
225 226 227 228 229
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
230 231 232
			   index, rc_map->scan[index].scancode);
		rc_map->len--;
		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
233
			(rc_map->len - index) * sizeof(struct rc_map_table));
234 235 236 237
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
238 239
			   rc_map->scan[index].scancode, new_keycode);
		rc_map->scan[index].keycode = new_keycode;
240
		__set_bit(new_keycode, dev->input_dev->keybit);
241 242 243 244
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
245
		__clear_bit(old_keycode, dev->input_dev->keybit);
246
		/* ... but another scancode might use the same keycode */
247 248
		for (i = 0; i < rc_map->len; i++) {
			if (rc_map->scan[i].keycode == old_keycode) {
249
				__set_bit(old_keycode, dev->input_dev->keybit);
250 251 252 253 254
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
255
		ir_resize_table(rc_map, GFP_ATOMIC);
256 257 258 259 260 261
	}

	return old_keycode;
}

/**
262
 * ir_establish_scancode() - set a keycode in the scancode->keycode table
263
 * @dev:	the struct rc_dev device descriptor
264
 * @rc_map:	scancode table to be searched
265 266
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
L
Lucas De Marchi 已提交
267
 *		accommodate not yet present scancodes
268 269
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
270
 *
271
 * This routine is used to locate given scancode in rc_map.
272 273
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
274
 */
275
static unsigned int ir_establish_scancode(struct rc_dev *dev,
276
					  struct rc_map *rc_map,
277 278
					  unsigned int scancode,
					  bool resize)
279
{
280
	unsigned int i;
281 282 283 284 285 286

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
287 288
	 * IR tables from other remotes. So, we support specifying a mask to
	 * indicate the valid bits of the scancodes.
289
	 */
290 291
	if (dev->scancode_mask)
		scancode &= dev->scancode_mask;
292 293

	/* First check if we already have a mapping for this ir command */
294 295
	for (i = 0; i < rc_map->len; i++) {
		if (rc_map->scan[i].scancode == scancode)
296 297
			return i;

298
		/* Keytable is sorted from lowest to highest scancode */
299
		if (rc_map->scan[i].scancode >= scancode)
300 301
			break;
	}
302

303
	/* No previous mapping found, we might need to grow the table */
304 305
	if (rc_map->size == rc_map->len) {
		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
306 307
			return -1U;
	}
308

309
	/* i is the proper index to insert our new keycode */
310 311
	if (i < rc_map->len)
		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
312
			(rc_map->len - i) * sizeof(struct rc_map_table));
313 314 315
	rc_map->scan[i].scancode = scancode;
	rc_map->scan[i].keycode = KEY_RESERVED;
	rc_map->len++;
316

317
	return i;
318 319
}

320
/**
321
 * ir_setkeycode() - set a keycode in the scancode->keycode table
322
 * @idev:	the struct input_dev device descriptor
323
 * @scancode:	the desired scancode
324 325
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
326
 *
327
 * This routine is used to handle evdev EVIOCSKEY ioctl.
328
 */
329
static int ir_setkeycode(struct input_dev *idev,
330 331
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
332
{
333
	struct rc_dev *rdev = input_get_drvdata(idev);
334
	struct rc_map *rc_map = &rdev->rc_map;
335 336
	unsigned int index;
	unsigned int scancode;
337
	int retval = 0;
338
	unsigned long flags;
339

340
	spin_lock_irqsave(&rc_map->lock, flags);
341 342 343

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
344
		if (index >= rc_map->len) {
345 346 347 348 349 350 351 352
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

353 354
		index = ir_establish_scancode(rdev, rc_map, scancode, true);
		if (index >= rc_map->len) {
355 356 357 358 359
			retval = -ENOMEM;
			goto out;
		}
	}

360
	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
361 362

out:
363
	spin_unlock_irqrestore(&rc_map->lock, flags);
364
	return retval;
365 366 367
}

/**
368
 * ir_setkeytable() - sets several entries in the scancode->keycode table
369
 * @dev:	the struct rc_dev device descriptor
370 371
 * @to:		the struct rc_map to copy entries to
 * @from:	the struct rc_map to copy entries from
372
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
373
 *
374
 * This routine is used to handle table initialization.
375
 */
376
static int ir_setkeytable(struct rc_dev *dev,
377
			  const struct rc_map *from)
378
{
379
	struct rc_map *rc_map = &dev->rc_map;
380 381 382
	unsigned int i, index;
	int rc;

383
	rc = ir_create_table(rc_map, from->name,
384
			     from->rc_type, from->size);
385 386 387 388
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
389
		   rc_map->size, rc_map->alloc);
390

391
	for (i = 0; i < from->size; i++) {
392
		index = ir_establish_scancode(dev, rc_map,
393
					      from->scan[i].scancode, false);
394
		if (index >= rc_map->len) {
395
			rc = -ENOMEM;
396
			break;
397 398
		}

399
		ir_update_mapping(dev, rc_map, index,
400
				  from->scan[i].keycode);
401
	}
402 403

	if (rc)
404
		ir_free_table(rc_map);
405

406
	return rc;
407 408
}

409 410
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
411
 * @rc_map:	the struct rc_map to search
412 413 414 415 416 417
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
418
static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
419 420
					  unsigned int scancode)
{
421
	int start = 0;
422
	int end = rc_map->len - 1;
423
	int mid;
424 425 426

	while (start <= end) {
		mid = (start + end) / 2;
427
		if (rc_map->scan[mid].scancode < scancode)
428
			start = mid + 1;
429
		else if (rc_map->scan[mid].scancode > scancode)
430 431 432 433 434 435 436 437
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

438
/**
439
 * ir_getkeycode() - get a keycode from the scancode->keycode table
440
 * @idev:	the struct input_dev device descriptor
441
 * @scancode:	the desired scancode
442 443
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
444
 *
445
 * This routine is used to handle evdev EVIOCGKEY ioctl.
446
 */
447
static int ir_getkeycode(struct input_dev *idev,
448
			 struct input_keymap_entry *ke)
449
{
450
	struct rc_dev *rdev = input_get_drvdata(idev);
451
	struct rc_map *rc_map = &rdev->rc_map;
452
	struct rc_map_table *entry;
453 454 455 456
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
457

458
	spin_lock_irqsave(&rc_map->lock, flags);
459 460 461 462 463 464 465 466

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

467
		index = ir_lookup_by_scancode(rc_map, scancode);
468 469
	}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	if (index < rc_map->len) {
		entry = &rc_map->scan[index];

		ke->index = index;
		ke->keycode = entry->keycode;
		ke->len = sizeof(entry->scancode);
		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
		/*
		 * We do not really know the valid range of scancodes
		 * so let's respond with KEY_RESERVED to anything we
		 * do not have mapping for [yet].
		 */
		ke->index = index;
		ke->keycode = KEY_RESERVED;
	} else {
487 488
		retval = -EINVAL;
		goto out;
489 490
	}

491 492
	retval = 0;

493
out:
494
	spin_unlock_irqrestore(&rc_map->lock, flags);
495
	return retval;
496 497 498
}

/**
499
 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
500 501 502
 * @dev:	the struct rc_dev descriptor of the device
 * @scancode:	the scancode to look for
 * @return:	the corresponding keycode, or KEY_RESERVED
503
 *
504 505 506
 * This routine is used by drivers which need to convert a scancode to a
 * keycode. Normally it should not be used since drivers should have no
 * interest in keycodes.
507
 */
508
u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
509
{
510
	struct rc_map *rc_map = &dev->rc_map;
511 512 513 514
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

515
	spin_lock_irqsave(&rc_map->lock, flags);
516

517 518 519
	index = ir_lookup_by_scancode(rc_map, scancode);
	keycode = index < rc_map->len ?
			rc_map->scan[index].keycode : KEY_RESERVED;
520

521
	spin_unlock_irqrestore(&rc_map->lock, flags);
522

523 524
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
525
			   dev->input_name, scancode, keycode);
526

527
	return keycode;
528
}
529
EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
530

531
/**
532
 * ir_do_keyup() - internal function to signal the release of a keypress
533
 * @dev:	the struct rc_dev descriptor of the device
534
 * @sync:	whether or not to call input_sync
535
 *
536 537
 * This function is used internally to release a keypress, it must be
 * called with keylock held.
538
 */
539
static void ir_do_keyup(struct rc_dev *dev, bool sync)
540
{
541
	if (!dev->keypressed)
542 543
		return;

544 545
	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
	input_report_key(dev->input_dev, dev->last_keycode, 0);
546
	led_trigger_event(led_feedback, LED_OFF);
547 548
	if (sync)
		input_sync(dev->input_dev);
549
	dev->keypressed = false;
550
}
551 552

/**
553
 * rc_keyup() - signals the release of a keypress
554
 * @dev:	the struct rc_dev descriptor of the device
555 556 557 558
 *
 * This routine is used to signal that a key has been released on the
 * remote control.
 */
559
void rc_keyup(struct rc_dev *dev)
560 561 562
{
	unsigned long flags;

563
	spin_lock_irqsave(&dev->keylock, flags);
564
	ir_do_keyup(dev, true);
565
	spin_unlock_irqrestore(&dev->keylock, flags);
566
}
567
EXPORT_SYMBOL_GPL(rc_keyup);
568 569 570

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
571
 * @cookie:	a pointer to the struct rc_dev for the device
572 573 574
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
575
 */
576
static void ir_timer_keyup(unsigned long cookie)
577
{
578
	struct rc_dev *dev = (struct rc_dev *)cookie;
579 580 581 582 583 584 585 586 587 588 589 590
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
591 592
	spin_lock_irqsave(&dev->keylock, flags);
	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
593
		ir_do_keyup(dev, true);
594
	spin_unlock_irqrestore(&dev->keylock, flags);
595 596 597
}

/**
598
 * rc_repeat() - signals that a key is still pressed
599
 * @dev:	the struct rc_dev descriptor of the device
600 601 602 603 604
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
605
void rc_repeat(struct rc_dev *dev)
606 607
{
	unsigned long flags;
608

609
	spin_lock_irqsave(&dev->keylock, flags);
610

611
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
612
	input_sync(dev->input_dev);
613

614
	if (!dev->keypressed)
615
		goto out;
616

617 618
	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
619 620

out:
621
	spin_unlock_irqrestore(&dev->keylock, flags);
622
}
623
EXPORT_SYMBOL_GPL(rc_repeat);
624 625

/**
626
 * ir_do_keydown() - internal function to process a keypress
627
 * @dev:	the struct rc_dev descriptor of the device
628
 * @protocol:	the protocol of the keypress
629 630 631
 * @scancode:   the scancode of the keypress
 * @keycode:    the keycode of the keypress
 * @toggle:     the toggle value of the keypress
632
 *
633 634
 * This function is used internally to register a keypress, it must be
 * called with keylock held.
635
 */
636 637
static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u32 keycode, u8 toggle)
638
{
639
	bool new_event = (!dev->keypressed		 ||
640
			  dev->last_protocol != protocol ||
641
			  dev->last_scancode != scancode ||
642
			  dev->last_toggle   != toggle);
643

644 645
	if (new_event && dev->keypressed)
		ir_do_keyup(dev, false);
646

647
	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
648

649 650 651
	if (new_event && keycode != KEY_RESERVED) {
		/* Register a keypress */
		dev->keypressed = true;
652
		dev->last_protocol = protocol;
653 654 655 656 657
		dev->last_scancode = scancode;
		dev->last_toggle = toggle;
		dev->last_keycode = keycode;

		IR_dprintk(1, "%s: key down event, "
658 659
			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
			   dev->input_name, keycode, protocol, scancode);
660
		input_report_key(dev->input_dev, keycode, 1);
661 662

		led_trigger_event(led_feedback, LED_FULL);
663
	}
664

665
	input_sync(dev->input_dev);
666
}
667

668
/**
669
 * rc_keydown() - generates input event for a key press
670
 * @dev:	the struct rc_dev descriptor of the device
671 672
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
673 674 675
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
676 677
 * This routine is used to signal that a key has been pressed on the
 * remote control.
678
 */
679
void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
680 681
{
	unsigned long flags;
682
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
683

684
	spin_lock_irqsave(&dev->keylock, flags);
685
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
686

687 688 689
	if (dev->keypressed) {
		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
690
	}
691
	spin_unlock_irqrestore(&dev->keylock, flags);
692
}
693
EXPORT_SYMBOL_GPL(rc_keydown);
694

695
/**
696
 * rc_keydown_notimeout() - generates input event for a key press without
697
 *                          an automatic keyup event at a later time
698
 * @dev:	the struct rc_dev descriptor of the device
699 700
 * @protocol:	the protocol for the keypress
 * @scancode:	the scancode for the keypress
701 702 703
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
 *
704
 * This routine is used to signal that a key has been pressed on the
705
 * remote control. The driver must manually call rc_keyup() at a later stage.
706
 */
707 708
void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
			  u32 scancode, u8 toggle)
709 710
{
	unsigned long flags;
711
	u32 keycode = rc_g_keycode_from_table(dev, scancode);
712

713
	spin_lock_irqsave(&dev->keylock, flags);
714
	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
715
	spin_unlock_irqrestore(&dev->keylock, flags);
716
}
717
EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
718

719 720 721 722 723 724 725 726
int rc_open(struct rc_dev *rdev)
{
	int rval = 0;

	if (!rdev)
		return -EINVAL;

	mutex_lock(&rdev->lock);
727

728
	if (!rdev->users++ && rdev->open != NULL)
729 730 731 732 733 734 735 736 737 738 739
		rval = rdev->open(rdev);

	if (rval)
		rdev->users--;

	mutex_unlock(&rdev->lock);

	return rval;
}
EXPORT_SYMBOL_GPL(rc_open);

740
static int ir_open(struct input_dev *idev)
741
{
742
	struct rc_dev *rdev = input_get_drvdata(idev);
743

744 745 746 747 748 749 750 751
	return rc_open(rdev);
}

void rc_close(struct rc_dev *rdev)
{
	if (rdev) {
		mutex_lock(&rdev->lock);

752
		if (!--rdev->users && rdev->close != NULL)
753 754 755 756
			rdev->close(rdev);

		mutex_unlock(&rdev->lock);
	}
757
}
758
EXPORT_SYMBOL_GPL(rc_close);
759

760
static void ir_close(struct input_dev *idev)
761
{
762
	struct rc_dev *rdev = input_get_drvdata(idev);
763
	rc_close(rdev);
764 765
}

766
/* class for /sys/class/rc */
767
static char *rc_devnode(struct device *dev, umode_t *mode)
768 769 770 771
{
	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
}

772
static struct class rc_class = {
773
	.name		= "rc",
774
	.devnode	= rc_devnode,
775 776
};

777 778 779 780 781
/*
 * These are the protocol textual descriptions that are
 * used by the sysfs protocols file. Note that the order
 * of the entries is relevant.
 */
782
static const struct {
783
	u64	type;
784
	const char	*name;
785
	const char	*module_name;
786
} proto_names[] = {
787 788 789
	{ RC_BIT_NONE,		"none",		NULL			},
	{ RC_BIT_OTHER,		"other",	NULL			},
	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
790
	{ RC_BIT_RC5 |
791 792
	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
	{ RC_BIT_NEC,		"nec",		"ir-nec-decoder"	},
793 794 795 796
	{ RC_BIT_RC6_0 |
	  RC_BIT_RC6_6A_20 |
	  RC_BIT_RC6_6A_24 |
	  RC_BIT_RC6_6A_32 |
797 798
	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
799 800
	{ RC_BIT_SONY12 |
	  RC_BIT_SONY15 |
801 802 803 804 805 806
	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
807 808 809
};

/**
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
 * struct rc_filter_attribute - Device attribute relating to a filter type.
 * @attr:	Device attribute.
 * @type:	Filter type.
 * @mask:	false for filter value, true for filter mask.
 */
struct rc_filter_attribute {
	struct device_attribute		attr;
	enum rc_filter_type		type;
	bool				mask;
};
#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)

#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
	}
#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
	struct rc_filter_attribute dev_attr_##_name = {			\
		.attr = __ATTR(_name, _mode, _show, _store),		\
		.type = (_type),					\
		.mask = (_mask),					\
	}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static bool lirc_is_present(void)
{
#if defined(CONFIG_LIRC_MODULE)
	struct module *lirc;

	mutex_lock(&module_mutex);
	lirc = find_module("lirc_dev");
	mutex_unlock(&module_mutex);

	return lirc ? true : false;
#elif defined(CONFIG_LIRC)
	return true;
#else
	return false;
#endif
}

851 852
/**
 * show_protocols() - shows the current/wakeup IR protocol(s)
853
 * @device:	the device descriptor
854
 * @mattr:	the device attribute struct
855 856 857
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine for input read the IR protocol type(s).
858
 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
859 860
 * It returns the protocol names of supported protocols.
 * Enabled protocols are printed in brackets.
861 862 863
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
864
 */
865
static ssize_t show_protocols(struct device *device,
866 867
			      struct device_attribute *mattr, char *buf)
{
868
	struct rc_dev *dev = to_rc_dev(device);
869
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
870 871 872 873 874
	u64 allowed, enabled;
	char *tmp = buf;
	int i;

	/* Device is being removed */
875
	if (!dev)
876 877
		return -EINVAL;

878 879 880
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

881 882
	mutex_lock(&dev->lock);

883
	if (fattr->type == RC_FILTER_NORMAL) {
884
		enabled = dev->enabled_protocols;
885 886
		allowed = dev->allowed_protocols;
		if (dev->raw && !allowed)
887 888
			allowed = ir_raw_get_allowed_protocols();
	} else {
889 890
		enabled = dev->enabled_wakeup_protocols;
		allowed = dev->allowed_wakeup_protocols;
891
	}
892

893 894 895 896
	mutex_unlock(&dev->lock);

	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
		   __func__, (long long)allowed, (long long)enabled);
897 898 899 900 901 902

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (allowed & enabled & proto_names[i].type)
			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
		else if (allowed & proto_names[i].type)
			tmp += sprintf(tmp, "%s ", proto_names[i].name);
903 904 905

		if (allowed & proto_names[i].type)
			allowed &= ~proto_names[i].type;
906 907
	}

908
	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
909 910
		tmp += sprintf(tmp, "[lirc] ");

911 912 913
	if (tmp != buf)
		tmp--;
	*tmp = '\n';
914

915 916 917 918
	return tmp + 1 - buf;
}

/**
919 920 921
 * parse_protocol_change() - parses a protocol change request
 * @protocols:	pointer to the bitmask of current protocols
 * @buf:	pointer to the buffer with a list of changes
922
 *
923 924
 * Writing "+proto" will add a protocol to the protocol mask.
 * Writing "-proto" will remove a protocol from protocol mask.
925 926
 * Writing "proto" will enable only "proto".
 * Writing "none" will disable all protocols.
927
 * Returns the number of changes performed or a negative error code.
928
 */
929
static int parse_protocol_change(u64 *protocols, const char *buf)
930 931
{
	const char *tmp;
932 933
	unsigned count = 0;
	bool enable, disable;
934
	u64 mask;
935
	int i;
936

937
	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
		if (!*tmp)
			break;

		if (*tmp == '+') {
			enable = true;
			disable = false;
			tmp++;
		} else if (*tmp == '-') {
			enable = false;
			disable = true;
			tmp++;
		} else {
			enable = false;
			disable = false;
		}

954 955 956 957
		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
			if (!strcasecmp(tmp, proto_names[i].name)) {
				mask = proto_names[i].type;
				break;
958 959 960
			}
		}

961
		if (i == ARRAY_SIZE(proto_names)) {
962 963 964 965 966 967
			if (!strcasecmp(tmp, "lirc"))
				mask = 0;
			else {
				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
				return -EINVAL;
			}
968 969 970 971
		}

		count++;

972
		if (enable)
973
			*protocols |= mask;
974
		else if (disable)
975
			*protocols &= ~mask;
976
		else
977
			*protocols = mask;
978 979 980 981
	}

	if (!count) {
		IR_dprintk(1, "Protocol not specified\n");
982 983 984 985 986 987
		return -EINVAL;
	}

	return count;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static void ir_raw_load_modules(u64 *protocols)

{
	u64 available;
	int i, ret;

	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
		if (proto_names[i].type == RC_BIT_NONE ||
		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
			continue;

		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		if (!proto_names[i].module_name) {
			pr_err("Can't enable IR protocol %s\n",
			       proto_names[i].name);
			*protocols &= ~proto_names[i].type;
			continue;
		}

		ret = request_module("%s", proto_names[i].module_name);
		if (ret < 0) {
			pr_err("Couldn't load IR protocol module %s\n",
			       proto_names[i].module_name);
			*protocols &= ~proto_names[i].type;
			continue;
		}
		msleep(20);
		available = ir_raw_get_allowed_protocols();
		if (!(*protocols & proto_names[i].type & ~available))
			continue;

		pr_err("Loaded IR protocol module %s, \
		       but protocol %s still not available\n",
		       proto_names[i].module_name,
		       proto_names[i].name);
		*protocols &= ~proto_names[i].type;
	}
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * store_protocols() - changes the current/wakeup IR protocol(s)
 * @device:	the device descriptor
 * @mattr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing the IR protocol type.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 * See parse_protocol_change() for the valid commands.
 * Returns @len on success or a negative error code.
 *
 * dev->lock is taken to guard against races between device
 * registration, store_protocols and show_protocols.
 */
static ssize_t store_protocols(struct device *device,
			       struct device_attribute *mattr,
			       const char *buf, size_t len)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
	u64 *current_protocols;
	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
	struct rc_scancode_filter *filter;
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
	u64 old_protocols, new_protocols;
	ssize_t rc;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1062 1063 1064
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1065 1066
	if (fattr->type == RC_FILTER_NORMAL) {
		IR_dprintk(1, "Normal protocol change requested\n");
1067
		current_protocols = &dev->enabled_protocols;
1068
		change_protocol = dev->change_protocol;
1069
		filter = &dev->scancode_filter;
1070 1071 1072
		set_filter = dev->s_filter;
	} else {
		IR_dprintk(1, "Wakeup protocol change requested\n");
1073
		current_protocols = &dev->enabled_wakeup_protocols;
1074
		change_protocol = dev->change_wakeup_protocol;
1075
		filter = &dev->scancode_wakeup_filter;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		set_filter = dev->s_wakeup_filter;
	}

	if (!change_protocol) {
		IR_dprintk(1, "Protocol switching not supported\n");
		return -EINVAL;
	}

	mutex_lock(&dev->lock);

	old_protocols = *current_protocols;
	new_protocols = old_protocols;
	rc = parse_protocol_change(&new_protocols, buf);
	if (rc < 0)
		goto out;

	rc = change_protocol(dev, &new_protocols);
	if (rc < 0) {
		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
			   (long long)new_protocols);
1096
		goto out;
1097 1098
	}

1099 1100 1101
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_load_modules(&new_protocols);

1102 1103 1104 1105
	if (new_protocols != old_protocols) {
		*current_protocols = new_protocols;
		IR_dprintk(1, "Protocols changed to 0x%llx\n",
			   (long long)new_protocols);
1106 1107
	}

1108
	/*
1109 1110 1111
	 * If a protocol change was attempted the filter may need updating, even
	 * if the actual protocol mask hasn't changed (since the driver may have
	 * cleared the filter).
1112 1113 1114
	 * Try setting the same filter with the new protocol (if any).
	 * Fall back to clearing the filter.
	 */
1115 1116 1117 1118 1119
	if (set_filter && filter->mask) {
		if (new_protocols)
			rc = set_filter(dev, filter);
		else
			rc = -1;
1120

1121 1122 1123 1124 1125
		if (rc < 0) {
			filter->data = 0;
			filter->mask = 0;
			set_filter(dev, filter);
		}
1126 1127
	}

1128
	rc = len;
1129 1130 1131

out:
	mutex_unlock(&dev->lock);
1132
	return rc;
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/**
 * show_filter() - shows the current scancode filter value or mask
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the output buffer
 *
 * This routine is a callback routine to read a scancode filter value or mask.
 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * It prints the current scancode filter value or mask of the appropriate filter
 * type in hexadecimal into @buf and returns the size of the buffer.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t show_filter(struct device *device,
			   struct device_attribute *attr,
			   char *buf)
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1158
	struct rc_scancode_filter *filter;
1159 1160 1161 1162 1163 1164
	u32 val;

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1165 1166 1167
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1168 1169
	mutex_lock(&dev->lock);

1170
	if (fattr->type == RC_FILTER_NORMAL)
1171
		filter = &dev->scancode_filter;
1172
	else
1173
		filter = &dev->scancode_wakeup_filter;
1174 1175 1176

	if (fattr->mask)
		val = filter->mask;
1177
	else
1178
		val = filter->data;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	mutex_unlock(&dev->lock);

	return sprintf(buf, "%#x\n", val);
}

/**
 * store_filter() - changes the scancode filter value
 * @device:	the device descriptor
 * @attr:	the device attribute struct
 * @buf:	a pointer to the input buffer
 * @len:	length of the input buffer
 *
 * This routine is for changing a scancode filter value or mask.
 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
 * Returns -EINVAL if an invalid filter value for the current protocol was
 * specified or if scancode filtering is not supported by the driver, otherwise
 * returns @len.
 *
 * Bits of the filter value corresponding to set bits in the filter mask are
 * compared against input scancodes and non-matching scancodes are discarded.
 *
 * dev->lock is taken to guard against races between device registration,
 * store_filter and show_filter.
 */
static ssize_t store_filter(struct device *device,
			    struct device_attribute *attr,
1205
			    const char *buf, size_t len)
1206 1207 1208
{
	struct rc_dev *dev = to_rc_dev(device);
	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1209
	struct rc_scancode_filter new_filter, *filter;
1210 1211
	int ret;
	unsigned long val;
1212
	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1213
	u64 *enabled_protocols;
1214 1215 1216 1217 1218

	/* Device is being removed */
	if (!dev)
		return -EINVAL;

1219 1220 1221
	if (!atomic_read(&dev->initialized))
		return -ERESTARTSYS;

1222 1223 1224 1225
	ret = kstrtoul(buf, 0, &val);
	if (ret < 0)
		return ret;

1226 1227
	if (fattr->type == RC_FILTER_NORMAL) {
		set_filter = dev->s_filter;
1228 1229
		enabled_protocols = &dev->enabled_protocols;
		filter = &dev->scancode_filter;
1230 1231
	} else {
		set_filter = dev->s_wakeup_filter;
1232 1233
		enabled_protocols = &dev->enabled_wakeup_protocols;
		filter = &dev->scancode_wakeup_filter;
1234 1235
	}

1236 1237
	if (!set_filter)
		return -EINVAL;
1238 1239 1240

	mutex_lock(&dev->lock);

1241
	new_filter = *filter;
1242
	if (fattr->mask)
1243
		new_filter.mask = val;
1244
	else
1245
		new_filter.data = val;
1246

1247
	if (!*enabled_protocols && val) {
1248 1249 1250 1251
		/* refuse to set a filter unless a protocol is enabled */
		ret = -EINVAL;
		goto unlock;
	}
1252

1253
	ret = set_filter(dev, &new_filter);
1254 1255
	if (ret < 0)
		goto unlock;
1256

1257
	*filter = new_filter;
1258 1259 1260

unlock:
	mutex_unlock(&dev->lock);
1261
	return (ret < 0) ? ret : len;
1262 1263
}

1264 1265
static void rc_dev_release(struct device *device)
{
1266 1267 1268
	struct rc_dev *dev = to_rc_dev(device);

	kfree(dev);
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279
#define ADD_HOTPLUG_VAR(fmt, val...)					\
	do {								\
		int err = add_uevent_var(env, fmt, val);		\
		if (err)						\
			return err;					\
	} while (0)

static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
{
1280
	struct rc_dev *dev = to_rc_dev(device);
1281

1282 1283
	if (dev->rc_map.name)
		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1284 1285
	if (dev->driver_name)
		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1286 1287 1288 1289 1290 1291 1292

	return 0;
}

/*
 * Static device attribute struct with the sysfs attributes for IR's
 */
1293 1294 1295 1296
static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_NORMAL);
static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1297 1298 1299 1300 1301 1302 1303 1304
static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, false);
static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_NORMAL, true);
static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1305

1306
static struct attribute *rc_dev_protocol_attrs[] = {
1307
	&dev_attr_protocols.attr.attr,
1308 1309 1310 1311 1312 1313 1314 1315
	NULL,
};

static struct attribute_group rc_dev_protocol_attr_grp = {
	.attrs	= rc_dev_protocol_attrs,
};

static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1316
	&dev_attr_wakeup_protocols.attr.attr,
1317 1318 1319 1320 1321 1322 1323 1324
	NULL,
};

static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
	.attrs	= rc_dev_wakeup_protocol_attrs,
};

static struct attribute *rc_dev_filter_attrs[] = {
1325 1326
	&dev_attr_filter.attr.attr,
	&dev_attr_filter_mask.attr.attr,
1327 1328 1329
	NULL,
};

1330 1331
static struct attribute_group rc_dev_filter_attr_grp = {
	.attrs	= rc_dev_filter_attrs,
1332 1333
};

1334 1335 1336 1337 1338 1339 1340 1341
static struct attribute *rc_dev_wakeup_filter_attrs[] = {
	&dev_attr_wakeup_filter.attr.attr,
	&dev_attr_wakeup_filter_mask.attr.attr,
	NULL,
};

static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
	.attrs	= rc_dev_wakeup_filter_attrs,
1342 1343 1344
};

static struct device_type rc_dev_type = {
1345
	.release	= rc_dev_release,
1346 1347 1348
	.uevent		= rc_dev_uevent,
};

1349
struct rc_dev *rc_allocate_device(void)
1350
{
1351
	struct rc_dev *dev;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return NULL;

	dev->input_dev = input_allocate_device();
	if (!dev->input_dev) {
		kfree(dev);
		return NULL;
	}

1363 1364
	dev->input_dev->getkeycode = ir_getkeycode;
	dev->input_dev->setkeycode = ir_setkeycode;
1365 1366
	input_set_drvdata(dev->input_dev, dev);

1367
	spin_lock_init(&dev->rc_map.lock);
1368
	spin_lock_init(&dev->keylock);
1369
	mutex_init(&dev->lock);
1370
	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1371

1372
	dev->dev.type = &rc_dev_type;
1373
	dev->dev.class = &rc_class;
1374 1375 1376 1377 1378 1379 1380 1381
	device_initialize(&dev->dev);

	__module_get(THIS_MODULE);
	return dev;
}
EXPORT_SYMBOL_GPL(rc_allocate_device);

void rc_free_device(struct rc_dev *dev)
1382
{
1383 1384 1385
	if (!dev)
		return;

1386
	input_free_device(dev->input_dev);
1387 1388 1389

	put_device(&dev->dev);

1390 1391 1392
	/* kfree(dev) will be called by the callback function
	   rc_dev_release() */

1393
	module_put(THIS_MODULE);
1394 1395 1396 1397 1398
}
EXPORT_SYMBOL_GPL(rc_free_device);

int rc_register_device(struct rc_dev *dev)
{
1399
	static bool raw_init = false; /* raw decoders loaded? */
1400
	struct rc_map *rc_map;
1401
	const char *path;
1402 1403 1404
	int attr = 0;
	int minor;
	int rc;
1405

1406 1407
	if (!dev || !dev->map_name)
		return -EINVAL;
1408

1409
	rc_map = rc_map_get(dev->map_name);
1410
	if (!rc_map)
1411
		rc_map = rc_map_get(RC_MAP_EMPTY);
1412
	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		return -EINVAL;

	set_bit(EV_KEY, dev->input_dev->evbit);
	set_bit(EV_REP, dev->input_dev->evbit);
	set_bit(EV_MSC, dev->input_dev->evbit);
	set_bit(MSC_SCAN, dev->input_dev->mscbit);
	if (dev->open)
		dev->input_dev->open = ir_open;
	if (dev->close)
		dev->input_dev->close = ir_close;

1424 1425 1426 1427 1428 1429 1430
	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
	if (minor < 0)
		return minor;

	dev->minor = minor;
	dev_set_name(&dev->dev, "rc%u", dev->minor);
	dev_set_drvdata(&dev->dev, dev);
1431
	atomic_set(&dev->initialized, 0);
1432

1433 1434 1435
	dev->dev.groups = dev->sysfs_groups;
	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
	if (dev->s_filter)
1436
		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1437 1438 1439 1440 1441 1442
	if (dev->s_wakeup_filter)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
	if (dev->change_wakeup_protocol)
		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
	dev->sysfs_groups[attr++] = NULL;

1443 1444
	rc = device_add(&dev->dev);
	if (rc)
1445
		goto out_unlock;
1446

1447
	rc = ir_setkeytable(dev, rc_map);
1448 1449 1450 1451 1452 1453 1454
	if (rc)
		goto out_dev;

	dev->input_dev->dev.parent = &dev->dev;
	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
	dev->input_dev->phys = dev->input_phys;
	dev->input_dev->name = dev->input_name;
1455

1456
	/*
L
Lucas De Marchi 已提交
1457
	 * Default delay of 250ms is too short for some protocols, especially
1458 1459 1460 1461 1462 1463
	 * since the timeout is currently set to 250ms. Increase it to 500ms,
	 * to avoid wrong repetition of the keycodes. Note that this must be
	 * set after the call to input_register_device().
	 */
	dev->input_dev->rep[REP_DELAY] = 500;

1464 1465 1466 1467 1468 1469 1470
	/*
	 * As a repeat event on protocols like RC-5 and NEC take as long as
	 * 110/114ms, using 33ms as a repeat period is not the right thing
	 * to do.
	 */
	dev->input_dev->rep[REP_PERIOD] = 125;

1471 1472 1473 1474 1475
	/* rc_open will be called here */
	rc = input_register_device(dev->input_dev);
	if (rc)
		goto out_table;

1476
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1477 1478
	dev_info(&dev->dev, "%s as %s\n",
		dev->input_name ?: "Unspecified device", path ?: "N/A");
1479 1480
	kfree(path);

1481
	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1482
		if (!raw_init) {
1483
			request_module_nowait("ir-lirc-codec");
1484 1485
			raw_init = true;
		}
1486 1487 1488 1489 1490 1491
		rc = ir_raw_event_register(dev);
		if (rc < 0)
			goto out_input;
	}

	if (dev->change_protocol) {
1492
		u64 rc_type = (1ll << rc_map->rc_type);
1493
		rc = dev->change_protocol(dev, &rc_type);
1494 1495
		if (rc < 0)
			goto out_raw;
1496
		dev->enabled_protocols = rc_type;
1497 1498
	}

1499 1500
	/* Allow the RC sysfs nodes to be accessible */
	atomic_set(&dev->initialized, 1);
1501

1502 1503
	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
		   dev->minor,
1504
		   dev->driver_name ? dev->driver_name : "unknown",
1505
		   rc_map->name ? rc_map->name : "unknown",
1506 1507
		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");

1508
	return 0;
1509 1510 1511 1512 1513 1514 1515 1516

out_raw:
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);
out_input:
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;
out_table:
1517
	ir_free_table(&dev->rc_map);
1518 1519
out_dev:
	device_del(&dev->dev);
1520
out_unlock:
1521
	ida_simple_remove(&rc_ida, minor);
1522
	return rc;
1523
}
1524
EXPORT_SYMBOL_GPL(rc_register_device);
1525

1526
void rc_unregister_device(struct rc_dev *dev)
1527
{
1528 1529
	if (!dev)
		return;
1530

1531
	del_timer_sync(&dev->timer_keyup);
1532

1533 1534 1535
	if (dev->driver_type == RC_DRIVER_IR_RAW)
		ir_raw_event_unregister(dev);

1536 1537 1538 1539
	/* Freeing the table should also call the stop callback */
	ir_free_table(&dev->rc_map);
	IR_dprintk(1, "Freed keycode table\n");

1540 1541 1542
	input_unregister_device(dev->input_dev);
	dev->input_dev = NULL;

1543
	device_del(&dev->dev);
1544

1545 1546
	ida_simple_remove(&rc_ida, dev->minor);

1547
	rc_free_device(dev);
1548
}
1549

1550
EXPORT_SYMBOL_GPL(rc_unregister_device);
1551 1552 1553 1554 1555

/*
 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
 */

1556
static int __init rc_core_init(void)
1557
{
1558
	int rc = class_register(&rc_class);
1559
	if (rc) {
1560
		printk(KERN_ERR "rc_core: unable to register rc class\n");
1561 1562 1563
		return rc;
	}

1564
	led_trigger_register_simple("rc-feedback", &led_feedback);
1565
	rc_map_register(&empty_map);
1566 1567 1568 1569

	return 0;
}

1570
static void __exit rc_core_exit(void)
1571
{
1572
	class_unregister(&rc_class);
1573
	led_trigger_unregister_simple(led_feedback);
1574
	rc_map_unregister(&empty_map);
1575 1576
}

1577
subsys_initcall(rc_core_init);
1578
module_exit(rc_core_exit);
1579

1580 1581 1582
int rc_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(rc_core_debug);
module_param_named(debug, rc_core_debug, int, 0644);
1583

1584
MODULE_AUTHOR("Mauro Carvalho Chehab");
1585
MODULE_LICENSE("GPL");