core.c 173.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
T
Thomas Gleixner 已提交
40

41 42
#include "internal.h"

43 44
#include <asm/irq_regs.h>

45
struct remote_function_call {
46 47 48 49
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
83 84 85 86
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
107 108 109 110
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
111 112 113 114 115 116 117
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
118 119 120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

122 123 124 125 126 127 128
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

129 130 131 132 133 134
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
135 136 137 138
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
139
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
140
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
142

143 144 145
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
146

P
Peter Zijlstra 已提交
147 148 149 150
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

151
/*
152
 * perf event paranoia level:
153 154
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
155
 *   1 - disallow cpu events for unpriv
156
 *   2 - disallow kernel profiling for unpriv
157
 */
158
int sysctl_perf_event_paranoid __read_mostly = 1;
159

160 161
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 163

/*
164
 * max perf event sample rate
165
 */
P
Peter Zijlstra 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
184

185
static atomic64_t perf_event_id;
186

187 188 189 190
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
191 192 193 194 195
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
196

197 198 199
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

200
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
201

202
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
203
{
204
	return "pmu";
T
Thomas Gleixner 已提交
205 206
}

207 208 209 210 211
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
212 213 214 215 216 217
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
234 235
#ifdef CONFIG_CGROUP_PERF

236 237 238 239 240
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

257
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
258
{
259
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
308 309
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
310
	/*
311 312
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
313
	 */
314
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
315 316
		return;

317 318 319 320 321 322
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
323 324 325
}

static inline void
326 327
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
328 329 330 331
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

332 333 334 335 336 337
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
338 339 340 341
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
342
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 376
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
386 387
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
388 389 390 391 392 393 394 395 396 397 398

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
399
				WARN_ON_ONCE(cpuctx->cgrp);
400 401 402 403
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
404 405 406 407
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
408 409
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
410 411 412 413 414 415 416 417
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

418 419
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
420
{
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
443 444
}

445 446
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
447
{
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
466 467 468 469 470 471 472 473
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
474 475
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
476

477
	if (!f.file)
S
Stephane Eranian 已提交
478 479
		return -EBADF;

480
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
481 482 483 484
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
485 486 487 488

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

489
	/* must be done before we fput() the file */
490 491 492 493 494
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
495

S
Stephane Eranian 已提交
496 497 498 499 500 501 502 503 504
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
505
out:
506
	fdput(f);
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

580 581
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
582 583 584
{
}

585 586
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594 595 596 597
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
598 599
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
630
void perf_pmu_disable(struct pmu *pmu)
631
{
P
Peter Zijlstra 已提交
632 633 634
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
635 636
}

P
Peter Zijlstra 已提交
637
void perf_pmu_enable(struct pmu *pmu)
638
{
P
Peter Zijlstra 已提交
639 640 641
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
642 643
}

644 645 646 647 648 649 650
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
651
static void perf_pmu_rotate_start(struct pmu *pmu)
652
{
P
Peter Zijlstra 已提交
653
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
654
	struct list_head *head = &__get_cpu_var(rotation_list);
655

656
	WARN_ON(!irqs_disabled());
657

658 659
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
660 661
}

662
static void get_ctx(struct perf_event_context *ctx)
663
{
664
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
665 666
}

667
static void put_ctx(struct perf_event_context *ctx)
668
{
669 670 671
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
672 673
		if (ctx->task)
			put_task_struct(ctx->task);
674
		kfree_rcu(ctx, rcu_head);
675
	}
676 677
}

678
static void unclone_ctx(struct perf_event_context *ctx)
679 680 681 682 683 684 685
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

708
/*
709
 * If we inherit events we want to return the parent event id
710 711
 * to userspace.
 */
712
static u64 primary_event_id(struct perf_event *event)
713
{
714
	u64 id = event->id;
715

716 717
	if (event->parent)
		id = event->parent->id;
718 719 720 721

	return id;
}

722
/*
723
 * Get the perf_event_context for a task and lock it.
724 725 726
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
727
static struct perf_event_context *
P
Peter Zijlstra 已提交
728
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
729
{
730
	struct perf_event_context *ctx;
731 732

	rcu_read_lock();
P
Peter Zijlstra 已提交
733
retry:
P
Peter Zijlstra 已提交
734
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
735 736 737 738
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
739
		 * perf_event_task_sched_out, though the
740 741 742 743 744 745
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
746
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
747
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
748
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
749 750
			goto retry;
		}
751 752

		if (!atomic_inc_not_zero(&ctx->refcount)) {
753
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 755
			ctx = NULL;
		}
756 757 758 759 760 761 762 763 764 765
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
766 767
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
768
{
769
	struct perf_event_context *ctx;
770 771
	unsigned long flags;

P
Peter Zijlstra 已提交
772
	ctx = perf_lock_task_context(task, ctxn, &flags);
773 774
	if (ctx) {
		++ctx->pin_count;
775
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
776 777 778 779
	}
	return ctx;
}

780
static void perf_unpin_context(struct perf_event_context *ctx)
781 782 783
{
	unsigned long flags;

784
	raw_spin_lock_irqsave(&ctx->lock, flags);
785
	--ctx->pin_count;
786
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
787 788
}

789 790 791 792 793 794 795 796 797 798 799
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

800 801 802
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
803 804 805 806

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

807 808 809
	return ctx ? ctx->time : 0;
}

810 811
/*
 * Update the total_time_enabled and total_time_running fields for a event.
812
 * The caller of this function needs to hold the ctx->lock.
813 814 815 816 817 818 819 820 821
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
822 823 824 825 826 827 828 829 830 831 832
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
833
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
834 835
	else if (ctx->is_active)
		run_end = ctx->time;
836 837 838 839
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
840 841 842 843

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
844
		run_end = perf_event_time(event);
845 846

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
847

848 849
}

850 851 852 853 854 855 856 857 858 859 860 861
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

862 863 864 865 866 867 868 869 870
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

871
/*
872
 * Add a event from the lists for its context.
873 874
 * Must be called with ctx->mutex and ctx->lock held.
 */
875
static void
876
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
877
{
878 879
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
880 881

	/*
882 883 884
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
885
	 */
886
	if (event->group_leader == event) {
887 888
		struct list_head *list;

889 890 891
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

892 893
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
894
	}
P
Peter Zijlstra 已提交
895

896
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
897 898
		ctx->nr_cgroups++;

899 900 901
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

902
	list_add_rcu(&event->event_entry, &ctx->event_list);
903
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
904
		perf_pmu_rotate_start(ctx->pmu);
905 906
	ctx->nr_events++;
	if (event->attr.inherit_stat)
907
		ctx->nr_stat++;
908 909
}

J
Jiri Olsa 已提交
910 911 912 913 914 915 916 917 918
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

991
	event->id_header_size = size;
992 993
}

994 995
static void perf_group_attach(struct perf_event *event)
{
996
	struct perf_event *group_leader = event->group_leader, *pos;
997

P
Peter Zijlstra 已提交
998 999 1000 1001 1002 1003
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1015 1016 1017 1018 1019

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1020 1021
}

1022
/*
1023
 * Remove a event from the lists for its context.
1024
 * Must be called with ctx->mutex and ctx->lock held.
1025
 */
1026
static void
1027
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1028
{
1029
	struct perf_cpu_context *cpuctx;
1030 1031 1032 1033
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1034
		return;
1035 1036 1037

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1038
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1039
		ctx->nr_cgroups--;
1040 1041 1042 1043 1044 1045 1046 1047 1048
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1049

1050 1051 1052
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1053 1054
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1055
		ctx->nr_stat--;
1056

1057
	list_del_rcu(&event->event_entry);
1058

1059 1060
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1061

1062
	update_group_times(event);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1073 1074
}

1075
static void perf_group_detach(struct perf_event *event)
1076 1077
{
	struct perf_event *sibling, *tmp;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1094
		goto out;
1095 1096 1097 1098
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1099

1100
	/*
1101 1102
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1103
	 * to whatever list we are on.
1104
	 */
1105
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1106 1107
		if (list)
			list_move_tail(&sibling->group_entry, list);
1108
		sibling->group_leader = sibling;
1109 1110 1111

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1112
	}
1113 1114 1115 1116 1117 1118

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1119 1120
}

1121 1122 1123
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1124 1125
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1126 1127
}

1128 1129
static void
event_sched_out(struct perf_event *event,
1130
		  struct perf_cpu_context *cpuctx,
1131
		  struct perf_event_context *ctx)
1132
{
1133
	u64 tstamp = perf_event_time(event);
1134 1135 1136 1137 1138 1139 1140 1141 1142
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1143
		delta = tstamp - event->tstamp_stopped;
1144
		event->tstamp_running += delta;
1145
		event->tstamp_stopped = tstamp;
1146 1147
	}

1148
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1149
		return;
1150

1151 1152 1153 1154
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1155
	}
1156
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1157
	event->pmu->del(event, 0);
1158
	event->oncpu = -1;
1159

1160
	if (!is_software_event(event))
1161 1162
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1163 1164
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1165
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1166 1167 1168
		cpuctx->exclusive = 0;
}

1169
static void
1170
group_sched_out(struct perf_event *group_event,
1171
		struct perf_cpu_context *cpuctx,
1172
		struct perf_event_context *ctx)
1173
{
1174
	struct perf_event *event;
1175
	int state = group_event->state;
1176

1177
	event_sched_out(group_event, cpuctx, ctx);
1178 1179 1180 1181

	/*
	 * Schedule out siblings (if any):
	 */
1182 1183
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1184

1185
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1186 1187 1188
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1189
/*
1190
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1191
 *
1192
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1193 1194
 * remove it from the context list.
 */
1195
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1196
{
1197 1198
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1199
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1200

1201
	raw_spin_lock(&ctx->lock);
1202 1203
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1204 1205 1206 1207
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1208
	raw_spin_unlock(&ctx->lock);
1209 1210

	return 0;
T
Thomas Gleixner 已提交
1211 1212 1213 1214
}


/*
1215
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1216
 *
1217
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1218
 * call when the task is on a CPU.
1219
 *
1220 1221
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1222 1223
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1224
 * When called from perf_event_exit_task, it's OK because the
1225
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1226
 */
1227
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1228
{
1229
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1230 1231
	struct task_struct *task = ctx->task;

1232 1233
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1234 1235
	if (!task) {
		/*
1236
		 * Per cpu events are removed via an smp call and
1237
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1238
		 */
1239
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1240 1241 1242 1243
		return;
	}

retry:
1244 1245
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1246

1247
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1248
	/*
1249 1250
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1251
	 */
1252
	if (ctx->is_active) {
1253
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1254 1255 1256 1257
		goto retry;
	}

	/*
1258 1259
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1260
	 */
1261
	list_del_event(event, ctx);
1262
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1263 1264
}

1265
/*
1266
 * Cross CPU call to disable a performance event
1267
 */
1268
int __perf_event_disable(void *info)
1269
{
1270 1271
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1272
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1273 1274

	/*
1275 1276
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1277 1278 1279
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1280
	 */
1281
	if (ctx->task && cpuctx->task_ctx != ctx)
1282
		return -EINVAL;
1283

1284
	raw_spin_lock(&ctx->lock);
1285 1286

	/*
1287
	 * If the event is on, turn it off.
1288 1289
	 * If it is in error state, leave it in error state.
	 */
1290
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1291
		update_context_time(ctx);
S
Stephane Eranian 已提交
1292
		update_cgrp_time_from_event(event);
1293 1294 1295
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1296
		else
1297 1298
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1299 1300
	}

1301
	raw_spin_unlock(&ctx->lock);
1302 1303

	return 0;
1304 1305 1306
}

/*
1307
 * Disable a event.
1308
 *
1309 1310
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1311
 * remains valid.  This condition is satisifed when called through
1312 1313 1314 1315
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1316
 * is the current context on this CPU and preemption is disabled,
1317
 * hence we can't get into perf_event_task_sched_out for this context.
1318
 */
1319
void perf_event_disable(struct perf_event *event)
1320
{
1321
	struct perf_event_context *ctx = event->ctx;
1322 1323 1324 1325
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1326
		 * Disable the event on the cpu that it's on
1327
		 */
1328
		cpu_function_call(event->cpu, __perf_event_disable, event);
1329 1330 1331
		return;
	}

P
Peter Zijlstra 已提交
1332
retry:
1333 1334
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1335

1336
	raw_spin_lock_irq(&ctx->lock);
1337
	/*
1338
	 * If the event is still active, we need to retry the cross-call.
1339
	 */
1340
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1341
		raw_spin_unlock_irq(&ctx->lock);
1342 1343 1344 1345 1346
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1347 1348 1349 1350 1351 1352 1353
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1354 1355 1356
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1357
	}
1358
	raw_spin_unlock_irq(&ctx->lock);
1359
}
1360
EXPORT_SYMBOL_GPL(perf_event_disable);
1361

S
Stephane Eranian 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1397 1398 1399 1400
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1401
static int
1402
event_sched_in(struct perf_event *event,
1403
		 struct perf_cpu_context *cpuctx,
1404
		 struct perf_event_context *ctx)
1405
{
1406 1407
	u64 tstamp = perf_event_time(event);

1408
	if (event->state <= PERF_EVENT_STATE_OFF)
1409 1410
		return 0;

1411
	event->state = PERF_EVENT_STATE_ACTIVE;
1412
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1424 1425 1426 1427 1428
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1429
	if (event->pmu->add(event, PERF_EF_START)) {
1430 1431
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1432 1433 1434
		return -EAGAIN;
	}

1435
	event->tstamp_running += tstamp - event->tstamp_stopped;
1436

S
Stephane Eranian 已提交
1437
	perf_set_shadow_time(event, ctx, tstamp);
1438

1439
	if (!is_software_event(event))
1440
		cpuctx->active_oncpu++;
1441
	ctx->nr_active++;
1442 1443
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1444

1445
	if (event->attr.exclusive)
1446 1447
		cpuctx->exclusive = 1;

1448 1449 1450
	return 0;
}

1451
static int
1452
group_sched_in(struct perf_event *group_event,
1453
	       struct perf_cpu_context *cpuctx,
1454
	       struct perf_event_context *ctx)
1455
{
1456
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1457
	struct pmu *pmu = group_event->pmu;
1458 1459
	u64 now = ctx->time;
	bool simulate = false;
1460

1461
	if (group_event->state == PERF_EVENT_STATE_OFF)
1462 1463
		return 0;

P
Peter Zijlstra 已提交
1464
	pmu->start_txn(pmu);
1465

1466
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1467
		pmu->cancel_txn(pmu);
1468
		return -EAGAIN;
1469
	}
1470 1471 1472 1473

	/*
	 * Schedule in siblings as one group (if any):
	 */
1474
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1475
		if (event_sched_in(event, cpuctx, ctx)) {
1476
			partial_group = event;
1477 1478 1479 1480
			goto group_error;
		}
	}

1481
	if (!pmu->commit_txn(pmu))
1482
		return 0;
1483

1484 1485 1486 1487
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1498
	 */
1499 1500
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1501 1502 1503 1504 1505 1506 1507 1508
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1509
	}
1510
	event_sched_out(group_event, cpuctx, ctx);
1511

P
Peter Zijlstra 已提交
1512
	pmu->cancel_txn(pmu);
1513

1514 1515 1516
	return -EAGAIN;
}

1517
/*
1518
 * Work out whether we can put this event group on the CPU now.
1519
 */
1520
static int group_can_go_on(struct perf_event *event,
1521 1522 1523 1524
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1525
	 * Groups consisting entirely of software events can always go on.
1526
	 */
1527
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1528 1529 1530
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1531
	 * events can go on.
1532 1533 1534 1535 1536
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1537
	 * events on the CPU, it can't go on.
1538
	 */
1539
	if (event->attr.exclusive && cpuctx->active_oncpu)
1540 1541 1542 1543 1544 1545 1546 1547
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1548 1549
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1550
{
1551 1552
	u64 tstamp = perf_event_time(event);

1553
	list_add_event(event, ctx);
1554
	perf_group_attach(event);
1555 1556 1557
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1558 1559
}

1560 1561 1562 1563 1564 1565
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1579
/*
1580
 * Cross CPU call to install and enable a performance event
1581 1582
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1583
 */
1584
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1585
{
1586 1587
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1588
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1589 1590 1591
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1592
	perf_ctx_lock(cpuctx, task_ctx);
1593
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1594 1595

	/*
1596
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1597
	 */
1598
	if (task_ctx)
1599
		task_ctx_sched_out(task_ctx);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1614 1615
		task = task_ctx->task;
	}
1616

1617
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1618

1619
	update_context_time(ctx);
S
Stephane Eranian 已提交
1620 1621 1622 1623 1624 1625
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1626

1627
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1628

1629
	/*
1630
	 * Schedule everything back in
1631
	 */
1632
	perf_event_sched_in(cpuctx, task_ctx, task);
1633 1634 1635

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1636 1637

	return 0;
T
Thomas Gleixner 已提交
1638 1639 1640
}

/*
1641
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1642
 *
1643 1644
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1645
 *
1646
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1647 1648 1649 1650
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1651 1652
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1653 1654 1655 1656
			int cpu)
{
	struct task_struct *task = ctx->task;

1657 1658
	lockdep_assert_held(&ctx->mutex);

1659
	event->ctx = ctx;
1660 1661
	if (event->cpu != -1)
		event->cpu = cpu;
1662

T
Thomas Gleixner 已提交
1663 1664
	if (!task) {
		/*
1665
		 * Per cpu events are installed via an smp call and
1666
		 * the install is always successful.
T
Thomas Gleixner 已提交
1667
		 */
1668
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1669 1670 1671 1672
		return;
	}

retry:
1673 1674
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1675

1676
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1677
	/*
1678 1679
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1680
	 */
1681
	if (ctx->is_active) {
1682
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1683 1684 1685 1686
		goto retry;
	}

	/*
1687 1688
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1689
	 */
1690
	add_event_to_ctx(event, ctx);
1691
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1692 1693
}

1694
/*
1695
 * Put a event into inactive state and update time fields.
1696 1697 1698 1699 1700 1701
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1702
static void __perf_event_mark_enabled(struct perf_event *event)
1703
{
1704
	struct perf_event *sub;
1705
	u64 tstamp = perf_event_time(event);
1706

1707
	event->state = PERF_EVENT_STATE_INACTIVE;
1708
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1709
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1710 1711
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1712
	}
1713 1714
}

1715
/*
1716
 * Cross CPU call to enable a performance event
1717
 */
1718
static int __perf_event_enable(void *info)
1719
{
1720 1721 1722
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1723
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1724
	int err;
1725

1726 1727
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1728

1729
	raw_spin_lock(&ctx->lock);
1730
	update_context_time(ctx);
1731

1732
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1733
		goto unlock;
S
Stephane Eranian 已提交
1734 1735 1736 1737

	/*
	 * set current task's cgroup time reference point
	 */
1738
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1739

1740
	__perf_event_mark_enabled(event);
1741

S
Stephane Eranian 已提交
1742 1743 1744
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1745
		goto unlock;
S
Stephane Eranian 已提交
1746
	}
1747

1748
	/*
1749
	 * If the event is in a group and isn't the group leader,
1750
	 * then don't put it on unless the group is on.
1751
	 */
1752
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1753
		goto unlock;
1754

1755
	if (!group_can_go_on(event, cpuctx, 1)) {
1756
		err = -EEXIST;
1757
	} else {
1758
		if (event == leader)
1759
			err = group_sched_in(event, cpuctx, ctx);
1760
		else
1761
			err = event_sched_in(event, cpuctx, ctx);
1762
	}
1763 1764 1765

	if (err) {
		/*
1766
		 * If this event can't go on and it's part of a
1767 1768
		 * group, then the whole group has to come off.
		 */
1769
		if (leader != event)
1770
			group_sched_out(leader, cpuctx, ctx);
1771
		if (leader->attr.pinned) {
1772
			update_group_times(leader);
1773
			leader->state = PERF_EVENT_STATE_ERROR;
1774
		}
1775 1776
	}

P
Peter Zijlstra 已提交
1777
unlock:
1778
	raw_spin_unlock(&ctx->lock);
1779 1780

	return 0;
1781 1782 1783
}

/*
1784
 * Enable a event.
1785
 *
1786 1787
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1788
 * remains valid.  This condition is satisfied when called through
1789 1790
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1791
 */
1792
void perf_event_enable(struct perf_event *event)
1793
{
1794
	struct perf_event_context *ctx = event->ctx;
1795 1796 1797 1798
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1799
		 * Enable the event on the cpu that it's on
1800
		 */
1801
		cpu_function_call(event->cpu, __perf_event_enable, event);
1802 1803 1804
		return;
	}

1805
	raw_spin_lock_irq(&ctx->lock);
1806
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1807 1808 1809
		goto out;

	/*
1810 1811
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1812 1813 1814 1815
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1816 1817
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1818

P
Peter Zijlstra 已提交
1819
retry:
1820
	if (!ctx->is_active) {
1821
		__perf_event_mark_enabled(event);
1822 1823 1824
		goto out;
	}

1825
	raw_spin_unlock_irq(&ctx->lock);
1826 1827 1828

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1829

1830
	raw_spin_lock_irq(&ctx->lock);
1831 1832

	/*
1833
	 * If the context is active and the event is still off,
1834 1835
	 * we need to retry the cross-call.
	 */
1836 1837 1838 1839 1840 1841
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1842
		goto retry;
1843
	}
1844

P
Peter Zijlstra 已提交
1845
out:
1846
	raw_spin_unlock_irq(&ctx->lock);
1847
}
1848
EXPORT_SYMBOL_GPL(perf_event_enable);
1849

1850
int perf_event_refresh(struct perf_event *event, int refresh)
1851
{
1852
	/*
1853
	 * not supported on inherited events
1854
	 */
1855
	if (event->attr.inherit || !is_sampling_event(event))
1856 1857
		return -EINVAL;

1858 1859
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1860 1861

	return 0;
1862
}
1863
EXPORT_SYMBOL_GPL(perf_event_refresh);
1864

1865 1866 1867
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1868
{
1869
	struct perf_event *event;
1870
	int is_active = ctx->is_active;
1871

1872
	ctx->is_active &= ~event_type;
1873
	if (likely(!ctx->nr_events))
1874 1875
		return;

1876
	update_context_time(ctx);
S
Stephane Eranian 已提交
1877
	update_cgrp_time_from_cpuctx(cpuctx);
1878
	if (!ctx->nr_active)
1879
		return;
1880

P
Peter Zijlstra 已提交
1881
	perf_pmu_disable(ctx->pmu);
1882
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1883 1884
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1885
	}
1886

1887
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1888
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1889
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1890
	}
P
Peter Zijlstra 已提交
1891
	perf_pmu_enable(ctx->pmu);
1892 1893
}

1894 1895 1896
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1897 1898 1899 1900
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1901
 * in them directly with an fd; we can only enable/disable all
1902
 * events via prctl, or enable/disable all events in a family
1903 1904
 * via ioctl, which will have the same effect on both contexts.
 */
1905 1906
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1907 1908
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1909
		&& ctx1->parent_gen == ctx2->parent_gen
1910
		&& !ctx1->pin_count && !ctx2->pin_count;
1911 1912
}

1913 1914
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1915 1916 1917
{
	u64 value;

1918
	if (!event->attr.inherit_stat)
1919 1920 1921
		return;

	/*
1922
	 * Update the event value, we cannot use perf_event_read()
1923 1924
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1925
	 * we know the event must be on the current CPU, therefore we
1926 1927
	 * don't need to use it.
	 */
1928 1929
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1930 1931
		event->pmu->read(event);
		/* fall-through */
1932

1933 1934
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1935 1936 1937 1938 1939 1940 1941
		break;

	default:
		break;
	}

	/*
1942
	 * In order to keep per-task stats reliable we need to flip the event
1943 1944
	 * values when we flip the contexts.
	 */
1945 1946 1947
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1948

1949 1950
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1951

1952
	/*
1953
	 * Since we swizzled the values, update the user visible data too.
1954
	 */
1955 1956
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1957 1958 1959 1960 1961
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1962 1963
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1964
{
1965
	struct perf_event *event, *next_event;
1966 1967 1968 1969

	if (!ctx->nr_stat)
		return;

1970 1971
	update_context_time(ctx);

1972 1973
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1974

1975 1976
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1977

1978 1979
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1980

1981
		__perf_event_sync_stat(event, next_event);
1982

1983 1984
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1985 1986 1987
	}
}

1988 1989
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1990
{
P
Peter Zijlstra 已提交
1991
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1992 1993
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1994
	struct perf_cpu_context *cpuctx;
1995
	int do_switch = 1;
T
Thomas Gleixner 已提交
1996

P
Peter Zijlstra 已提交
1997 1998
	if (likely(!ctx))
		return;
1999

P
Peter Zijlstra 已提交
2000 2001
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2002 2003
		return;

2004 2005
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2006
	next_ctx = next->perf_event_ctxp[ctxn];
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2018 2019
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2020
		if (context_equiv(ctx, next_ctx)) {
2021 2022
			/*
			 * XXX do we need a memory barrier of sorts
2023
			 * wrt to rcu_dereference() of perf_event_ctxp
2024
			 */
P
Peter Zijlstra 已提交
2025 2026
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2027 2028 2029
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2030

2031
			perf_event_sync_stat(ctx, next_ctx);
2032
		}
2033 2034
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2035
	}
2036
	rcu_read_unlock();
2037

2038
	if (do_switch) {
2039
		raw_spin_lock(&ctx->lock);
2040
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2041
		cpuctx->task_ctx = NULL;
2042
		raw_spin_unlock(&ctx->lock);
2043
	}
T
Thomas Gleixner 已提交
2044 2045
}

P
Peter Zijlstra 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2060 2061
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2062 2063 2064 2065 2066
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2067 2068 2069 2070 2071 2072 2073

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2074
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2075 2076
}

2077
static void task_ctx_sched_out(struct perf_event_context *ctx)
2078
{
P
Peter Zijlstra 已提交
2079
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080

2081 2082
	if (!cpuctx->task_ctx)
		return;
2083 2084 2085 2086

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2087
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2088 2089 2090
	cpuctx->task_ctx = NULL;
}

2091 2092 2093 2094 2095 2096 2097
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2098 2099
}

2100
static void
2101
ctx_pinned_sched_in(struct perf_event_context *ctx,
2102
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2103
{
2104
	struct perf_event *event;
T
Thomas Gleixner 已提交
2105

2106 2107
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2108
			continue;
2109
		if (!event_filter_match(event))
2110 2111
			continue;

S
Stephane Eranian 已提交
2112 2113 2114 2115
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2116
		if (group_can_go_on(event, cpuctx, 1))
2117
			group_sched_in(event, cpuctx, ctx);
2118 2119 2120 2121 2122

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2123 2124 2125
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2126
		}
2127
	}
2128 2129 2130 2131
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2132
		      struct perf_cpu_context *cpuctx)
2133 2134 2135
{
	struct perf_event *event;
	int can_add_hw = 1;
2136

2137 2138 2139
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2140
			continue;
2141 2142
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2143
		 * of events:
2144
		 */
2145
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2146 2147
			continue;

S
Stephane Eranian 已提交
2148 2149 2150 2151
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2152
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2153
			if (group_sched_in(event, cpuctx, ctx))
2154
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2155
		}
T
Thomas Gleixner 已提交
2156
	}
2157 2158 2159 2160 2161
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2162 2163
	     enum event_type_t event_type,
	     struct task_struct *task)
2164
{
S
Stephane Eranian 已提交
2165
	u64 now;
2166
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2167

2168
	ctx->is_active |= event_type;
2169
	if (likely(!ctx->nr_events))
2170
		return;
2171

S
Stephane Eranian 已提交
2172 2173
	now = perf_clock();
	ctx->timestamp = now;
2174
	perf_cgroup_set_timestamp(task, ctx);
2175 2176 2177 2178
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2179
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2180
		ctx_pinned_sched_in(ctx, cpuctx);
2181 2182

	/* Then walk through the lower prio flexible groups */
2183
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2184
		ctx_flexible_sched_in(ctx, cpuctx);
2185 2186
}

2187
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2188 2189
			     enum event_type_t event_type,
			     struct task_struct *task)
2190 2191 2192
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2193
	ctx_sched_in(ctx, cpuctx, event_type, task);
2194 2195
}

S
Stephane Eranian 已提交
2196 2197
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2198
{
P
Peter Zijlstra 已提交
2199
	struct perf_cpu_context *cpuctx;
2200

P
Peter Zijlstra 已提交
2201
	cpuctx = __get_cpu_context(ctx);
2202 2203 2204
	if (cpuctx->task_ctx == ctx)
		return;

2205
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2206
	perf_pmu_disable(ctx->pmu);
2207 2208 2209 2210 2211 2212 2213
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2214 2215
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2216

2217 2218
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2219 2220 2221
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2222 2223 2224 2225
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2226
	perf_pmu_rotate_start(ctx->pmu);
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2300 2301
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2311
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2312
	}
S
Stephane Eranian 已提交
2313 2314 2315 2316 2317 2318
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2319
		perf_cgroup_sched_in(prev, task);
2320 2321 2322 2323

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2353
#define REDUCE_FLS(a, b)		\
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2393 2394 2395
	if (!divisor)
		return dividend;

2396 2397 2398
	return div64_u64(dividend, divisor);
}

2399 2400 2401
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2402
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2403
{
2404
	struct hw_perf_event *hwc = &event->hw;
2405
	s64 period, sample_period;
2406 2407
	s64 delta;

2408
	period = perf_calculate_period(event, nsec, count);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2419

2420
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2421 2422 2423
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2424
		local64_set(&hwc->period_left, 0);
2425 2426 2427

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2428
	}
2429 2430
}

2431 2432 2433 2434 2435 2436 2437
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2438
{
2439 2440
	struct perf_event *event;
	struct hw_perf_event *hwc;
2441
	u64 now, period = TICK_NSEC;
2442
	s64 delta;
2443

2444 2445 2446 2447 2448 2449
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2450 2451
		return;

2452
	raw_spin_lock(&ctx->lock);
2453
	perf_pmu_disable(ctx->pmu);
2454

2455
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2456
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2457 2458
			continue;

2459
		if (!event_filter_match(event))
2460 2461
			continue;

2462
		hwc = &event->hw;
2463

2464 2465
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2466
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2467
			event->pmu->start(event, 0);
2468 2469
		}

2470
		if (!event->attr.freq || !event->attr.sample_freq)
2471 2472
			continue;

2473 2474 2475 2476 2477
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2478
		now = local64_read(&event->count);
2479 2480
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2481

2482 2483 2484
		/*
		 * restart the event
		 * reload only if value has changed
2485 2486 2487
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2488
		 */
2489
		if (delta > 0)
2490
			perf_adjust_period(event, period, delta, false);
2491 2492

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2493
	}
2494

2495
	perf_pmu_enable(ctx->pmu);
2496
	raw_spin_unlock(&ctx->lock);
2497 2498
}

2499
/*
2500
 * Round-robin a context's events:
2501
 */
2502
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2503
{
2504 2505 2506 2507 2508 2509
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2510 2511
}

2512
/*
2513 2514 2515
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2516
 */
2517
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2518
{
P
Peter Zijlstra 已提交
2519
	struct perf_event_context *ctx = NULL;
2520
	int rotate = 0, remove = 1;
2521

2522
	if (cpuctx->ctx.nr_events) {
2523
		remove = 0;
2524 2525 2526
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2527

P
Peter Zijlstra 已提交
2528
	ctx = cpuctx->task_ctx;
2529
	if (ctx && ctx->nr_events) {
2530
		remove = 0;
2531 2532 2533
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2534

2535
	if (!rotate)
2536 2537
		goto done;

2538
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2539
	perf_pmu_disable(cpuctx->ctx.pmu);
2540

2541 2542 2543
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2544

2545 2546 2547
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2548

2549
	perf_event_sched_in(cpuctx, ctx, current);
2550

2551 2552
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2553
done:
2554 2555 2556 2557 2558 2559 2560 2561
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2562 2563
	struct perf_event_context *ctx;
	int throttled;
2564

2565 2566
	WARN_ON(!irqs_disabled());

2567 2568 2569
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2570
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2571 2572 2573 2574 2575 2576 2577
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2578 2579 2580 2581
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2582 2583
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2594
	__perf_event_mark_enabled(event);
2595 2596 2597 2598

	return 1;
}

2599
/*
2600
 * Enable all of a task's events that have been marked enable-on-exec.
2601 2602
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2603
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2604
{
2605
	struct perf_event *event;
2606 2607
	unsigned long flags;
	int enabled = 0;
2608
	int ret;
2609 2610

	local_irq_save(flags);
2611
	if (!ctx || !ctx->nr_events)
2612 2613
		goto out;

2614 2615 2616 2617 2618 2619 2620
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2621
	perf_cgroup_sched_out(current, NULL);
2622

2623
	raw_spin_lock(&ctx->lock);
2624
	task_ctx_sched_out(ctx);
2625

2626
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2627 2628 2629
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2630 2631 2632
	}

	/*
2633
	 * Unclone this context if we enabled any event.
2634
	 */
2635 2636
	if (enabled)
		unclone_ctx(ctx);
2637

2638
	raw_spin_unlock(&ctx->lock);
2639

2640 2641 2642
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2643
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2644
out:
2645 2646 2647
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2648
/*
2649
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2650
 */
2651
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2652
{
2653 2654
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2655
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2656

2657 2658 2659 2660
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2661 2662
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2663 2664 2665 2666
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2667
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2668
	if (ctx->is_active) {
2669
		update_context_time(ctx);
S
Stephane Eranian 已提交
2670 2671
		update_cgrp_time_from_event(event);
	}
2672
	update_event_times(event);
2673 2674
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2675
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2676 2677
}

P
Peter Zijlstra 已提交
2678 2679
static inline u64 perf_event_count(struct perf_event *event)
{
2680
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2681 2682
}

2683
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2684 2685
{
	/*
2686 2687
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2688
	 */
2689 2690 2691 2692
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2693 2694 2695
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2696
		raw_spin_lock_irqsave(&ctx->lock, flags);
2697 2698 2699 2700 2701
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2702
		if (ctx->is_active) {
2703
			update_context_time(ctx);
S
Stephane Eranian 已提交
2704 2705
			update_cgrp_time_from_event(event);
		}
2706
		update_event_times(event);
2707
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2708 2709
	}

P
Peter Zijlstra 已提交
2710
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2711 2712
}

2713
/*
2714
 * Initialize the perf_event context in a task_struct:
2715
 */
2716
static void __perf_event_init_context(struct perf_event_context *ctx)
2717
{
2718
	raw_spin_lock_init(&ctx->lock);
2719
	mutex_init(&ctx->mutex);
2720 2721
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2722 2723
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2739
	}
2740 2741 2742
	ctx->pmu = pmu;

	return ctx;
2743 2744
}

2745 2746 2747 2748 2749
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2750 2751

	rcu_read_lock();
2752
	if (!vpid)
T
Thomas Gleixner 已提交
2753 2754
		task = current;
	else
2755
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2756 2757 2758 2759 2760 2761 2762 2763
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2764 2765 2766 2767
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2768 2769 2770 2771 2772 2773 2774
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2775 2776 2777
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2778
static struct perf_event_context *
M
Matt Helsley 已提交
2779
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2780
{
2781
	struct perf_event_context *ctx;
2782
	struct perf_cpu_context *cpuctx;
2783
	unsigned long flags;
P
Peter Zijlstra 已提交
2784
	int ctxn, err;
T
Thomas Gleixner 已提交
2785

2786
	if (!task) {
2787
		/* Must be root to operate on a CPU event: */
2788
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2789 2790 2791
			return ERR_PTR(-EACCES);

		/*
2792
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2793 2794 2795
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2796
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2797 2798
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2799
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2800
		ctx = &cpuctx->ctx;
2801
		get_ctx(ctx);
2802
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2803 2804 2805 2806

		return ctx;
	}

P
Peter Zijlstra 已提交
2807 2808 2809 2810 2811
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2812
retry:
P
Peter Zijlstra 已提交
2813
	ctx = perf_lock_task_context(task, ctxn, &flags);
2814
	if (ctx) {
2815
		unclone_ctx(ctx);
2816
		++ctx->pin_count;
2817
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2818
	} else {
2819
		ctx = alloc_perf_context(pmu, task);
2820 2821 2822
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2823

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2834
		else {
2835
			get_ctx(ctx);
2836
			++ctx->pin_count;
2837
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2838
		}
2839 2840 2841
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2842
			put_ctx(ctx);
2843 2844 2845 2846

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2847 2848 2849
		}
	}

T
Thomas Gleixner 已提交
2850
	return ctx;
2851

P
Peter Zijlstra 已提交
2852
errout:
2853
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2854 2855
}

L
Li Zefan 已提交
2856 2857
static void perf_event_free_filter(struct perf_event *event);

2858
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2859
{
2860
	struct perf_event *event;
P
Peter Zijlstra 已提交
2861

2862 2863 2864
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2865
	perf_event_free_filter(event);
2866
	kfree(event);
P
Peter Zijlstra 已提交
2867 2868
}

2869
static void ring_buffer_put(struct ring_buffer *rb);
2870

2871
static void free_event(struct perf_event *event)
2872
{
2873
	irq_work_sync(&event->pending);
2874

2875
	if (!event->parent) {
2876
		if (event->attach_state & PERF_ATTACH_TASK)
2877
			static_key_slow_dec_deferred(&perf_sched_events);
2878
		if (event->attr.mmap || event->attr.mmap_data)
2879 2880 2881 2882 2883
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2884 2885
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2886 2887
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2888
			static_key_slow_dec_deferred(&perf_sched_events);
2889
		}
2890 2891 2892 2893 2894 2895 2896 2897

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2898
	}
2899

2900 2901 2902
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2903 2904
	}

S
Stephane Eranian 已提交
2905 2906 2907
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2908 2909
	if (event->destroy)
		event->destroy(event);
2910

P
Peter Zijlstra 已提交
2911 2912 2913
	if (event->ctx)
		put_ctx(event->ctx);

2914
	call_rcu(&event->rcu_head, free_event_rcu);
2915 2916
}

2917
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2918
{
2919
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2920

2921
	WARN_ON_ONCE(ctx->parent_ctx);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2935
	raw_spin_lock_irq(&ctx->lock);
2936
	perf_group_detach(event);
2937
	raw_spin_unlock_irq(&ctx->lock);
2938
	perf_remove_from_context(event);
2939
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2940

2941
	free_event(event);
T
Thomas Gleixner 已提交
2942 2943 2944

	return 0;
}
2945
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2946

2947 2948 2949
/*
 * Called when the last reference to the file is gone.
 */
2950
static void put_event(struct perf_event *event)
2951
{
P
Peter Zijlstra 已提交
2952
	struct task_struct *owner;
2953

2954 2955
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2956

P
Peter Zijlstra 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2990 2991 2992 2993 2994 2995 2996
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
2997 2998
}

2999
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3000
{
3001
	struct perf_event *child;
3002 3003
	u64 total = 0;

3004 3005 3006
	*enabled = 0;
	*running = 0;

3007
	mutex_lock(&event->child_mutex);
3008
	total += perf_event_read(event);
3009 3010 3011 3012 3013 3014
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3015
		total += perf_event_read(child);
3016 3017 3018
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3019
	mutex_unlock(&event->child_mutex);
3020 3021 3022

	return total;
}
3023
EXPORT_SYMBOL_GPL(perf_event_read_value);
3024

3025
static int perf_event_read_group(struct perf_event *event,
3026 3027
				   u64 read_format, char __user *buf)
{
3028
	struct perf_event *leader = event->group_leader, *sub;
3029 3030
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3031
	u64 values[5];
3032
	u64 count, enabled, running;
3033

3034
	mutex_lock(&ctx->mutex);
3035
	count = perf_event_read_value(leader, &enabled, &running);
3036 3037

	values[n++] = 1 + leader->nr_siblings;
3038 3039 3040 3041
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3042 3043 3044
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3045 3046 3047 3048

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3049
		goto unlock;
3050

3051
	ret = size;
3052

3053
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3054
		n = 0;
3055

3056
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3057 3058 3059 3060 3061
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3062
		if (copy_to_user(buf + ret, values, size)) {
3063 3064 3065
			ret = -EFAULT;
			goto unlock;
		}
3066 3067

		ret += size;
3068
	}
3069 3070
unlock:
	mutex_unlock(&ctx->mutex);
3071

3072
	return ret;
3073 3074
}

3075
static int perf_event_read_one(struct perf_event *event,
3076 3077
				 u64 read_format, char __user *buf)
{
3078
	u64 enabled, running;
3079 3080 3081
	u64 values[4];
	int n = 0;

3082 3083 3084 3085 3086
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3087
	if (read_format & PERF_FORMAT_ID)
3088
		values[n++] = primary_event_id(event);
3089 3090 3091 3092 3093 3094 3095

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3096
/*
3097
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3098 3099
 */
static ssize_t
3100
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3101
{
3102
	u64 read_format = event->attr.read_format;
3103
	int ret;
T
Thomas Gleixner 已提交
3104

3105
	/*
3106
	 * Return end-of-file for a read on a event that is in
3107 3108 3109
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3110
	if (event->state == PERF_EVENT_STATE_ERROR)
3111 3112
		return 0;

3113
	if (count < event->read_size)
3114 3115
		return -ENOSPC;

3116
	WARN_ON_ONCE(event->ctx->parent_ctx);
3117
	if (read_format & PERF_FORMAT_GROUP)
3118
		ret = perf_event_read_group(event, read_format, buf);
3119
	else
3120
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3121

3122
	return ret;
T
Thomas Gleixner 已提交
3123 3124 3125 3126 3127
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3128
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3129

3130
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3131 3132 3133 3134
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3135
	struct perf_event *event = file->private_data;
3136
	struct ring_buffer *rb;
3137
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3138

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3156
	rcu_read_lock();
3157
	rb = rcu_dereference(event->rb);
3158 3159
	if (rb) {
		ring_buffer_attach(event, rb);
3160
		events = atomic_xchg(&rb->poll, 0);
3161
	}
P
Peter Zijlstra 已提交
3162
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3163

3164 3165
	mutex_unlock(&event->mmap_mutex);

3166
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3167 3168 3169 3170

	return events;
}

3171
static void perf_event_reset(struct perf_event *event)
3172
{
3173
	(void)perf_event_read(event);
3174
	local64_set(&event->count, 0);
3175
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3176 3177
}

3178
/*
3179 3180 3181 3182
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3183
 */
3184 3185
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3186
{
3187
	struct perf_event *child;
P
Peter Zijlstra 已提交
3188

3189 3190 3191 3192
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3193
		func(child);
3194
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3195 3196
}

3197 3198
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3199
{
3200 3201
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3202

3203 3204
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3205
	event = event->group_leader;
3206

3207 3208
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3209
		perf_event_for_each_child(sibling, func);
3210
	mutex_unlock(&ctx->mutex);
3211 3212
}

3213
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3214
{
3215
	struct perf_event_context *ctx = event->ctx;
3216 3217 3218
	int ret = 0;
	u64 value;

3219
	if (!is_sampling_event(event))
3220 3221
		return -EINVAL;

3222
	if (copy_from_user(&value, arg, sizeof(value)))
3223 3224 3225 3226 3227
		return -EFAULT;

	if (!value)
		return -EINVAL;

3228
	raw_spin_lock_irq(&ctx->lock);
3229 3230
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3231 3232 3233 3234
			ret = -EINVAL;
			goto unlock;
		}

3235
		event->attr.sample_freq = value;
3236
	} else {
3237 3238
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3239 3240
	}
unlock:
3241
	raw_spin_unlock_irq(&ctx->lock);
3242 3243 3244 3245

	return ret;
}

3246 3247
static const struct file_operations perf_fops;

3248
static inline int perf_fget_light(int fd, struct fd *p)
3249
{
3250 3251 3252
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3253

3254 3255 3256
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3257
	}
3258 3259
	*p = f;
	return 0;
3260 3261 3262 3263
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3264
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3265

3266 3267
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3268 3269
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3270
	u32 flags = arg;
3271 3272

	switch (cmd) {
3273 3274
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3275
		break;
3276 3277
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3278
		break;
3279 3280
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3281
		break;
P
Peter Zijlstra 已提交
3282

3283 3284
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3285

3286 3287
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3288

3289
	case PERF_EVENT_IOC_SET_OUTPUT:
3290 3291 3292
	{
		int ret;
		if (arg != -1) {
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3303 3304 3305
		}
		return ret;
	}
3306

L
Li Zefan 已提交
3307 3308 3309
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3310
	default:
P
Peter Zijlstra 已提交
3311
		return -ENOTTY;
3312
	}
P
Peter Zijlstra 已提交
3313 3314

	if (flags & PERF_IOC_FLAG_GROUP)
3315
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3316
	else
3317
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3318 3319

	return 0;
3320 3321
}

3322
int perf_event_task_enable(void)
3323
{
3324
	struct perf_event *event;
3325

3326 3327 3328 3329
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3330 3331 3332 3333

	return 0;
}

3334
int perf_event_task_disable(void)
3335
{
3336
	struct perf_event *event;
3337

3338 3339 3340 3341
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3342 3343 3344 3345

	return 0;
}

3346
static int perf_event_index(struct perf_event *event)
3347
{
P
Peter Zijlstra 已提交
3348 3349 3350
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3351
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3352 3353
		return 0;

3354
	return event->pmu->event_idx(event);
3355 3356
}

3357
static void calc_timer_values(struct perf_event *event,
3358
				u64 *now,
3359 3360
				u64 *enabled,
				u64 *running)
3361
{
3362
	u64 ctx_time;
3363

3364 3365
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3366 3367 3368 3369
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3370
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3371 3372 3373
{
}

3374 3375 3376 3377 3378
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3379
void perf_event_update_userpage(struct perf_event *event)
3380
{
3381
	struct perf_event_mmap_page *userpg;
3382
	struct ring_buffer *rb;
3383
	u64 enabled, running, now;
3384 3385

	rcu_read_lock();
3386 3387 3388 3389 3390 3391 3392 3393 3394
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3395
	calc_timer_values(event, &now, &enabled, &running);
3396 3397
	rb = rcu_dereference(event->rb);
	if (!rb)
3398 3399
		goto unlock;

3400
	userpg = rb->user_page;
3401

3402 3403 3404 3405 3406
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3407
	++userpg->lock;
3408
	barrier();
3409
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3410
	userpg->offset = perf_event_count(event);
3411
	if (userpg->index)
3412
		userpg->offset -= local64_read(&event->hw.prev_count);
3413

3414
	userpg->time_enabled = enabled +
3415
			atomic64_read(&event->child_total_time_enabled);
3416

3417
	userpg->time_running = running +
3418
			atomic64_read(&event->child_total_time_running);
3419

3420
	arch_perf_update_userpage(userpg, now);
3421

3422
	barrier();
3423
	++userpg->lock;
3424
	preempt_enable();
3425
unlock:
3426
	rcu_read_unlock();
3427 3428
}

3429 3430 3431
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3432
	struct ring_buffer *rb;
3433 3434 3435 3436 3437 3438 3439 3440 3441
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3442 3443
	rb = rcu_dereference(event->rb);
	if (!rb)
3444 3445 3446 3447 3448
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3449
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3501 3502 3503 3504
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3505
		wake_up_all(&event->waitq);
3506 3507

unlock:
3508 3509 3510
	rcu_read_unlock();
}

3511
static void rb_free_rcu(struct rcu_head *rcu_head)
3512
{
3513
	struct ring_buffer *rb;
3514

3515 3516
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3517 3518
}

3519
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3520
{
3521
	struct ring_buffer *rb;
3522

3523
	rcu_read_lock();
3524 3525 3526 3527
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3528 3529 3530
	}
	rcu_read_unlock();

3531
	return rb;
3532 3533
}

3534
static void ring_buffer_put(struct ring_buffer *rb)
3535
{
3536 3537 3538
	struct perf_event *event, *n;
	unsigned long flags;

3539
	if (!atomic_dec_and_test(&rb->refcount))
3540
		return;
3541

3542 3543 3544 3545 3546 3547 3548
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3549
	call_rcu(&rb->rcu_head, rb_free_rcu);
3550 3551 3552 3553
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3554
	struct perf_event *event = vma->vm_file->private_data;
3555

3556
	atomic_inc(&event->mmap_count);
3557 3558 3559 3560
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3561
	struct perf_event *event = vma->vm_file->private_data;
3562

3563
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3564
		unsigned long size = perf_data_size(event->rb);
3565
		struct user_struct *user = event->mmap_user;
3566
		struct ring_buffer *rb = event->rb;
3567

3568
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3569
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3570
		rcu_assign_pointer(event->rb, NULL);
3571
		ring_buffer_detach(event, rb);
3572
		mutex_unlock(&event->mmap_mutex);
3573

3574
		ring_buffer_put(rb);
3575
		free_uid(user);
3576
	}
3577 3578
}

3579
static const struct vm_operations_struct perf_mmap_vmops = {
3580 3581 3582 3583
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3584 3585 3586 3587
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3588
	struct perf_event *event = file->private_data;
3589
	unsigned long user_locked, user_lock_limit;
3590
	struct user_struct *user = current_user();
3591
	unsigned long locked, lock_limit;
3592
	struct ring_buffer *rb;
3593 3594
	unsigned long vma_size;
	unsigned long nr_pages;
3595
	long user_extra, extra;
3596
	int ret = 0, flags = 0;
3597

3598 3599 3600
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3601
	 * same rb.
3602 3603 3604 3605
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3606
	if (!(vma->vm_flags & VM_SHARED))
3607
		return -EINVAL;
3608 3609 3610 3611

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3612
	/*
3613
	 * If we have rb pages ensure they're a power-of-two number, so we
3614 3615 3616
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3617 3618
		return -EINVAL;

3619
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3620 3621
		return -EINVAL;

3622 3623
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3624

3625 3626
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3627 3628 3629
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3630
		else
3631 3632 3633 3634
			ret = -EINVAL;
		goto unlock;
	}

3635
	user_extra = nr_pages + 1;
3636
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3637 3638 3639 3640 3641 3642

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3643
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3644

3645 3646 3647
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3648

3649
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3650
	lock_limit >>= PAGE_SHIFT;
3651
	locked = vma->vm_mm->pinned_vm + extra;
3652

3653 3654
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3655 3656 3657
		ret = -EPERM;
		goto unlock;
	}
3658

3659
	WARN_ON(event->rb);
3660

3661
	if (vma->vm_flags & VM_WRITE)
3662
		flags |= RING_BUFFER_WRITABLE;
3663

3664 3665 3666 3667
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3668
	if (!rb) {
3669
		ret = -ENOMEM;
3670
		goto unlock;
3671
	}
3672
	rcu_assign_pointer(event->rb, rb);
3673

3674 3675 3676
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3677
	vma->vm_mm->pinned_vm += event->mmap_locked;
3678

3679 3680
	perf_event_update_userpage(event);

3681
unlock:
3682 3683
	if (!ret)
		atomic_inc(&event->mmap_count);
3684
	mutex_unlock(&event->mmap_mutex);
3685

3686
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3687
	vma->vm_ops = &perf_mmap_vmops;
3688 3689

	return ret;
3690 3691
}

P
Peter Zijlstra 已提交
3692 3693
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3694
	struct inode *inode = file_inode(filp);
3695
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3696 3697 3698
	int retval;

	mutex_lock(&inode->i_mutex);
3699
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3700 3701 3702 3703 3704 3705 3706 3707
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3708
static const struct file_operations perf_fops = {
3709
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3710 3711 3712
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3713 3714
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3715
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3716
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3717 3718
};

3719
/*
3720
 * Perf event wakeup
3721 3722 3723 3724 3725
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3726
void perf_event_wakeup(struct perf_event *event)
3727
{
3728
	ring_buffer_wakeup(event);
3729

3730 3731 3732
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3733
	}
3734 3735
}

3736
static void perf_pending_event(struct irq_work *entry)
3737
{
3738 3739
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3740

3741 3742 3743
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3744 3745
	}

3746 3747 3748
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3749 3750 3751
	}
}

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3899 3900 3901
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3929 3930 3931
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3958 3959 3960
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3961 3962 3963 3964 3965
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3966
static void perf_output_read_one(struct perf_output_handle *handle,
3967 3968
				 struct perf_event *event,
				 u64 enabled, u64 running)
3969
{
3970
	u64 read_format = event->attr.read_format;
3971 3972 3973
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3974
	values[n++] = perf_event_count(event);
3975
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3976
		values[n++] = enabled +
3977
			atomic64_read(&event->child_total_time_enabled);
3978 3979
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3980
		values[n++] = running +
3981
			atomic64_read(&event->child_total_time_running);
3982 3983
	}
	if (read_format & PERF_FORMAT_ID)
3984
		values[n++] = primary_event_id(event);
3985

3986
	__output_copy(handle, values, n * sizeof(u64));
3987 3988 3989
}

/*
3990
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3991 3992
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3993 3994
			    struct perf_event *event,
			    u64 enabled, u64 running)
3995
{
3996 3997
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3998 3999 4000 4001 4002 4003
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4004
		values[n++] = enabled;
4005 4006

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4007
		values[n++] = running;
4008

4009
	if (leader != event)
4010 4011
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4012
	values[n++] = perf_event_count(leader);
4013
	if (read_format & PERF_FORMAT_ID)
4014
		values[n++] = primary_event_id(leader);
4015

4016
	__output_copy(handle, values, n * sizeof(u64));
4017

4018
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4019 4020
		n = 0;

4021
		if (sub != event)
4022 4023
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4024
		values[n++] = perf_event_count(sub);
4025
		if (read_format & PERF_FORMAT_ID)
4026
			values[n++] = primary_event_id(sub);
4027

4028
		__output_copy(handle, values, n * sizeof(u64));
4029 4030 4031
	}
}

4032 4033 4034
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4035
static void perf_output_read(struct perf_output_handle *handle,
4036
			     struct perf_event *event)
4037
{
4038
	u64 enabled = 0, running = 0, now;
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4050
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4051
		calc_timer_values(event, &now, &enabled, &running);
4052

4053
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4054
		perf_output_read_group(handle, event, enabled, running);
4055
	else
4056
		perf_output_read_one(handle, event, enabled, running);
4057 4058
}

4059 4060 4061
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4062
			struct perf_event *event)
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4093
		perf_output_read(handle, event);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4104
			__output_copy(handle, data->callchain, size);
4105 4106 4107 4108 4109 4110 4111 4112 4113
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4114 4115
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4176 4177 4178 4179 4180

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4181 4182 4183 4184
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4185
			 struct perf_event *event,
4186
			 struct pt_regs *regs)
4187
{
4188
	u64 sample_type = event->attr.sample_type;
4189

4190
	header->type = PERF_RECORD_SAMPLE;
4191
	header->size = sizeof(*header) + event->header_size;
4192 4193 4194

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4195

4196
	__perf_event_header__init_id(header, data, event);
4197

4198
	if (sample_type & PERF_SAMPLE_IP)
4199 4200
		data->ip = perf_instruction_pointer(regs);

4201
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4202
		int size = 1;
4203

4204
		data->callchain = perf_callchain(event, regs);
4205 4206 4207 4208 4209

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4210 4211
	}

4212
	if (sample_type & PERF_SAMPLE_RAW) {
4213 4214 4215 4216 4217 4218 4219 4220
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4221
		header->size += size;
4222
	}
4223 4224 4225 4226 4227 4228 4229 4230 4231

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4275
}
4276

4277
static void perf_event_output(struct perf_event *event,
4278 4279 4280 4281 4282
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4283

4284 4285 4286
	/* protect the callchain buffers */
	rcu_read_lock();

4287
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4288

4289
	if (perf_output_begin(&handle, event, header.size))
4290
		goto exit;
4291

4292
	perf_output_sample(&handle, &header, data, event);
4293

4294
	perf_output_end(&handle);
4295 4296 4297

exit:
	rcu_read_unlock();
4298 4299
}

4300
/*
4301
 * read event_id
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4312
perf_event_read_event(struct perf_event *event,
4313 4314 4315
			struct task_struct *task)
{
	struct perf_output_handle handle;
4316
	struct perf_sample_data sample;
4317
	struct perf_read_event read_event = {
4318
		.header = {
4319
			.type = PERF_RECORD_READ,
4320
			.misc = 0,
4321
			.size = sizeof(read_event) + event->read_size,
4322
		},
4323 4324
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4325
	};
4326
	int ret;
4327

4328
	perf_event_header__init_id(&read_event.header, &sample, event);
4329
	ret = perf_output_begin(&handle, event, read_event.header.size);
4330 4331 4332
	if (ret)
		return;

4333
	perf_output_put(&handle, read_event);
4334
	perf_output_read(&handle, event);
4335
	perf_event__output_id_sample(event, &handle, &sample);
4336

4337 4338 4339
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4340
/*
P
Peter Zijlstra 已提交
4341 4342
 * task tracking -- fork/exit
 *
4343
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4344 4345
 */

P
Peter Zijlstra 已提交
4346
struct perf_task_event {
4347
	struct task_struct		*task;
4348
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4349 4350 4351 4352 4353 4354

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4355 4356
		u32				tid;
		u32				ptid;
4357
		u64				time;
4358
	} event_id;
P
Peter Zijlstra 已提交
4359 4360
};

4361
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4362
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4363 4364
{
	struct perf_output_handle handle;
4365
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4366
	struct task_struct *task = task_event->task;
4367
	int ret, size = task_event->event_id.header.size;
4368

4369
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4370

4371
	ret = perf_output_begin(&handle, event,
4372
				task_event->event_id.header.size);
4373
	if (ret)
4374
		goto out;
P
Peter Zijlstra 已提交
4375

4376 4377
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4378

4379 4380
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4381

4382
	perf_output_put(&handle, task_event->event_id);
4383

4384 4385
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4386
	perf_output_end(&handle);
4387 4388
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4389 4390
}

4391
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4392
{
P
Peter Zijlstra 已提交
4393
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4394 4395
		return 0;

4396
	if (!event_filter_match(event))
4397 4398
		return 0;

4399 4400
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4401 4402 4403 4404 4405
		return 1;

	return 0;
}

4406
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4407
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4408
{
4409
	struct perf_event *event;
P
Peter Zijlstra 已提交
4410

4411 4412 4413
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4414 4415 4416
	}
}

4417
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4418 4419
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4420
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4421
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4422
	int ctxn;
P
Peter Zijlstra 已提交
4423

4424
	rcu_read_lock();
P
Peter Zijlstra 已提交
4425
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4426
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4427
		if (cpuctx->unique_pmu != pmu)
4428
			goto next;
P
Peter Zijlstra 已提交
4429
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4430 4431 4432 4433 4434

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4435
				goto next;
P
Peter Zijlstra 已提交
4436 4437 4438 4439
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4440 4441
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4442
	}
P
Peter Zijlstra 已提交
4443 4444 4445
	rcu_read_unlock();
}

4446 4447
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4448
			      int new)
P
Peter Zijlstra 已提交
4449
{
P
Peter Zijlstra 已提交
4450
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4451

4452 4453 4454
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4455 4456
		return;

P
Peter Zijlstra 已提交
4457
	task_event = (struct perf_task_event){
4458 4459
		.task	  = task,
		.task_ctx = task_ctx,
4460
		.event_id    = {
P
Peter Zijlstra 已提交
4461
			.header = {
4462
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4463
				.misc = 0,
4464
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4465
			},
4466 4467
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4468 4469
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4470
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4471 4472 4473
		},
	};

4474
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4475 4476
}

4477
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4478
{
4479
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4480 4481
}

4482 4483 4484 4485 4486
/*
 * comm tracking
 */

struct perf_comm_event {
4487 4488
	struct task_struct	*task;
	char			*comm;
4489 4490 4491 4492 4493 4494 4495
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4496
	} event_id;
4497 4498
};

4499
static void perf_event_comm_output(struct perf_event *event,
4500 4501 4502
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4503
	struct perf_sample_data sample;
4504
	int size = comm_event->event_id.header.size;
4505 4506 4507 4508
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4509
				comm_event->event_id.header.size);
4510 4511

	if (ret)
4512
		goto out;
4513

4514 4515
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4516

4517
	perf_output_put(&handle, comm_event->event_id);
4518
	__output_copy(&handle, comm_event->comm,
4519
				   comm_event->comm_size);
4520 4521 4522

	perf_event__output_id_sample(event, &handle, &sample);

4523
	perf_output_end(&handle);
4524 4525
out:
	comm_event->event_id.header.size = size;
4526 4527
}

4528
static int perf_event_comm_match(struct perf_event *event)
4529
{
P
Peter Zijlstra 已提交
4530
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4531 4532
		return 0;

4533
	if (!event_filter_match(event))
4534 4535
		return 0;

4536
	if (event->attr.comm)
4537 4538 4539 4540 4541
		return 1;

	return 0;
}

4542
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4543 4544
				  struct perf_comm_event *comm_event)
{
4545
	struct perf_event *event;
4546

4547 4548 4549
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4550 4551 4552
	}
}

4553
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4554 4555
{
	struct perf_cpu_context *cpuctx;
4556
	struct perf_event_context *ctx;
4557
	char comm[TASK_COMM_LEN];
4558
	unsigned int size;
P
Peter Zijlstra 已提交
4559
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4560
	int ctxn;
4561

4562
	memset(comm, 0, sizeof(comm));
4563
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4564
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4565 4566 4567 4568

	comm_event->comm = comm;
	comm_event->comm_size = size;

4569
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4570
	rcu_read_lock();
P
Peter Zijlstra 已提交
4571
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4572
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4573
		if (cpuctx->unique_pmu != pmu)
4574
			goto next;
P
Peter Zijlstra 已提交
4575
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4576 4577 4578

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4579
			goto next;
P
Peter Zijlstra 已提交
4580 4581 4582 4583

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4584 4585
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4586
	}
4587
	rcu_read_unlock();
4588 4589
}

4590
void perf_event_comm(struct task_struct *task)
4591
{
4592
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4593 4594
	struct perf_event_context *ctx;
	int ctxn;
4595

P
Peter Zijlstra 已提交
4596 4597 4598 4599
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4600

P
Peter Zijlstra 已提交
4601 4602
		perf_event_enable_on_exec(ctx);
	}
4603

4604
	if (!atomic_read(&nr_comm_events))
4605
		return;
4606

4607
	comm_event = (struct perf_comm_event){
4608
		.task	= task,
4609 4610
		/* .comm      */
		/* .comm_size */
4611
		.event_id  = {
4612
			.header = {
4613
				.type = PERF_RECORD_COMM,
4614 4615 4616 4617 4618
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4619 4620 4621
		},
	};

4622
	perf_event_comm_event(&comm_event);
4623 4624
}

4625 4626 4627 4628 4629
/*
 * mmap tracking
 */

struct perf_mmap_event {
4630 4631 4632 4633
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4634 4635 4636 4637 4638 4639 4640 4641 4642

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4643
	} event_id;
4644 4645
};

4646
static void perf_event_mmap_output(struct perf_event *event,
4647 4648 4649
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4650
	struct perf_sample_data sample;
4651
	int size = mmap_event->event_id.header.size;
4652
	int ret;
4653

4654 4655
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4656
				mmap_event->event_id.header.size);
4657
	if (ret)
4658
		goto out;
4659

4660 4661
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4662

4663
	perf_output_put(&handle, mmap_event->event_id);
4664
	__output_copy(&handle, mmap_event->file_name,
4665
				   mmap_event->file_size);
4666 4667 4668

	perf_event__output_id_sample(event, &handle, &sample);

4669
	perf_output_end(&handle);
4670 4671
out:
	mmap_event->event_id.header.size = size;
4672 4673
}

4674
static int perf_event_mmap_match(struct perf_event *event,
4675 4676
				   struct perf_mmap_event *mmap_event,
				   int executable)
4677
{
P
Peter Zijlstra 已提交
4678
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4679 4680
		return 0;

4681
	if (!event_filter_match(event))
4682 4683
		return 0;

4684 4685
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4686 4687 4688 4689 4690
		return 1;

	return 0;
}

4691
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4692 4693
				  struct perf_mmap_event *mmap_event,
				  int executable)
4694
{
4695
	struct perf_event *event;
4696

4697
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4698
		if (perf_event_mmap_match(event, mmap_event, executable))
4699
			perf_event_mmap_output(event, mmap_event);
4700 4701 4702
	}
}

4703
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4704 4705
{
	struct perf_cpu_context *cpuctx;
4706
	struct perf_event_context *ctx;
4707 4708
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4709 4710 4711
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4712
	const char *name;
P
Peter Zijlstra 已提交
4713
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4714
	int ctxn;
4715

4716 4717
	memset(tmp, 0, sizeof(tmp));

4718
	if (file) {
4719
		/*
4720
		 * d_path works from the end of the rb backwards, so we
4721 4722 4723 4724
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4725 4726 4727 4728
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4729
		name = d_path(&file->f_path, buf, PATH_MAX);
4730 4731 4732 4733 4734
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4735 4736 4737
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4738
			goto got_name;
4739
		}
4740 4741 4742 4743

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4744 4745 4746 4747 4748 4749 4750 4751
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4752 4753
		}

4754 4755 4756 4757 4758
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4759
	size = ALIGN(strlen(name)+1, sizeof(u64));
4760 4761 4762 4763

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4764
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4765

4766
	rcu_read_lock();
P
Peter Zijlstra 已提交
4767
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4768
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4769
		if (cpuctx->unique_pmu != pmu)
4770
			goto next;
P
Peter Zijlstra 已提交
4771 4772
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4773 4774 4775

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4776
			goto next;
P
Peter Zijlstra 已提交
4777 4778 4779 4780 4781 4782

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4783 4784
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4785
	}
4786 4787
	rcu_read_unlock();

4788 4789 4790
	kfree(buf);
}

4791
void perf_event_mmap(struct vm_area_struct *vma)
4792
{
4793 4794
	struct perf_mmap_event mmap_event;

4795
	if (!atomic_read(&nr_mmap_events))
4796 4797 4798
		return;

	mmap_event = (struct perf_mmap_event){
4799
		.vma	= vma,
4800 4801
		/* .file_name */
		/* .file_size */
4802
		.event_id  = {
4803
			.header = {
4804
				.type = PERF_RECORD_MMAP,
4805
				.misc = PERF_RECORD_MISC_USER,
4806 4807 4808 4809
				/* .size */
			},
			/* .pid */
			/* .tid */
4810 4811
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4812
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4813 4814 4815
		},
	};

4816
	perf_event_mmap_event(&mmap_event);
4817 4818
}

4819 4820 4821 4822
/*
 * IRQ throttle logging
 */

4823
static void perf_log_throttle(struct perf_event *event, int enable)
4824 4825
{
	struct perf_output_handle handle;
4826
	struct perf_sample_data sample;
4827 4828 4829 4830 4831
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4832
		u64				id;
4833
		u64				stream_id;
4834 4835
	} throttle_event = {
		.header = {
4836
			.type = PERF_RECORD_THROTTLE,
4837 4838 4839
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4840
		.time		= perf_clock(),
4841 4842
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4843 4844
	};

4845
	if (enable)
4846
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4847

4848 4849 4850
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4851
				throttle_event.header.size);
4852 4853 4854 4855
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4856
	perf_event__output_id_sample(event, &handle, &sample);
4857 4858 4859
	perf_output_end(&handle);
}

4860
/*
4861
 * Generic event overflow handling, sampling.
4862 4863
 */

4864
static int __perf_event_overflow(struct perf_event *event,
4865 4866
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4867
{
4868 4869
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4870
	u64 seq;
4871 4872
	int ret = 0;

4873 4874 4875 4876 4877 4878 4879
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4880 4881 4882 4883 4884 4885 4886 4887 4888
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4889 4890
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4891 4892
			ret = 1;
		}
4893
	}
4894

4895
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4896
		u64 now = perf_clock();
4897
		s64 delta = now - hwc->freq_time_stamp;
4898

4899
		hwc->freq_time_stamp = now;
4900

4901
		if (delta > 0 && delta < 2*TICK_NSEC)
4902
			perf_adjust_period(event, delta, hwc->last_period, true);
4903 4904
	}

4905 4906
	/*
	 * XXX event_limit might not quite work as expected on inherited
4907
	 * events
4908 4909
	 */

4910 4911
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4912
		ret = 1;
4913
		event->pending_kill = POLL_HUP;
4914 4915
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4916 4917
	}

4918
	if (event->overflow_handler)
4919
		event->overflow_handler(event, data, regs);
4920
	else
4921
		perf_event_output(event, data, regs);
4922

P
Peter Zijlstra 已提交
4923
	if (event->fasync && event->pending_kill) {
4924 4925
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4926 4927
	}

4928
	return ret;
4929 4930
}

4931
int perf_event_overflow(struct perf_event *event,
4932 4933
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4934
{
4935
	return __perf_event_overflow(event, 1, data, regs);
4936 4937
}

4938
/*
4939
 * Generic software event infrastructure
4940 4941
 */

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4953
/*
4954 4955
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4956 4957 4958 4959
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4960
static u64 perf_swevent_set_period(struct perf_event *event)
4961
{
4962
	struct hw_perf_event *hwc = &event->hw;
4963 4964 4965 4966 4967
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4968 4969

again:
4970
	old = val = local64_read(&hwc->period_left);
4971 4972
	if (val < 0)
		return 0;
4973

4974 4975 4976
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4977
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4978
		goto again;
4979

4980
	return nr;
4981 4982
}

4983
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4984
				    struct perf_sample_data *data,
4985
				    struct pt_regs *regs)
4986
{
4987
	struct hw_perf_event *hwc = &event->hw;
4988
	int throttle = 0;
4989

4990 4991
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4992

4993 4994
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4995

4996
	for (; overflow; overflow--) {
4997
		if (__perf_event_overflow(event, throttle,
4998
					    data, regs)) {
4999 5000 5001 5002 5003 5004
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5005
		throttle = 1;
5006
	}
5007 5008
}

P
Peter Zijlstra 已提交
5009
static void perf_swevent_event(struct perf_event *event, u64 nr,
5010
			       struct perf_sample_data *data,
5011
			       struct pt_regs *regs)
5012
{
5013
	struct hw_perf_event *hwc = &event->hw;
5014

5015
	local64_add(nr, &event->count);
5016

5017 5018 5019
	if (!regs)
		return;

5020
	if (!is_sampling_event(event))
5021
		return;
5022

5023 5024 5025 5026 5027 5028
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5029
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5030
		return perf_swevent_overflow(event, 1, data, regs);
5031

5032
	if (local64_add_negative(nr, &hwc->period_left))
5033
		return;
5034

5035
	perf_swevent_overflow(event, 0, data, regs);
5036 5037
}

5038 5039 5040
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5041
	if (event->hw.state & PERF_HES_STOPPED)
5042
		return 1;
P
Peter Zijlstra 已提交
5043

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5055
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5056
				enum perf_type_id type,
L
Li Zefan 已提交
5057 5058 5059
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5060
{
5061
	if (event->attr.type != type)
5062
		return 0;
5063

5064
	if (event->attr.config != event_id)
5065 5066
		return 0;

5067 5068
	if (perf_exclude_event(event, regs))
		return 0;
5069 5070 5071 5072

	return 1;
}

5073 5074 5075 5076 5077 5078 5079
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5080 5081
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5082
{
5083 5084 5085 5086
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5087

5088 5089
/* For the read side: events when they trigger */
static inline struct hlist_head *
5090
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5091 5092
{
	struct swevent_hlist *hlist;
5093

5094
	hlist = rcu_dereference(swhash->swevent_hlist);
5095 5096 5097
	if (!hlist)
		return NULL;

5098 5099 5100 5101 5102
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5103
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5114
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5115 5116 5117 5118 5119
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5120 5121 5122
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5123
				    u64 nr,
5124 5125
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5126
{
5127
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5128
	struct perf_event *event;
5129 5130
	struct hlist_node *node;
	struct hlist_head *head;
5131

5132
	rcu_read_lock();
5133
	head = find_swevent_head_rcu(swhash, type, event_id);
5134 5135 5136 5137
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5138
		if (perf_swevent_match(event, type, event_id, data, regs))
5139
			perf_swevent_event(event, nr, data, regs);
5140
	}
5141 5142
end:
	rcu_read_unlock();
5143 5144
}

5145
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5146
{
5147
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5148

5149
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5150
}
I
Ingo Molnar 已提交
5151
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5152

5153
inline void perf_swevent_put_recursion_context(int rctx)
5154
{
5155
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5156

5157
	put_recursion_context(swhash->recursion, rctx);
5158
}
5159

5160
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5161
{
5162
	struct perf_sample_data data;
5163 5164
	int rctx;

5165
	preempt_disable_notrace();
5166 5167 5168
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5169

5170
	perf_sample_data_init(&data, addr, 0);
5171

5172
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5173 5174

	perf_swevent_put_recursion_context(rctx);
5175
	preempt_enable_notrace();
5176 5177
}

5178
static void perf_swevent_read(struct perf_event *event)
5179 5180 5181
{
}

P
Peter Zijlstra 已提交
5182
static int perf_swevent_add(struct perf_event *event, int flags)
5183
{
5184
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5185
	struct hw_perf_event *hwc = &event->hw;
5186 5187
	struct hlist_head *head;

5188
	if (is_sampling_event(event)) {
5189
		hwc->last_period = hwc->sample_period;
5190
		perf_swevent_set_period(event);
5191
	}
5192

P
Peter Zijlstra 已提交
5193 5194
	hwc->state = !(flags & PERF_EF_START);

5195
	head = find_swevent_head(swhash, event);
5196 5197 5198 5199 5200
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5201 5202 5203
	return 0;
}

P
Peter Zijlstra 已提交
5204
static void perf_swevent_del(struct perf_event *event, int flags)
5205
{
5206
	hlist_del_rcu(&event->hlist_entry);
5207 5208
}

P
Peter Zijlstra 已提交
5209
static void perf_swevent_start(struct perf_event *event, int flags)
5210
{
P
Peter Zijlstra 已提交
5211
	event->hw.state = 0;
5212
}
I
Ingo Molnar 已提交
5213

P
Peter Zijlstra 已提交
5214
static void perf_swevent_stop(struct perf_event *event, int flags)
5215
{
P
Peter Zijlstra 已提交
5216
	event->hw.state = PERF_HES_STOPPED;
5217 5218
}

5219 5220
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5221
swevent_hlist_deref(struct swevent_htable *swhash)
5222
{
5223 5224
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5225 5226
}

5227
static void swevent_hlist_release(struct swevent_htable *swhash)
5228
{
5229
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5230

5231
	if (!hlist)
5232 5233
		return;

5234
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5235
	kfree_rcu(hlist, rcu_head);
5236 5237 5238 5239
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5240
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5241

5242
	mutex_lock(&swhash->hlist_mutex);
5243

5244 5245
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5246

5247
	mutex_unlock(&swhash->hlist_mutex);
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5265
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5266 5267
	int err = 0;

5268
	mutex_lock(&swhash->hlist_mutex);
5269

5270
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5271 5272 5273 5274 5275 5276 5277
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5278
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5279
	}
5280
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5281
exit:
5282
	mutex_unlock(&swhash->hlist_mutex);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5306
fail:
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5317
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5318

5319 5320 5321
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5322

5323 5324
	WARN_ON(event->parent);

5325
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5336 5337 5338 5339 5340 5341
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5342 5343 5344 5345 5346 5347 5348 5349 5350
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5351
	if (event_id >= PERF_COUNT_SW_MAX)
5352 5353 5354 5355 5356 5357 5358 5359 5360
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5361
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5362 5363 5364 5365 5366 5367
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5368 5369 5370 5371 5372
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5373
static struct pmu perf_swevent = {
5374
	.task_ctx_nr	= perf_sw_context,
5375

5376
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5377 5378 5379 5380
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5381
	.read		= perf_swevent_read,
5382 5383

	.event_idx	= perf_swevent_event_idx,
5384 5385
};

5386 5387
#ifdef CONFIG_EVENT_TRACING

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5402 5403
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5404 5405 5406 5407
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5408 5409 5410 5411 5412 5413 5414 5415 5416
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5417 5418
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5419 5420
{
	struct perf_sample_data data;
5421 5422 5423
	struct perf_event *event;
	struct hlist_node *node;

5424 5425 5426 5427 5428
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5429
	perf_sample_data_init(&data, addr, 0);
5430 5431
	data.raw = &raw;

5432 5433
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5434
			perf_swevent_event(event, count, &data, regs);
5435
	}
5436

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5462
	perf_swevent_put_recursion_context(rctx);
5463 5464 5465
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5466
static void tp_perf_event_destroy(struct perf_event *event)
5467
{
5468
	perf_trace_destroy(event);
5469 5470
}

5471
static int perf_tp_event_init(struct perf_event *event)
5472
{
5473 5474
	int err;

5475 5476 5477
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5478 5479 5480 5481 5482 5483
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5484 5485
	err = perf_trace_init(event);
	if (err)
5486
		return err;
5487

5488
	event->destroy = tp_perf_event_destroy;
5489

5490 5491 5492 5493
	return 0;
}

static struct pmu perf_tracepoint = {
5494 5495
	.task_ctx_nr	= perf_sw_context,

5496
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5497 5498 5499 5500
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5501
	.read		= perf_swevent_read,
5502 5503

	.event_idx	= perf_swevent_event_idx,
5504 5505 5506 5507
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5508
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5509
}
L
Li Zefan 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5534
#else
L
Li Zefan 已提交
5535

5536
static inline void perf_tp_register(void)
5537 5538
{
}
L
Li Zefan 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5549
#endif /* CONFIG_EVENT_TRACING */
5550

5551
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5552
void perf_bp_event(struct perf_event *bp, void *data)
5553
{
5554 5555 5556
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5557
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5558

P
Peter Zijlstra 已提交
5559
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5560
		perf_swevent_event(bp, 1, &sample, regs);
5561 5562 5563
}
#endif

5564 5565 5566
/*
 * hrtimer based swevent callback
 */
5567

5568
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5569
{
5570 5571 5572 5573 5574
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5575

5576
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5577 5578 5579 5580

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5581
	event->pmu->read(event);
5582

5583
	perf_sample_data_init(&data, 0, event->hw.last_period);
5584 5585 5586
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5587
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5588
			if (__perf_event_overflow(event, 1, &data, regs))
5589 5590
				ret = HRTIMER_NORESTART;
	}
5591

5592 5593
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5594

5595
	return ret;
5596 5597
}

5598
static void perf_swevent_start_hrtimer(struct perf_event *event)
5599
{
5600
	struct hw_perf_event *hwc = &event->hw;
5601 5602 5603 5604
	s64 period;

	if (!is_sampling_event(event))
		return;
5605

5606 5607 5608 5609
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5610

5611 5612 5613 5614 5615
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5616
				ns_to_ktime(period), 0,
5617
				HRTIMER_MODE_REL_PINNED, 0);
5618
}
5619 5620

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5621
{
5622 5623
	struct hw_perf_event *hwc = &event->hw;

5624
	if (is_sampling_event(event)) {
5625
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5626
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5627 5628 5629

		hrtimer_cancel(&hwc->hrtimer);
	}
5630 5631
}

P
Peter Zijlstra 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5656 5657 5658 5659 5660
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5661
{
5662 5663 5664
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5665
	now = local_clock();
5666 5667
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5668 5669
}

P
Peter Zijlstra 已提交
5670
static void cpu_clock_event_start(struct perf_event *event, int flags)
5671
{
P
Peter Zijlstra 已提交
5672
	local64_set(&event->hw.prev_count, local_clock());
5673 5674 5675
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5676
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5677
{
5678 5679 5680
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5681

P
Peter Zijlstra 已提交
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5695 5696 5697 5698
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5699

5700 5701 5702 5703 5704 5705 5706 5707
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5708 5709 5710 5711 5712 5713
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5714 5715
	perf_swevent_init_hrtimer(event);

5716
	return 0;
5717 5718
}

5719
static struct pmu perf_cpu_clock = {
5720 5721
	.task_ctx_nr	= perf_sw_context,

5722
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5723 5724 5725 5726
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5727
	.read		= cpu_clock_event_read,
5728 5729

	.event_idx	= perf_swevent_event_idx,
5730 5731 5732 5733 5734 5735 5736
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5737
{
5738 5739
	u64 prev;
	s64 delta;
5740

5741 5742 5743 5744
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5745

P
Peter Zijlstra 已提交
5746
static void task_clock_event_start(struct perf_event *event, int flags)
5747
{
P
Peter Zijlstra 已提交
5748
	local64_set(&event->hw.prev_count, event->ctx->time);
5749 5750 5751
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5752
static void task_clock_event_stop(struct perf_event *event, int flags)
5753 5754 5755
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5756 5757 5758 5759 5760 5761
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5762

P
Peter Zijlstra 已提交
5763 5764 5765 5766 5767 5768
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5769 5770 5771 5772
}

static void task_clock_event_read(struct perf_event *event)
{
5773 5774 5775
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5776 5777 5778 5779 5780

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5781
{
5782 5783 5784 5785 5786 5787
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5788 5789 5790 5791 5792 5793
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5794 5795
	perf_swevent_init_hrtimer(event);

5796
	return 0;
L
Li Zefan 已提交
5797 5798
}

5799
static struct pmu perf_task_clock = {
5800 5801
	.task_ctx_nr	= perf_sw_context,

5802
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5803 5804 5805 5806
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5807
	.read		= task_clock_event_read,
5808 5809

	.event_idx	= perf_swevent_event_idx,
5810
};
L
Li Zefan 已提交
5811

P
Peter Zijlstra 已提交
5812
static void perf_pmu_nop_void(struct pmu *pmu)
5813 5814
{
}
L
Li Zefan 已提交
5815

P
Peter Zijlstra 已提交
5816
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5817
{
P
Peter Zijlstra 已提交
5818
	return 0;
L
Li Zefan 已提交
5819 5820
}

P
Peter Zijlstra 已提交
5821
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5822
{
P
Peter Zijlstra 已提交
5823
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5824 5825
}

P
Peter Zijlstra 已提交
5826 5827 5828 5829 5830
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5831

P
Peter Zijlstra 已提交
5832
static void perf_pmu_cancel_txn(struct pmu *pmu)
5833
{
P
Peter Zijlstra 已提交
5834
	perf_pmu_enable(pmu);
5835 5836
}

5837 5838 5839 5840 5841
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5842 5843 5844 5845 5846
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5847
{
P
Peter Zijlstra 已提交
5848
	struct pmu *pmu;
5849

P
Peter Zijlstra 已提交
5850 5851
	if (ctxn < 0)
		return NULL;
5852

P
Peter Zijlstra 已提交
5853 5854 5855 5856
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5857

P
Peter Zijlstra 已提交
5858
	return NULL;
5859 5860
}

5861
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5862
{
5863 5864 5865 5866 5867 5868 5869
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5870 5871
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5872 5873 5874 5875 5876 5877
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5878

P
Peter Zijlstra 已提交
5879
	mutex_lock(&pmus_lock);
5880
	/*
P
Peter Zijlstra 已提交
5881
	 * Like a real lame refcount.
5882
	 */
5883 5884 5885
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5886
			goto out;
5887
		}
P
Peter Zijlstra 已提交
5888
	}
5889

5890
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5891 5892
out:
	mutex_unlock(&pmus_lock);
5893
}
P
Peter Zijlstra 已提交
5894
static struct idr pmu_idr;
5895

P
Peter Zijlstra 已提交
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5928
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5949
static struct lock_class_key cpuctx_mutex;
5950
static struct lock_class_key cpuctx_lock;
5951

P
Peter Zijlstra 已提交
5952
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5953
{
P
Peter Zijlstra 已提交
5954
	int cpu, ret;
5955

5956
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5957 5958 5959 5960
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5961

P
Peter Zijlstra 已提交
5962 5963 5964 5965 5966 5967
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5968 5969 5970
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5971 5972 5973 5974 5975
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5976 5977 5978 5979 5980 5981
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5982
skip_type:
P
Peter Zijlstra 已提交
5983 5984 5985
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5986

P
Peter Zijlstra 已提交
5987 5988
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5989
		goto free_dev;
5990

P
Peter Zijlstra 已提交
5991 5992 5993 5994
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5995
		__perf_event_init_context(&cpuctx->ctx);
5996
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5997
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5998
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5999
		cpuctx->ctx.pmu = pmu;
6000 6001
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6002
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6003
	}
6004

P
Peter Zijlstra 已提交
6005
got_cpu_context:
P
Peter Zijlstra 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6020
		}
6021
	}
6022

P
Peter Zijlstra 已提交
6023 6024 6025 6026 6027
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6028 6029 6030
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6031
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6032 6033
	ret = 0;
unlock:
6034 6035
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6036
	return ret;
P
Peter Zijlstra 已提交
6037

P
Peter Zijlstra 已提交
6038 6039 6040 6041
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6042 6043 6044 6045
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6046 6047 6048
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6049 6050
}

6051
void perf_pmu_unregister(struct pmu *pmu)
6052
{
6053 6054 6055
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6056

6057
	/*
P
Peter Zijlstra 已提交
6058 6059
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6060
	 */
6061
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6062
	synchronize_rcu();
6063

P
Peter Zijlstra 已提交
6064
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6065 6066
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6067 6068
	device_del(pmu->dev);
	put_device(pmu->dev);
6069
	free_pmu_context(pmu);
6070
}
6071

6072 6073 6074 6075
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6076
	int ret;
6077 6078

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6079 6080 6081 6082

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6083
	if (pmu) {
6084
		event->pmu = pmu;
6085 6086 6087
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6088
		goto unlock;
6089
	}
P
Peter Zijlstra 已提交
6090

6091
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6092
		event->pmu = pmu;
6093
		ret = pmu->event_init(event);
6094
		if (!ret)
P
Peter Zijlstra 已提交
6095
			goto unlock;
6096

6097 6098
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6099
			goto unlock;
6100
		}
6101
	}
P
Peter Zijlstra 已提交
6102 6103
	pmu = ERR_PTR(-ENOENT);
unlock:
6104
	srcu_read_unlock(&pmus_srcu, idx);
6105

6106
	return pmu;
6107 6108
}

T
Thomas Gleixner 已提交
6109
/*
6110
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6111
 */
6112
static struct perf_event *
6113
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6114 6115 6116
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6117 6118
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6119
{
P
Peter Zijlstra 已提交
6120
	struct pmu *pmu;
6121 6122
	struct perf_event *event;
	struct hw_perf_event *hwc;
6123
	long err;
T
Thomas Gleixner 已提交
6124

6125 6126 6127 6128 6129
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6130
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6131
	if (!event)
6132
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6133

6134
	/*
6135
	 * Single events are their own group leaders, with an
6136 6137 6138
	 * empty sibling list:
	 */
	if (!group_leader)
6139
		group_leader = event;
6140

6141 6142
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6143

6144 6145 6146
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6147 6148
	INIT_LIST_HEAD(&event->rb_entry);

6149
	init_waitqueue_head(&event->waitq);
6150
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6151

6152
	mutex_init(&event->mmap_mutex);
6153

6154
	atomic_long_set(&event->refcount, 1);
6155 6156 6157 6158 6159
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6160

6161
	event->parent		= parent_event;
6162

6163
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6164
	event->id		= atomic64_inc_return(&perf_event_id);
6165

6166
	event->state		= PERF_EVENT_STATE_INACTIVE;
6167

6168 6169
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6170 6171 6172

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6173 6174 6175 6176
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6177
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6178 6179 6180 6181
			event->hw.bp_target = task;
#endif
	}

6182
	if (!overflow_handler && parent_event) {
6183
		overflow_handler = parent_event->overflow_handler;
6184 6185
		context = parent_event->overflow_handler_context;
	}
6186

6187
	event->overflow_handler	= overflow_handler;
6188
	event->overflow_handler_context = context;
6189

J
Jiri Olsa 已提交
6190
	perf_event__state_init(event);
6191

6192
	pmu = NULL;
6193

6194
	hwc = &event->hw;
6195
	hwc->sample_period = attr->sample_period;
6196
	if (attr->freq && attr->sample_freq)
6197
		hwc->sample_period = 1;
6198
	hwc->last_period = hwc->sample_period;
6199

6200
	local64_set(&hwc->period_left, hwc->sample_period);
6201

6202
	/*
6203
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6204
	 */
6205
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6206 6207
		goto done;

6208
	pmu = perf_init_event(event);
6209

6210 6211
done:
	err = 0;
6212
	if (!pmu)
6213
		err = -EINVAL;
6214 6215
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6216

6217
	if (err) {
6218 6219 6220
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6221
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6222
	}
6223

6224
	if (!event->parent) {
6225
		if (event->attach_state & PERF_ATTACH_TASK)
6226
			static_key_slow_inc(&perf_sched_events.key);
6227
		if (event->attr.mmap || event->attr.mmap_data)
6228 6229 6230 6231 6232
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6233 6234 6235 6236 6237 6238 6239
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6240 6241 6242 6243 6244 6245
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6246
	}
6247

6248
	return event;
T
Thomas Gleixner 已提交
6249 6250
}

6251 6252
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6253 6254
{
	u32 size;
6255
	int ret;
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6280 6281 6282
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6283 6284
	 */
	if (size > sizeof(*attr)) {
6285 6286 6287
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6288

6289 6290
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6291

6292
		for (; addr < end; addr++) {
6293 6294 6295 6296 6297 6298
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6299
		size = sizeof(*attr);
6300 6301 6302 6303 6304 6305
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6306
	if (attr->__reserved_1)
6307 6308 6309 6310 6311 6312 6313 6314
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6349

6350
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6351
		ret = perf_reg_validate(attr->sample_regs_user);
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6370

6371 6372 6373 6374 6375 6376 6377 6378 6379
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6380 6381
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6382
{
6383
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6384 6385
	int ret = -EINVAL;

6386
	if (!output_event)
6387 6388
		goto set;

6389 6390
	/* don't allow circular references */
	if (event == output_event)
6391 6392
		goto out;

6393 6394 6395 6396 6397 6398 6399
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6400
	 * If its not a per-cpu rb, it must be the same task.
6401 6402 6403 6404
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6405
set:
6406
	mutex_lock(&event->mmap_mutex);
6407 6408 6409
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6410

6411
	if (output_event) {
6412 6413 6414
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6415
			goto unlock;
6416 6417
	}

6418 6419
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6420 6421
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6422
	ret = 0;
6423 6424 6425
unlock:
	mutex_unlock(&event->mmap_mutex);

6426 6427
	if (old_rb)
		ring_buffer_put(old_rb);
6428 6429 6430 6431
out:
	return ret;
}

T
Thomas Gleixner 已提交
6432
/**
6433
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6434
 *
6435
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6436
 * @pid:		target pid
I
Ingo Molnar 已提交
6437
 * @cpu:		target cpu
6438
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6439
 */
6440 6441
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6442
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6443
{
6444 6445
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6446 6447 6448
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6449
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6450
	struct task_struct *task = NULL;
6451
	struct pmu *pmu;
6452
	int event_fd;
6453
	int move_group = 0;
6454
	int err;
T
Thomas Gleixner 已提交
6455

6456
	/* for future expandability... */
S
Stephane Eranian 已提交
6457
	if (flags & ~PERF_FLAG_ALL)
6458 6459
		return -EINVAL;

6460 6461 6462
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6463

6464 6465 6466 6467 6468
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6469
	if (attr.freq) {
6470
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6471 6472 6473
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6483
	event_fd = get_unused_fd();
6484 6485 6486
	if (event_fd < 0)
		return event_fd;

6487
	if (group_fd != -1) {
6488 6489
		err = perf_fget_light(group_fd, &group);
		if (err)
6490
			goto err_fd;
6491
		group_leader = group.file->private_data;
6492 6493 6494 6495 6496 6497
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6498
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6499 6500 6501 6502 6503 6504 6505
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6506 6507
	get_online_cpus();

6508 6509
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6510 6511
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6512
		goto err_task;
6513 6514
	}

S
Stephane Eranian 已提交
6515 6516 6517 6518
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6519 6520 6521 6522 6523 6524
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6525
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6526 6527
	}

6528 6529 6530 6531 6532
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6556 6557 6558 6559

	/*
	 * Get the target context (task or percpu):
	 */
6560
	ctx = find_get_context(pmu, task, event->cpu);
6561 6562
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6563
		goto err_alloc;
6564 6565
	}

6566 6567 6568 6569 6570
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6571
	/*
6572
	 * Look up the group leader (we will attach this event to it):
6573
	 */
6574
	if (group_leader) {
6575
		err = -EINVAL;
6576 6577

		/*
I
Ingo Molnar 已提交
6578 6579 6580 6581
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6582
			goto err_context;
I
Ingo Molnar 已提交
6583 6584 6585
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6586
		 */
6587 6588 6589 6590 6591 6592 6593 6594
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6595 6596 6597
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6598
		if (attr.exclusive || attr.pinned)
6599
			goto err_context;
6600 6601 6602 6603 6604
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6605
			goto err_context;
6606
	}
T
Thomas Gleixner 已提交
6607

6608 6609 6610
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6611
		goto err_context;
6612
	}
6613

6614 6615 6616 6617
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6618
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6619 6620 6621 6622 6623 6624 6625

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6626 6627
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6628
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6629
			perf_event__state_init(sibling);
6630 6631 6632 6633
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6634
	}
6635

6636
	WARN_ON_ONCE(ctx->parent_ctx);
6637
	mutex_lock(&ctx->mutex);
6638 6639

	if (move_group) {
6640
		synchronize_rcu();
6641
		perf_install_in_context(ctx, group_leader, event->cpu);
6642 6643 6644
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6645
			perf_install_in_context(ctx, sibling, event->cpu);
6646 6647 6648 6649
			get_ctx(ctx);
		}
	}

6650
	perf_install_in_context(ctx, event, event->cpu);
6651
	++ctx->generation;
6652
	perf_unpin_context(ctx);
6653
	mutex_unlock(&ctx->mutex);
6654

6655 6656
	put_online_cpus();

6657
	event->owner = current;
P
Peter Zijlstra 已提交
6658

6659 6660 6661
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6662

6663 6664 6665 6666
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6667
	perf_event__id_header_size(event);
6668

6669 6670 6671 6672 6673 6674
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6675
	fdput(group);
6676 6677
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6678

6679
err_context:
6680
	perf_unpin_context(ctx);
6681
	put_ctx(ctx);
6682
err_alloc:
6683
	free_event(event);
P
Peter Zijlstra 已提交
6684
err_task:
6685
	put_online_cpus();
P
Peter Zijlstra 已提交
6686 6687
	if (task)
		put_task_struct(task);
6688
err_group_fd:
6689
	fdput(group);
6690 6691
err_fd:
	put_unused_fd(event_fd);
6692
	return err;
T
Thomas Gleixner 已提交
6693 6694
}

6695 6696 6697 6698 6699
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6700
 * @task: task to profile (NULL for percpu)
6701 6702 6703
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6704
				 struct task_struct *task,
6705 6706
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6707 6708
{
	struct perf_event_context *ctx;
6709
	struct perf_event *event;
6710
	int err;
6711

6712 6713 6714
	/*
	 * Get the target context (task or percpu):
	 */
6715

6716 6717
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6718 6719 6720 6721
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6722

M
Matt Helsley 已提交
6723
	ctx = find_get_context(event->pmu, task, cpu);
6724 6725
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6726
		goto err_free;
6727
	}
6728 6729 6730 6731 6732

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6733
	perf_unpin_context(ctx);
6734 6735 6736 6737
	mutex_unlock(&ctx->mutex);

	return event;

6738 6739 6740
err_free:
	free_event(event);
err:
6741
	return ERR_PTR(err);
6742
}
6743
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6744

6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6778
static void sync_child_event(struct perf_event *child_event,
6779
			       struct task_struct *child)
6780
{
6781
	struct perf_event *parent_event = child_event->parent;
6782
	u64 child_val;
6783

6784 6785
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6786

P
Peter Zijlstra 已提交
6787
	child_val = perf_event_count(child_event);
6788 6789 6790 6791

	/*
	 * Add back the child's count to the parent's count:
	 */
6792
	atomic64_add(child_val, &parent_event->child_count);
6793 6794 6795 6796
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6797 6798

	/*
6799
	 * Remove this event from the parent's list
6800
	 */
6801 6802 6803 6804
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6805 6806

	/*
6807
	 * Release the parent event, if this was the last
6808 6809
	 * reference to it.
	 */
6810
	put_event(parent_event);
6811 6812
}

6813
static void
6814 6815
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6816
			 struct task_struct *child)
6817
{
6818 6819 6820 6821 6822
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6823

6824
	perf_remove_from_context(child_event);
6825

6826
	/*
6827
	 * It can happen that the parent exits first, and has events
6828
	 * that are still around due to the child reference. These
6829
	 * events need to be zapped.
6830
	 */
6831
	if (child_event->parent) {
6832 6833
		sync_child_event(child_event, child);
		free_event(child_event);
6834
	}
6835 6836
}

P
Peter Zijlstra 已提交
6837
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6838
{
6839 6840
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6841
	unsigned long flags;
6842

P
Peter Zijlstra 已提交
6843
	if (likely(!child->perf_event_ctxp[ctxn])) {
6844
		perf_event_task(child, NULL, 0);
6845
		return;
P
Peter Zijlstra 已提交
6846
	}
6847

6848
	local_irq_save(flags);
6849 6850 6851 6852 6853 6854
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6855
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6856 6857 6858

	/*
	 * Take the context lock here so that if find_get_context is
6859
	 * reading child->perf_event_ctxp, we wait until it has
6860 6861
	 * incremented the context's refcount before we do put_ctx below.
	 */
6862
	raw_spin_lock(&child_ctx->lock);
6863
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6864
	child->perf_event_ctxp[ctxn] = NULL;
6865 6866 6867
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6868
	 * the events from it.
6869 6870
	 */
	unclone_ctx(child_ctx);
6871
	update_context_time(child_ctx);
6872
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6873 6874

	/*
6875 6876 6877
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6878
	 */
6879
	perf_event_task(child, child_ctx, 0);
6880

6881 6882 6883
	/*
	 * We can recurse on the same lock type through:
	 *
6884 6885
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6886 6887
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6888 6889 6890
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6891
	mutex_lock(&child_ctx->mutex);
6892

6893
again:
6894 6895 6896 6897 6898
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6899
				 group_entry)
6900
		__perf_event_exit_task(child_event, child_ctx, child);
6901 6902

	/*
6903
	 * If the last event was a group event, it will have appended all
6904 6905 6906
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6907 6908
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6909
		goto again;
6910 6911 6912 6913

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6914 6915
}

P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6921
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6922 6923
	int ctxn;

P
Peter Zijlstra 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6939 6940 6941 6942
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6955
	put_event(parent);
6956

6957
	perf_group_detach(event);
6958 6959 6960 6961
	list_del_event(event, ctx);
	free_event(event);
}

6962 6963
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6964
 * perf_event_init_task below, used by fork() in case of fail.
6965
 */
6966
void perf_event_free_task(struct task_struct *task)
6967
{
P
Peter Zijlstra 已提交
6968
	struct perf_event_context *ctx;
6969
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6970
	int ctxn;
6971

P
Peter Zijlstra 已提交
6972 6973 6974 6975
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6976

P
Peter Zijlstra 已提交
6977
		mutex_lock(&ctx->mutex);
6978
again:
P
Peter Zijlstra 已提交
6979 6980 6981
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6982

P
Peter Zijlstra 已提交
6983 6984 6985
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6986

P
Peter Zijlstra 已提交
6987 6988 6989
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6990

P
Peter Zijlstra 已提交
6991
		mutex_unlock(&ctx->mutex);
6992

P
Peter Zijlstra 已提交
6993 6994
		put_ctx(ctx);
	}
6995 6996
}

6997 6998 6999 7000 7001 7002 7003 7004
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7017
	unsigned long flags;
P
Peter Zijlstra 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7030
					   child,
P
Peter Zijlstra 已提交
7031
					   group_leader, parent_event,
7032
				           NULL, NULL);
P
Peter Zijlstra 已提交
7033 7034
	if (IS_ERR(child_event))
		return child_event;
7035 7036 7037 7038 7039 7040

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7065 7066
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7067

7068 7069 7070 7071
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7072
	perf_event__id_header_size(child_event);
7073

P
Peter Zijlstra 已提交
7074 7075 7076
	/*
	 * Link it up in the child's context:
	 */
7077
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7078
	add_event_to_ctx(child_event, child_ctx);
7079
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7113 7114 7115 7116 7117
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7118
		   struct task_struct *child, int ctxn,
7119 7120 7121
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7122
	struct perf_event_context *child_ctx;
7123 7124 7125 7126

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7127 7128
	}

7129
	child_ctx = child->perf_event_ctxp[ctxn];
7130 7131 7132 7133 7134 7135 7136
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7137

7138
		child_ctx = alloc_perf_context(event->pmu, child);
7139 7140
		if (!child_ctx)
			return -ENOMEM;
7141

P
Peter Zijlstra 已提交
7142
		child->perf_event_ctxp[ctxn] = child_ctx;
7143 7144 7145 7146 7147 7148 7149 7150 7151
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7152 7153
}

7154
/*
7155
 * Initialize the perf_event context in task_struct
7156
 */
P
Peter Zijlstra 已提交
7157
int perf_event_init_context(struct task_struct *child, int ctxn)
7158
{
7159
	struct perf_event_context *child_ctx, *parent_ctx;
7160 7161
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7162
	struct task_struct *parent = current;
7163
	int inherited_all = 1;
7164
	unsigned long flags;
7165
	int ret = 0;
7166

P
Peter Zijlstra 已提交
7167
	if (likely(!parent->perf_event_ctxp[ctxn]))
7168 7169
		return 0;

7170
	/*
7171 7172
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7173
	 */
P
Peter Zijlstra 已提交
7174
	parent_ctx = perf_pin_task_context(parent, ctxn);
7175

7176 7177 7178 7179 7180 7181 7182
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7183 7184 7185 7186
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7187
	mutex_lock(&parent_ctx->mutex);
7188 7189 7190 7191 7192

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7193
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7194 7195
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7196 7197 7198
		if (ret)
			break;
	}
7199

7200 7201 7202 7203 7204 7205 7206 7207 7208
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7209
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7210 7211
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7212
		if (ret)
7213
			break;
7214 7215
	}

7216 7217 7218
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7219
	child_ctx = child->perf_event_ctxp[ctxn];
7220

7221
	if (child_ctx && inherited_all) {
7222 7223 7224
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7225 7226 7227
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7228
		 */
P
Peter Zijlstra 已提交
7229
		cloned_ctx = parent_ctx->parent_ctx;
7230 7231
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7232
			child_ctx->parent_gen = parent_ctx->parent_gen;
7233 7234 7235 7236 7237
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7238 7239
	}

P
Peter Zijlstra 已提交
7240
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7241
	mutex_unlock(&parent_ctx->mutex);
7242

7243
	perf_unpin_context(parent_ctx);
7244
	put_ctx(parent_ctx);
7245

7246
	return ret;
7247 7248
}

P
Peter Zijlstra 已提交
7249 7250 7251 7252 7253 7254 7255
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7256 7257 7258 7259
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7269 7270
static void __init perf_event_init_all_cpus(void)
{
7271
	struct swevent_htable *swhash;
7272 7273 7274
	int cpu;

	for_each_possible_cpu(cpu) {
7275 7276
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7277
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7278 7279 7280
	}
}

7281
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7282
{
P
Peter Zijlstra 已提交
7283
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7284

7285
	mutex_lock(&swhash->hlist_mutex);
7286
	if (swhash->hlist_refcount > 0) {
7287 7288
		struct swevent_hlist *hlist;

7289 7290 7291
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7292
	}
7293
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7294 7295
}

P
Peter Zijlstra 已提交
7296
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7297
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7298
{
7299 7300 7301 7302 7303 7304 7305
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7306
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7307
{
P
Peter Zijlstra 已提交
7308
	struct perf_event_context *ctx = __info;
7309
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7310

P
Peter Zijlstra 已提交
7311
	perf_pmu_rotate_stop(ctx->pmu);
7312

7313
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7314
		__perf_remove_from_context(event);
7315
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7316
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7317
}
P
Peter Zijlstra 已提交
7318 7319 7320 7321 7322 7323 7324 7325 7326

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7327
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7328 7329 7330 7331 7332 7333 7334 7335

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7336
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7337
{
7338
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7339

7340 7341 7342
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7343

P
Peter Zijlstra 已提交
7344
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7345 7346
}
#else
7347
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7348 7349
#endif

P
Peter Zijlstra 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7370 7371 7372 7373 7374
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7375
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7376 7377

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7378
	case CPU_DOWN_FAILED:
7379
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7380 7381
		break;

P
Peter Zijlstra 已提交
7382
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7383
	case CPU_DOWN_PREPARE:
7384
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7385 7386 7387 7388 7389 7390 7391 7392 7393
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7394
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7395
{
7396 7397
	int ret;

P
Peter Zijlstra 已提交
7398 7399
	idr_init(&pmu_idr);

7400
	perf_event_init_all_cpus();
7401
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7402 7403 7404
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7405 7406
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7407
	register_reboot_notifier(&perf_reboot_notifier);
7408 7409 7410

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7411 7412 7413

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7414 7415 7416 7417 7418 7419 7420

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7421
}
P
Peter Zijlstra 已提交
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7450 7451

#ifdef CONFIG_CGROUP_PERF
7452
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7453 7454 7455
{
	struct perf_cgroup *jc;

7456
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7469
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7485
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7486
{
7487 7488 7489 7490
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7491 7492
}

7493 7494
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7504
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7505 7506 7507
}

struct cgroup_subsys perf_subsys = {
7508 7509
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7510 7511
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7512
	.exit		= perf_cgroup_exit,
7513
	.attach		= perf_cgroup_attach,
7514 7515 7516 7517 7518 7519 7520

	/*
	 * perf_event cgroup doesn't handle nesting correctly.
	 * ctx->nr_cgroups adjustments should be propagated through the
	 * cgroup hierarchy.  Fix it and remove the following.
	 */
	.broken_hierarchy = true,
S
Stephane Eranian 已提交
7521 7522
};
#endif /* CONFIG_CGROUP_PERF */