compaction.c 58.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
11
#include <linux/cpu.h>
12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22 23
#include <linux/kthread.h>
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25 26
#include "internal.h"

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

42 43
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

47 48 49 50 51
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
55
	unsigned long high_pfn = 0;
56 57

	list_for_each_entry_safe(page, next, freelist, lru) {
58
		unsigned long pfn = page_to_pfn(page);
59 60
		list_del(&page->lru);
		__free_page(page);
61 62
		if (pfn > high_pfn)
			high_pfn = pfn;
63 64
	}

65
	return high_pfn;
66 67
}

68 69
static void map_pages(struct list_head *list)
{
70 71 72 73 74 75 76 77 78 79
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

80
		post_alloc_hook(page, order, __GFP_MOVABLE);
81 82
		if (order)
			split_page(page, order);
83

84 85 86 87
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
88
	}
89 90

	list_splice(&tmp_list, list);
91 92
}

93
#ifdef CONFIG_COMPACTION
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

203 204 205 206 207 208 209 210 211 212
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

213 214 215 216
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
217
	zone->compact_cached_free_pfn =
218
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
219 220
}

221
/*
222 223 224
 * Compound pages of >= pageblock_order should consistenly be skipped until
 * released. It is always pointless to compact pages of such order (if they are
 * migratable), and the pageblocks they occupy cannot contain any free pages.
225
 */
226
static bool pageblock_skip_persistent(struct page *page)
227
{
228
	if (!PageCompound(page))
229
		return false;
230 231 232 233 234 235 236

	page = compound_head(page);

	if (compound_order(page) >= pageblock_order)
		return true;

	return false;
237 238
}

239 240 241 242 243
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
244
static void __reset_isolation_suitable(struct zone *zone)
245 246
{
	unsigned long start_pfn = zone->zone_start_pfn;
247
	unsigned long end_pfn = zone_end_pfn(zone);
248 249
	unsigned long pfn;

250
	zone->compact_blockskip_flush = false;
251 252 253 254 255 256 257

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

258 259
		page = pfn_to_online_page(pfn);
		if (!page)
260 261 262
			continue;
		if (zone != page_zone(page))
			continue;
263
		if (pageblock_skip_persistent(page))
264
			continue;
265 266 267

		clear_pageblock_skip(page);
	}
268 269

	reset_cached_positions(zone);
270 271
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

287 288
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
289
 * future. The information is later cleared by __reset_isolation_suitable().
290
 */
291 292
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
293
			bool migrate_scanner)
294
{
295
	struct zone *zone = cc->zone;
296
	unsigned long pfn;
297

298
	if (cc->no_set_skip_hint)
299 300
		return;

301 302 303
	if (!page)
		return;

304 305 306
	if (nr_isolated)
		return;

307
	set_pageblock_skip(page);
308

309 310 311 312 313 314
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
315 316
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
317 318 319 320
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
321
	}
322 323 324 325 326 327 328 329
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

330
static inline bool pageblock_skip_persistent(struct page *page)
331 332 333 334 335
{
	return false;
}

static inline void update_pageblock_skip(struct compact_control *cc,
336
			struct page *page, unsigned long nr_isolated,
337
			bool migrate_scanner)
338 339 340 341
{
}
#endif /* CONFIG_COMPACTION */

342 343 344 345 346 347 348 349 350 351
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
352
{
353 354
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
355
			cc->contended = true;
356 357 358 359 360
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
361

362
	return true;
363 364
}

365 366
/*
 * Compaction requires the taking of some coarse locks that are potentially
367 368 369 370 371 372 373
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
374
 *
375 376 377 378
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
379
 */
380 381
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
382
{
383 384 385 386
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
387

388
	if (fatal_signal_pending(current)) {
389
		cc->contended = true;
390 391
		return true;
	}
392

393
	if (need_resched()) {
394
		if (cc->mode == MIGRATE_ASYNC) {
395
			cc->contended = true;
396
			return true;
397 398 399 400
		}
		cond_resched();
	}

401
	return false;
402 403
}

404 405 406
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
407
 * compaction. This is similar to what compact_unlock_should_abort() does, but
408 409 410 411 412 413 414 415 416 417
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
418
			cc->contended = true;
419 420 421 422 423 424 425 426 427
			return true;
		}

		cond_resched();
	}

	return false;
}

428
/*
429 430 431
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
432
 */
433
static unsigned long isolate_freepages_block(struct compact_control *cc,
434
				unsigned long *start_pfn,
435 436 437
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
438
{
439
	int nr_scanned = 0, total_isolated = 0;
440
	struct page *cursor, *valid_page = NULL;
441
	unsigned long flags = 0;
442
	bool locked = false;
443
	unsigned long blockpfn = *start_pfn;
444
	unsigned int order;
445 446 447

	cursor = pfn_to_page(blockpfn);

448
	/* Isolate free pages. */
449
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
450
		int isolated;
451 452
		struct page *page = cursor;

453 454 455 456 457 458 459 460 461 462
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

463
		nr_scanned++;
464
		if (!pfn_valid_within(blockpfn))
465 466
			goto isolate_fail;

467 468
		if (!valid_page)
			valid_page = page;
469 470 471 472 473 474 475 476

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
477 478
			const unsigned int order = compound_order(page);

479
			if (likely(order < MAX_ORDER)) {
480 481
				blockpfn += (1UL << order) - 1;
				cursor += (1UL << order) - 1;
482 483 484 485
			}
			goto isolate_fail;
		}

486
		if (!PageBuddy(page))
487
			goto isolate_fail;
488 489

		/*
490 491 492 493 494
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
495
		 */
496 497 498 499 500 501 502 503 504
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
505 506
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
507 508
			if (!locked)
				break;
509

510 511 512 513
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
514

515 516 517
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
518 519
		if (!isolated)
			break;
520
		set_page_private(page, order);
521

522
		total_isolated += isolated;
523
		cc->nr_freepages += isolated;
524 525
		list_add_tail(&page->lru, freelist);

526 527 528
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
529
		}
530 531 532 533
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
534 535 536 537 538 539 540

isolate_fail:
		if (strict)
			break;
		else
			continue;

541 542
	}

543 544 545
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

546 547 548 549 550 551 552
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

553 554 555
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

556 557 558
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

559 560 561 562 563
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
564
	if (strict && blockpfn < end_pfn)
565 566
		total_isolated = 0;

567 568
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
569
		update_pageblock_skip(cc, valid_page, total_isolated, false);
570

571
	cc->total_free_scanned += nr_scanned;
572
	if (total_isolated)
573
		count_compact_events(COMPACTISOLATED, total_isolated);
574 575 576
	return total_isolated;
}

577 578
/**
 * isolate_freepages_range() - isolate free pages.
579
 * @cc:        Compaction control structure.
580 581 582 583 584 585 586 587 588 589 590
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
591
unsigned long
592 593
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
594
{
595
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
596 597
	LIST_HEAD(freelist);

598
	pfn = start_pfn;
599
	block_start_pfn = pageblock_start_pfn(pfn);
600 601
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
602
	block_end_pfn = pageblock_end_pfn(pfn);
603 604

	for (; pfn < end_pfn; pfn += isolated,
605
				block_start_pfn = block_end_pfn,
606
				block_end_pfn += pageblock_nr_pages) {
607 608
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
609 610 611

		block_end_pfn = min(block_end_pfn, end_pfn);

612 613 614 615 616 617
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
618 619
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
620 621 622
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

623 624
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
625 626
			break;

627 628
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

645
	/* __isolate_free_page() does not map the pages */
646 647 648 649 650 651 652 653 654 655 656 657
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

658 659 660
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
661
	unsigned long active, inactive, isolated;
662

M
Mel Gorman 已提交
663 664 665 666 667 668
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
669

670
	return isolated > (inactive + active) / 2;
671 672
}

673
/**
674 675
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
676
 * @cc:		Compaction control structure.
677 678 679
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
680 681
 *
 * Isolate all pages that can be migrated from the range specified by
682 683 684 685
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
686
 *
687 688 689
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
690
 */
691 692 693
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
694
{
695
	struct zone *zone = cc->zone;
696
	unsigned long nr_scanned = 0, nr_isolated = 0;
697
	struct lruvec *lruvec;
698
	unsigned long flags = 0;
699
	bool locked = false;
700
	struct page *page = NULL, *valid_page = NULL;
701
	unsigned long start_pfn = low_pfn;
702 703
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
704 705 706 707 708 709 710

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
711
		/* async migration should just abort */
712
		if (cc->mode == MIGRATE_ASYNC)
713
			return 0;
714

715 716 717
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
718
			return 0;
719 720
	}

721 722
	if (compact_should_abort(cc))
		return 0;
723

724 725 726 727 728
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

729 730
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

754 755 756 757 758 759
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
760
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
761 762
								&locked, cc))
			break;
763

764
		if (!pfn_valid_within(low_pfn))
765
			goto isolate_fail;
766
		nr_scanned++;
767 768

		page = pfn_to_page(low_pfn);
769

770 771 772
		if (!valid_page)
			valid_page = page;

773
		/*
774 775 776 777
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
778
		 */
779 780 781 782 783 784 785 786 787 788
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
789
			continue;
790
		}
791

792
		/*
793 794 795 796 797
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
798
		 */
799
		if (PageCompound(page)) {
800
			const unsigned int order = compound_order(page);
801

802
			if (likely(order < MAX_ORDER))
803
				low_pfn += (1UL << order) - 1;
804
			goto isolate_fail;
805 806
		}

807 808 809 810 811 812 813 814 815 816 817 818 819
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
820
					spin_unlock_irqrestore(zone_lru_lock(zone),
821 822 823 824
									flags);
					locked = false;
				}

825
				if (!isolate_movable_page(page, isolate_mode))
826 827 828
					goto isolate_success;
			}

829
			goto isolate_fail;
830
		}
831

832 833 834 835 836 837 838
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
839
			goto isolate_fail;
840

841 842 843 844 845 846 847
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

848 849
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
850
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
851
								&flags, cc);
852 853
			if (!locked)
				break;
854

855
			/* Recheck PageLRU and PageCompound under lock */
856
			if (!PageLRU(page))
857
				goto isolate_fail;
858 859 860 861 862 863 864

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
865
				low_pfn += (1UL << compound_order(page)) - 1;
866
				goto isolate_fail;
867
			}
868 869
		}

M
Mel Gorman 已提交
870
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
871

872
		/* Try isolate the page */
873
		if (__isolate_lru_page(page, isolate_mode) != 0)
874
			goto isolate_fail;
875

876
		VM_BUG_ON_PAGE(PageCompound(page), page);
877

878
		/* Successfully isolated */
879
		del_page_from_lru_list(page, lruvec, page_lru(page));
880 881
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
882 883

isolate_success:
884
		list_add(&page->lru, &cc->migratepages);
885
		cc->nr_migratepages++;
886
		nr_isolated++;
887

888 889 890 891 892 893 894 895 896
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

897
		/* Avoid isolating too much */
898 899
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
900
			break;
901
		}
902 903 904 905 906 907 908 909 910 911 912 913 914

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
915
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
932 933
	}

934 935 936 937 938 939 940
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

941
	if (locked)
942
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
943

944 945 946 947
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
948
	if (low_pfn == end_pfn)
949
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
950

951 952
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
953

954
	cc->total_migrate_scanned += nr_scanned;
955
	if (nr_isolated)
956
		count_compact_events(COMPACTISOLATED, nr_isolated);
957

958 959 960
	return low_pfn;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
975
	unsigned long pfn, block_start_pfn, block_end_pfn;
976 977 978

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
979
	block_start_pfn = pageblock_start_pfn(pfn);
980 981
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
982
	block_end_pfn = pageblock_end_pfn(pfn);
983 984

	for (; pfn < end_pfn; pfn = block_end_pfn,
985
				block_start_pfn = block_end_pfn,
986 987 988 989
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

990 991
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
992 993 994 995 996
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

997
		if (!pfn)
998
			break;
999 1000 1001

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
1002 1003 1004 1005 1006
	}

	return pfn;
}

1007 1008
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1009

1010 1011 1012
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
1013 1014 1015
	int block_mt;

	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1016 1017
		return true;

1018 1019 1020 1021 1022 1023
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
1024 1025
}

1026
/* Returns true if the page is within a block suitable for migration to */
1027 1028
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1041 1042 1043
	if (cc->ignore_block_suitable)
		return true;

1044
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1045
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1046 1047 1048 1049 1050 1051
		return true;

	/* Otherwise skip the block */
	return false;
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1062
/*
1063 1064
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1065
 */
1066
static void isolate_freepages(struct compact_control *cc)
1067
{
1068
	struct zone *zone = cc->zone;
1069
	struct page *page;
1070
	unsigned long block_start_pfn;	/* start of current pageblock */
1071
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1072 1073
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1074
	struct list_head *freelist = &cc->freepages;
1075

1076 1077
	/*
	 * Initialise the free scanner. The starting point is where we last
1078
	 * successfully isolated from, zone-cached value, or the end of the
1079 1080
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1081 1082 1083
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1084 1085
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1086
	 */
1087
	isolate_start_pfn = cc->free_pfn;
1088
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1089 1090
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1091
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1092

1093 1094 1095 1096 1097
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1098
	for (; block_start_pfn >= low_pfn;
1099
				block_end_pfn = block_start_pfn,
1100 1101
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1102 1103 1104
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1105
		 * to schedule, or even abort async compaction.
1106
		 */
1107 1108 1109
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1110

1111 1112 1113
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1114 1115 1116
			continue;

		/* Check the block is suitable for migration */
1117
		if (!suitable_migration_target(cc, page))
1118
			continue;
1119

1120 1121 1122 1123
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1124
		/* Found a block suitable for isolating free pages from. */
1125 1126
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1127

1128
		/*
1129 1130
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1131
		 */
1132 1133
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1134 1135 1136 1137 1138
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1139 1140
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1141
			}
1142
			break;
1143
		} else if (isolate_start_pfn < block_end_pfn) {
1144
			/*
1145 1146
			 * If isolation failed early, do not continue
			 * needlessly.
1147
			 */
1148
			break;
1149
		}
1150 1151
	}

1152
	/* __isolate_free_page() does not map the pages */
1153 1154
	map_pages(freelist);

1155
	/*
1156 1157 1158 1159
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1160
	 */
1161
	cc->free_pfn = isolate_start_pfn;
1162 1163 1164 1165 1166 1167 1168
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
1169
					unsigned long data)
1170 1171 1172 1173
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1174 1175 1176 1177
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1178
	if (list_empty(&cc->freepages)) {
1179
		if (!cc->contended)
1180
			isolate_freepages(cc);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1206 1207 1208 1209 1210 1211 1212
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1213 1214 1215 1216 1217 1218
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1219
/*
1220 1221 1222
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1223 1224 1225 1226
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1227 1228 1229
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1230 1231
	struct page *page;
	const isolate_mode_t isolate_mode =
1232
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1234

1235 1236 1237 1238 1239
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1240
	block_start_pfn = pageblock_start_pfn(low_pfn);
1241 1242
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1243 1244

	/* Only scan within a pageblock boundary */
1245
	block_end_pfn = pageblock_end_pfn(low_pfn);
1246

1247 1248 1249 1250
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1251 1252 1253 1254
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1255

1256 1257 1258 1259 1260 1261 1262 1263
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1264

1265 1266
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1267
		if (!page)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
1279
		if (!suitable_migration_source(cc, page))
1280 1281 1282
			continue;

		/* Perform the isolation */
1283 1284
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1285

1286
		if (!low_pfn || cc->contended)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1297 1298
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1299

1300
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301 1302
}

1303 1304 1305 1306 1307 1308 1309 1310 1311
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1312 1313
static enum compact_result __compact_finished(struct zone *zone,
						struct compact_control *cc)
1314
{
1315
	unsigned int order;
1316
	const int migratetype = cc->migratetype;
1317

1318
	if (cc->contended || fatal_signal_pending(current))
1319
		return COMPACT_CONTENDED;
1320

1321
	/* Compaction run completes if the migrate and free scanner meet */
1322
	if (compact_scanners_met(cc)) {
1323
		/* Let the next compaction start anew. */
1324
		reset_cached_positions(zone);
1325

1326 1327
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1328
		 * by kswapd when it goes to sleep. kcompactd does not set the
1329 1330 1331
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1332
		if (cc->direct_compaction)
1333 1334
			zone->compact_blockskip_flush = true;

1335 1336 1337 1338
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1339
	}
1340

1341
	if (is_via_compact_memory(cc->order))
1342 1343
		return COMPACT_CONTINUE;

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	if (cc->finishing_block) {
		/*
		 * We have finished the pageblock, but better check again that
		 * we really succeeded.
		 */
		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
			cc->finishing_block = false;
		else
			return COMPACT_CONTINUE;
	}

1355
	/* Direct compactor: Is a suitable page free? */
1356 1357
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1358
		bool can_steal;
1359 1360

		/* Job done if page is free of the right migratetype */
1361
		if (!list_empty(&area->free_list[migratetype]))
1362
			return COMPACT_SUCCESS;
1363

1364 1365 1366 1367
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
1368
			return COMPACT_SUCCESS;
1369 1370 1371 1372 1373 1374
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

			cc->finishing_block = true;
			return COMPACT_CONTINUE;
		}
1398 1399
	}

1400 1401 1402
	return COMPACT_NO_SUITABLE_PAGE;
}

1403
static enum compact_result compact_finished(struct zone *zone,
1404
			struct compact_control *cc)
1405 1406 1407
{
	int ret;

1408
	ret = __compact_finished(zone, cc);
1409 1410 1411 1412 1413
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1414 1415
}

1416 1417 1418 1419
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1420
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1421 1422
 *   COMPACT_CONTINUE - If compaction should run now
 */
1423
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424
					unsigned int alloc_flags,
1425 1426
					int classzone_idx,
					unsigned long wmark_target)
1427 1428 1429
{
	unsigned long watermark;

1430
	if (is_via_compact_memory(order))
1431 1432
		return COMPACT_CONTINUE;

1433
	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434 1435 1436 1437 1438 1439
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1440
		return COMPACT_SUCCESS;
1441

1442
	/*
1443
	 * Watermarks for order-0 must be met for compaction to be able to
1444 1445 1446 1447 1448 1449 1450
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1451 1452
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1453 1454
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1455
	 */
1456 1457 1458
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1459
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460
						ALLOC_CMA, wmark_target))
1461 1462
		return COMPACT_SKIPPED;

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1475 1476 1477 1478
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1479 1480
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1481 1482 1483
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1484 1485 1486 1487 1488 1489
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1490
	 */
1491
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492 1493 1494 1495
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1496 1497 1498 1499 1500 1501 1502 1503

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1525
		available = zone_reclaimable_pages(zone) / order;
1526 1527 1528
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1529
		if (compact_result != COMPACT_SKIPPED)
1530 1531 1532 1533 1534 1535
			return true;
	}

	return false;
}

1536
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1537
{
1538
	enum compact_result ret;
1539
	unsigned long start_pfn = zone->zone_start_pfn;
1540
	unsigned long end_pfn = zone_end_pfn(zone);
1541
	const bool sync = cc->mode != MIGRATE_ASYNC;
1542

1543
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1544 1545
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1546
	/* Compaction is likely to fail */
1547
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1548
		return ret;
1549 1550 1551

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1552

1553 1554
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1555
	 * is about to be retried after being deferred.
1556
	 */
1557
	if (compaction_restarting(zone, cc->order))
1558 1559
		__reset_isolation_suitable(zone);

1560 1561
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1562 1563 1564
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1565
	 */
1566
	if (cc->whole_zone) {
1567
		cc->migrate_pfn = start_pfn;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = zone->compact_cached_free_pfn;
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
			zone->compact_cached_free_pfn = cc->free_pfn;
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
		}
1581

1582 1583 1584
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
1585

1586
	cc->last_migrated_pfn = 0;
1587

1588 1589
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1590

1591 1592
	migrate_prep_local();

1593
	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1594
		int err;
1595

1596 1597
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1598
			ret = COMPACT_CONTENDED;
1599
			putback_movable_pages(&cc->migratepages);
1600
			cc->nr_migratepages = 0;
1601 1602
			goto out;
		case ISOLATE_NONE:
1603 1604 1605 1606 1607 1608
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1609 1610 1611
		case ISOLATE_SUCCESS:
			;
		}
1612

1613
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1614
				compaction_free, (unsigned long)cc, cc->mode,
1615
				MR_COMPACTION);
1616

1617 1618
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1619

1620 1621
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1622
		if (err) {
1623
			putback_movable_pages(&cc->migratepages);
1624 1625 1626 1627
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1628
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1629
				ret = COMPACT_CONTENDED;
1630 1631
				goto out;
			}
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1644
		}
1645 1646 1647 1648 1649 1650 1651 1652 1653

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1654
		if (cc->order > 0 && cc->last_migrated_pfn) {
1655 1656
			int cpu;
			unsigned long current_block_start =
1657
				block_start_pfn(cc->migrate_pfn, cc->order);
1658

1659
			if (cc->last_migrated_pfn < current_block_start) {
1660 1661 1662 1663 1664
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1665
				cc->last_migrated_pfn = 0;
1666 1667 1668
			}
		}

1669 1670
	}

1671
out:
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1682
		free_pfn = pageblock_start_pfn(free_pfn);
1683 1684 1685 1686 1687 1688 1689
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1690

1691 1692 1693
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

1694 1695
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1696

1697 1698
	return ret;
}
1699

1700
static enum compact_result compact_zone_order(struct zone *zone, int order,
1701
		gfp_t gfp_mask, enum compact_priority prio,
1702
		unsigned int alloc_flags, int classzone_idx)
1703
{
1704
	enum compact_result ret;
1705 1706 1707
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
1708 1709
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1710
		.order = order,
1711
		.gfp_mask = gfp_mask,
1712
		.zone = zone,
1713 1714
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1715 1716
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1717
		.direct_compaction = true,
1718
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1719 1720
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1721 1722 1723 1724
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1725 1726 1727 1728 1729 1730
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
1731 1732
}

1733 1734
int sysctl_extfrag_threshold = 500;

1735 1736 1737
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1738 1739 1740
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1741
 * @prio: Determines how hard direct compaction should try to succeed
1742 1743 1744
 *
 * This is the main entry point for direct page compaction.
 */
1745
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1746
		unsigned int alloc_flags, const struct alloc_context *ac,
1747
		enum compact_priority prio)
1748 1749 1750 1751
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1752
	enum compact_result rc = COMPACT_SKIPPED;
1753

1754 1755 1756 1757 1758
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
1759
		return COMPACT_SKIPPED;
1760

1761
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1762

1763
	/* Compact each zone in the list */
1764 1765
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1766
		enum compact_result status;
1767

1768 1769
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
1770
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1771
			continue;
1772
		}
1773

1774
		status = compact_zone_order(zone, order, gfp_mask, prio,
1775
					alloc_flags, ac_classzone_idx(ac));
1776 1777
		rc = max(status, rc);

1778 1779
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
1780 1781 1782 1783 1784 1785 1786
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1787

1788
			break;
1789 1790
		}

1791
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1792
					status == COMPACT_PARTIAL_SKIPPED))
1793 1794 1795 1796 1797 1798
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
1799 1800 1801 1802

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
1803
		 * case do not try further zones
1804
		 */
1805 1806 1807
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
1808 1809 1810 1811 1812 1813
	}

	return rc;
}


1814
/* Compact all zones within a node */
1815
static void compact_node(int nid)
1816
{
1817
	pg_data_t *pgdat = NODE_DATA(nid);
1818 1819
	int zoneid;
	struct zone *zone;
1820 1821
	struct compact_control cc = {
		.order = -1,
1822 1823
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1824 1825 1826
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
1827
		.gfp_mask = GFP_KERNEL,
1828 1829
	};

1830 1831 1832 1833 1834 1835 1836

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1837 1838 1839 1840 1841
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
1842

1843
		compact_zone(zone, &cc);
1844

1845 1846
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
1847 1848 1849 1850
	}
}

/* Compact all nodes in the system */
1851
static void compact_nodes(void)
1852 1853 1854
{
	int nid;

1855 1856 1857
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1858 1859 1860 1861 1862 1863 1864
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1865 1866 1867 1868
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1869 1870 1871 1872
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1873
		compact_nodes();
1874 1875 1876

	return 0;
}
1877

1878 1879 1880 1881 1882 1883 1884 1885
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1886
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887
static ssize_t sysfs_compact_node(struct device *dev,
1888
			struct device_attribute *attr,
1889 1890
			const char *buf, size_t count)
{
1891 1892 1893 1894 1895 1896 1897 1898
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1899 1900 1901

	return count;
}
1902
static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1903 1904 1905

int compaction_register_node(struct node *node)
{
1906
	return device_create_file(&node->dev, &dev_attr_compact);
1907 1908 1909 1910
}

void compaction_unregister_node(struct node *node)
{
1911
	return device_remove_file(&node->dev, &dev_attr_compact);
1912 1913
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914

1915 1916
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1917
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1918 1919 1920 1921 1922 1923 1924 1925
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1926
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
1950 1951
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1952 1953
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
1954
		.ignore_skip_hint = false,
1955
		.gfp_mask = GFP_KERNEL,
1956 1957 1958
	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
1959
	count_compact_event(KCOMPACTD_WAKE);
1960

1961
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
1977 1978
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
1979 1980 1981 1982
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1983 1984
		if (kthread_should_stop())
			return;
1985 1986
		status = compact_zone(zone, &cc);

1987
		if (status == COMPACT_SUCCESS) {
1988
			compaction_defer_reset(zone, cc.order, false);
1989
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1990 1991 1992 1993 1994 1995 1996 1997
			/*
			 * Buddy pages may become stranded on pcps that could
			 * otherwise coalesce on the zone's free area for
			 * order >= cc.order.  This is ratelimited by the
			 * upcoming deferral.
			 */
			drain_all_pages(zone);

1998 1999 2000 2001 2002 2003 2004
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

2005 2006 2007 2008 2009
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

2036 2037 2038 2039 2040
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed.
	 */
	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2122
static int kcompactd_cpu_online(unsigned int cpu)
2123 2124 2125
{
	int nid;

2126 2127 2128
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2129

2130
		mask = cpumask_of_node(pgdat->node_id);
2131

2132 2133 2134
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2135
	}
2136
	return 0;
2137 2138 2139 2140 2141
}

static int __init kcompactd_init(void)
{
	int nid;
2142 2143 2144 2145 2146 2147 2148 2149 2150
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2151 2152 2153 2154 2155 2156 2157

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2158
#endif /* CONFIG_COMPACTION */