test_functional.py 52.8 KB
Newer Older
1 2
# -*- coding: utf-8 -*-
import itertools
3
import platform
4
from functools import partial
5 6 7

import numpy as np
import pytest
8
from utils import opr_test
9

10
import megengine.amp as amp
11
import megengine.config as config
12
import megengine.core.ops.builtin as builtin
13 14
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
15
import megengine.jit as jit
M
Megvii Engine Team 已提交
16
from megengine import Parameter, Tensor, is_cuda_available, tensor
17
from megengine.autodiff import GradManager
18
from megengine.core._trace_option import use_symbolic_shape
19
from megengine.core.autodiff.grad import Grad
20
from megengine.core.tensor.utils import make_shape_tuple
21
from megengine.device import get_device_count
22 23
from megengine.jit.tracing import trace
from megengine.module import ConvTranspose2d, ConvTranspose3d, LayerNorm
24

25 26
_assert_allclose = partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6)

27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

45 46 47 48
    maskv4 = np.array(1, dtype=np.bool_)
    xv4 = np.array(1, dtype=np.float32)
    yv4 = np.array(0, dtype=np.float32)

49
    cases = [
50 51
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
52 53
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
54
        {"input": [maskv4, xv4, yv4]},
55
    ]
56
    opr_test(cases, F.where, ref_fn=np.where, test_trace=True)
57 58


59
def test_dropout():
60 61 62 63 64 65 66 67 68
    from megengine.autodiff import GradManager
    from megengine.core._imperative_rt.ops import set_global_rng_seed

    def test_dropout_with_shape(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out = F.nn.dropout(data, rate, training=True)
            gm.backward(out, tensor(np.ones(shape, dtype=np.float32)))
69 70
            if len(shape) != 0:
                assert not out.numpy().all()
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_multiple_dropout(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out1 = F.nn.dropout(data, rate, training=True)
            out2 = F.nn.dropout(out1, rate, training=True)
            out3 = F.nn.dropout(out2, rate, training=True)
            gm.backward(out3, tensor(np.ones(shape, dtype=np.float32)))
            np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_dropout_seed(shape, rate):
        data = tensor(np.random.randn(*shape), dtype="float32")
        set_global_rng_seed(111)
        out1 = F.nn.dropout(data, rate, training=True)
        out2 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out2.numpy()).all()

        set_global_rng_seed(111)
        out3 = F.nn.dropout(data, rate, training=True)
        assert (out1.numpy() == out3.numpy()).all()

        set_global_rng_seed(222)
        out4 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out4.numpy()).all()

98
    test_dropout_with_shape([], 0.4)
99 100 101 102
    test_dropout_with_shape([13, 17, 63, 21], 0.4)
    test_dropout_with_shape([16, 32, 64], 0.3)
    test_multiple_dropout([1024], 0.2)
    test_dropout_seed([16, 32], 0.2)
103 104


105 106 107 108 109
def test_matinv():
    shape1 = (5, 5)
    shape2 = (3, 9, 9)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
M
Megvii Engine Team 已提交
110 111 112
    # make matrix diagonally dominant for numerical stability
    data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32")
    data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2)
113 114 115 116 117 118 119 120 121

    cases = [
        {"input": data1},
        {"input": data2},
    ]

    opr_test(
        cases,
        F.matinv,
122
        compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4),
123 124 125 126
        ref_fn=np.linalg.inv,
    )


127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
145 146 147 148 149
    shape1 = (2,)
    shape2 = (batch_size, 2, 3)
    shape3 = (batch_size, 3, 4)
    shape4 = (batch_size, 10, 4, 2)
    shape5 = (batch_size, 10, 2, 4)
150 151 152
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
153 154
    data4 = np.random.random(shape4).astype("float32")
    data5 = np.random.random(shape5).astype("float32")
155

156 157 158 159 160 161
    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
        {"input": [data4, data5]},
    ]
162
    opr_test(cases, F.matmul, ref_fn=np.matmul)
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    opr_test(
        [{"input": [data1, data4]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)),
        transpose_b=True,
    )

    opr_test(
        [{"input": [data3, data2]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)),
        transpose_a=True,
        transpose_b=True,
    )

179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
@pytest.mark.parametrize(
    "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic):
    def func(a, b):
        return F.matmul(a, b)

    if is_symbolic is not None:
        func = jit.trace(symbolic=is_symbolic)(func)

    a = tensor(np.random.randn(*shape_a))
    b = tensor(np.random.randn(*shape_b))
    for _ in range(3):
        out = func(a, b)
        assert np.all(out.numpy() == 0)
        if is_symbolic is None:
            break


200 201 202 203
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

204 205
        test_func = lambda inp: F.vision.interpolate(
            inp, scale_factor=2.0, mode="linear"
206
        )
207 208 209 210
        ref_func = lambda inp: F.vision.interpolate(inp, 4, mode="linear").numpy()

        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
211 212 213 214

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

215 216
        test_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0)
        ref_func = lambda inp: F.vision.interpolate(inp, [4, 4]).numpy()
217

218 219
        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
220 221 222 223

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

224 225
        test_func = lambda inp: F.vision.interpolate(inp, [4, 4])
        ref_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0).numpy()
226

227 228
        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
229 230 231 232 233

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
234
            F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
235 236 237 238 239

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
240
            F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear")
241 242 243 244 245

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
246
    # inappropriate_scale_linear_interpolate()
247 248 249


def _save_to(self, name="grad"):
250
    def callback(grad):
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))

        output_shape = (7, 7)
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
290

291
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
292 293


294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
@pytest.mark.parametrize("shapes", [((2, 0, 26, 26), (4, 5)), ((2, 3, 26, 26), (0, 5))])
@pytest.mark.parametrize("is_tracing", [False, True])
def test_roi_align_empty(shapes, is_tracing):
    inp_feat = tensor(np.random.randn(*(shapes[0])))
    rois = tensor(np.random.random(shapes[1]))
    output_shape = (7, 7)

    def func(inp, rois):
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        return out_feat

    if is_tracing:
        func = jit.trace(func)

    for _ in range(3):
        out_feat = func(inp_feat, rois)
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )


325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)):
    if random:
        inp_feat1 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
        inp_feat2 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
    else:
        inp_feat1 = np.ones(image_shape) * constant
        inp_feat2 = np.ones(image_shape) * constant

    return tensor(inp_feat1), tensor(inp_feat2)


def test_correlation():
    ##test case 0 check the grad shape
    data1, data2 = _gen_correlation()

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    with Grad() as grad:
        grad.wrt(data1, callback=_save_to(data1))

        out_feat = F.vision.correlation(
            data1,
            data2,
            kernel_size=5,
            max_displacement=4,
            stride1=2,
            stride2=2,
            pad_size=2,
            is_multiply=True,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape)

    ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=True,
    )
    assert abs(out_feat.sum() - 1) < 1e-9

    ##test case 2 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 3 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 4 check correlation
    data1, _ = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=2.0
    )
    _, data2 = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=1.0
    )

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=2,
        stride1=1,
        stride2=2,
        pad_size=0,
        is_multiply=False,
    )
    assert abs(out_feat.mean() - 1) < 1e-9


428 429
def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
430 431 432 433 434 435 436 437 438 439 440 441 442
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))
        output_shape = (7, 7)
        out_feat = F.vision.roi_pooling(
            inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
443

444
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
445 446


447 448 449
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
450 451 452 453 454 455 456 457 458
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_avg_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
482 483 484 485 486 487 488 489 490
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_max_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


511 512 513 514
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
515

516
        np.testing.assert_allclose(
517 518
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
519

520 521 522 523 524
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
525

526 527
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
528

529
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
530

531 532
    onehot_low_dimension()
    onehot_high_dimension()
533 534


535
def test_interpolate_fastpath():
536 537 538 539 540
    # check shape
    test_cases = [
        [(1, 1, 10, 10), (5, 5)],
        [(1, 3, 10, 10), (20, 20)],
        [(10, 1, 10, 10), (1, 1)],
541
        [(10, 10, 1, 1), (10, 10)],
542 543 544
    ]
    for inp_shape, target_shape in test_cases:
        x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
545
        out = F.vision.interpolate(x, target_shape, mode="bilinear")
546 547 548 549 550
        assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
        assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]

    # check value
    x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
551
    out = F.vision.interpolate(x, (15, 5), mode="bilinear")
552 553 554 555
    np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))

    np_x = np.arange(32)
    x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
556
    out = F.vision.interpolate(x, (1, 1), mode="bilinear")
557 558 559
    np.testing.assert_equal(out.item(), np_x.mean())


560 561
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective(dt):
562
    inp_shape = (1, 1, 4, 4)
563
    x = tensor(np.arange(16, dtype=dt).reshape(inp_shape))
564 565 566 567 568 569 570
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
571
    outp = F.vision.warp_perspective(x, M, (2, 2))
572
    np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt))
573 574


575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
def test_warp_affine_grad():
    dy_np = np.arange(1, 10, dtype=np.float32).reshape(1, 1, 3, 3)
    x_np = np.arange(1, 10, dtype=np.float32).reshape(1, 1, 3, 3)

    mat_np_affine = np.array([[[0.5, 0, 0], [0, 0.5, 0],]]).astype("float32")
    mat_np_perspective = np.array([[[0.5, 0, 0], [0, 0.5, 0], [0, 0, 1]]]).astype(
        "float32"
    )

    dmat_affine = Tensor(np.ones((1, 2, 3), dtype=np.float32))
    dy_affine = Tensor(dy_np)
    x_affine = Tensor(x_np)
    mat_affine = Tensor(mat_np_affine)
    target_shape_affine = x_affine.shape[2:]

    dmat_perspective = Tensor(np.ones((1, 3, 3), dtype=np.float32))
    dy_perspective = Tensor(dy_np)
    x_perspective = Tensor(x_np)
    mat_perspective = Tensor(mat_np_perspective)
    target_shape_perspective = x_perspective.shape[2:]

    gm = GradManager().attach([x_affine, mat_affine, x_perspective, mat_perspective])
    with gm:
        y_affine = F.warp_affine(
            x_affine, mat_affine, target_shape_affine, format="NCHW"
        )
        y_perspective = F.warp_perspective(
            x_perspective, mat_perspective, target_shape_perspective
        )
        gm.backward([y_affine, y_perspective], [dy_affine, dy_perspective])

    np.testing.assert_allclose(
        x_affine.grad.numpy(), x_perspective.grad.numpy(), rtol=1e-5, atol=1e-5
    )
    np.testing.assert_allclose(
        mat_affine.grad.numpy(),
        mat_perspective.grad.numpy()[0:1, 0:2, 0:3],
        rtol=1e-5,
        atol=1e-5,
    )


617 618
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective_mat_idx(dt):
619
    inp_shape = (2, 1, 4, 4)
620
    x = tensor(np.arange(32, dtype=dt).reshape(inp_shape))
621 622 623 624 625 626 627 628 629 630 631 632 633
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
    M = F.concat([M,] * 4, 0)
    outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
    np.testing.assert_equal(
        outp.numpy(),
        np.array(
            [
634 635 636 637
                [[[5, 6], [9, 10]]],
                [[[21, 22], [25, 26]]],
                [[[21, 22], [25, 26]]],
                [[[5, 6], [9, 10]]],
638
            ],
639
            dtype=dt,
640 641 642 643
        ),
    )


644 645 646 647
def test_warp_affine():
    inp_shape = (1, 3, 3, 3)
    x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
    weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
648
    outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap")
649 650 651 652 653 654 655 656 657 658 659 660 661
    res = np.array(
        [
            [
                [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]],
                [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]],
            ]
        ],
        dtype=np.float32,
    )
    if not is_cuda_available():
        np.testing.assert_almost_equal(outp.numpy(), res, 5)


662 663 664 665 666 667 668 669 670
def test_remap():
    inp_shape = (1, 1, 4, 4)
    inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    map_xy_shape = (1, 2, 2, 2)
    map_xy = tensor(
        np.array(
            [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
        ).reshape(map_xy_shape)
    )
671
    outp = F.vision.remap(inp, map_xy)
672 673 674 675 676
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
    )


677 678 679 680 681 682 683 684 685 686
def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
687
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
688 689

    np.random.seed(123)
690
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
691
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
692
    expect1 = np.array(0.6361, dtype=np.float32)
693 694

    np.random.seed(123)
695
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
696
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
697
    expect2 = np.array(0.6750, dtype=np.float32)
698 699 700 701 702

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
703

704
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
705

706 707 708 709 710
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
711 712 713
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
714 715
    )

716 717 718 719 720 721 722 723 724 725 726

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

727
    opr_test(cases, F.nn.hinge_loss)
728 729 730 731 732 733 734 735 736 737

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
738
        return F.nn.hinge_loss(pred, label, "L2")
739 740 741 742

    opr_test(cases, hinge_loss_with_l2_norm)


743 744 745 746 747 748 749 750 751 752 753 754 755
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_nms(is_symbolic):
    def fn(inp, scores):
        return F.vision.nms(
            inp,
            scores=scores,
            iou_thresh=0.5,
            max_output=None if is_symbolic is None else 4,
        )

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

756 757 758 759 760 761 762 763 764 765 766
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
767 768 769 770 771 772 773 774 775 776
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))

    x = np.array([], dtype=np.float32,).reshape(0, 4)
    inp = tensor(x)
    scores = tensor([], dtype=np.float32)
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([], dtype=np.int32))
777 778


779
@pytest.mark.skipif(
780
    get_device_count("gpu") > 0, reason="cuda does not support nchw int8"
781
)
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
804
        nonlinear_mode="identity",
805 806
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
807
        w_v = np.random.normal(size=(OC, IC, KH, KW))
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
829
            var = F.transpose(var, (0, 1, 3, 4, 2))
830 831 832 833 834 835
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
836
            if nonlinear_mode == "relu":
837 838 839 840 841 842 843 844 845 846
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
847
            return F.quantized.conv_bias_activation(
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
865
            result = F.transpose(result, (0, 1, 4, 2, 3))
866 867
        expected = F.flatten(expected)
        result = F.flatten(result)
868
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
869 870 871 872 873 874 875 876 877

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

878 879
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu")
880 881


882
@pytest.mark.skipif(get_device_count("gpu") > 0, reason="no int8 algorithm on cuda")
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
def test_batch_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True,
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(N, OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def run_batch_conv_bias(inp, w, b):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            result = F.quantized.batch_conv_bias_activation(
                inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype,
            )
            return result.astype("float32")

        expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0]
        expected = expected.astype(out_dtype).astype("float32")
        expected = F.flatten(expected)

        result = run_batch_conv_bias(inp_int8, w_int8, b_int32)
        result = F.flatten(result)

        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True)


933 934
@pytest.mark.parametrize("bias", [True, False])
def test_region_restricted_conv_forward_backward_naive(bias):
935 936 937 938 939 940 941 942 943 944 945 946
    import megengine as mge
    import megengine.module as M
    from megengine.autodiff import GradManager

    handle = "cpu0"
    src_1 = np.arange(8).reshape(1, 2, 2, 2).astype(np.float32)
    filter_1 = np.arange(8).reshape(2, 1, 1, 2, 2).astype(np.float32)
    rin_1 = np.array([1, 1, 1, 1]).reshape(1, 2, 2).astype(np.int32)
    rout_1 = np.array([1]).reshape(1, 1, 1).astype(np.int32)
    cpu_src = tensor(src_1, device=handle)
    cpu_filter = tensor(filter_1, device=handle)
    gm = GradManager().attach([cpu_src, cpu_filter])
947 948 949
    cpu_bias = (
        tensor(np.ones((1, 2, 1, 1), dtype=np.float32), device=handle) if bias else None
    )
950 951 952 953 954 955
    with gm:
        cpu_out = F.region_restricted_conv(
            cpu_src,
            cpu_filter,
            tensor(rin_1, device=handle),
            tensor(rout_1, device=handle),
956
            bias=cpu_bias,
957 958 959
            groups=2,
        )
        gm.backward(cpu_out, tensor(np.ones((1, 2, 1, 1)), device=handle))
960 961 962
        if cpu_bias is not None:
            cpu_out = cpu_out - cpu_bias
        np.testing.assert_allclose(cpu_out, np.array([14, 126]).reshape(1, 2, 1, 1))
963 964 965 966 967 968 969 970 971 972 973
    np.testing.assert_allclose(
        cpu_src.grad, np.array([0, 1, 2, 3, 4, 5, 6, 7]).reshape(1, 2, 2, 2)
    )
    np.testing.assert_allclose(
        cpu_filter.grad, np.array([0, 1, 2, 3, 4, 5, 6, 7]).reshape(2, 1, 1, 2, 2)
    )


@pytest.mark.skipif(
    not is_cuda_available(), reason="rrconv cuda kernel requires cuda available"
)
974 975
@pytest.mark.parametrize("bias", [True, False])
def test_region_restricted_conv_forward_backward_cuda(bias):
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    import megengine as mge
    import megengine.module as M
    from megengine.autodiff import GradManager
    import megengine.distributed as dist

    # params
    handle = "gpu0"
    N = 1
    GROUP = 3
    FH = FW = 2
    IH = IW = 2
    OH = OW = 1
    ICPG = OCPG = 1
    grad_shape = (N, GROUP * ICPG, IH, IW)
    src_shape = grad_shape
    filter_shape = (GROUP, OCPG, ICPG, FH, FW)
    diff_shape = (N, GROUP * OCPG, OH, OW)
    rin_shape = (N, IH, IW)
    rout_shape = (N, OH, OW)

    def reduce(shape):
        mul = 1
        for x in shape:
            mul *= x
        return mul

    def get_groundtruth():
        src = tensor(
            np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32),
            device="cpu0",
        )
        filter = tensor(np.ones(filter_shape).astype(np.float32), device="cpu0")
        rin = tensor(np.ones(rin_shape).astype(np.int32), device="cpu0")
        rout = tensor(np.ones(rout_shape).astype(np.int32), device="cpu0")
1010 1011 1012 1013 1014
        bias_cpu = (
            tensor(np.ones(diff_shape).astype(np.float32), device="cpu0")
            if bias
            else None
        )
1015 1016 1017
        gm = GradManager().attach([src, filter])
        with gm:
            expected_out = F.region_restricted_conv(
1018
                src, filter, rin, rout, bias=bias_cpu, groups=GROUP
1019 1020 1021 1022 1023
            )
            gm.backward(
                expected_out,
                tensor(np.ones(diff_shape, dtype=np.float32), device="cpu0"),
            )
1024
        return src, filter, expected_out
1025

1026
    expected_src, expected_filter, expected_out = get_groundtruth()
1027 1028 1029 1030 1031 1032 1033 1034

    src = tensor(
        np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32),
        device=handle,
    )
    filter = tensor(np.ones(filter_shape).astype(np.float32), device=handle)
    rin = tensor(np.ones(rin_shape).astype(np.int32), device=handle)
    rout = tensor(np.ones(rout_shape).astype(np.int32), device=handle)
1035 1036 1037
    bias_gpu = (
        tensor(np.ones(diff_shape).astype(np.float32), device=handle) if bias else None
    )
1038 1039
    gm = GradManager().attach([src, filter])
    with gm:
1040 1041 1042
        gpu_out = F.region_restricted_conv(
            src, filter, rin, rout, bias=bias_gpu, groups=GROUP
        )
1043 1044 1045
        gm.backward(gpu_out, tensor(np.ones(diff_shape), device=handle))
        np.testing.assert_allclose(src.grad, expected_src.grad)
        np.testing.assert_allclose(filter.grad, expected_filter.grad)
1046
        np.testing.assert_allclose(gpu_out, expected_out)
1047 1048 1049 1050 1051


@pytest.mark.skipif(
    not is_cuda_available(), reason="rrconv cuda kernel requires cuda available"
)
1052 1053
@pytest.mark.parametrize("bias", [True, False])
def test_region_restricted_conv_forward_backward_uint8(bias):
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    import megengine as mge
    import megengine.module as M
    from megengine.autodiff import GradManager

    # params
    handle = "gpu0"
    N = 1
    GROUP = 2
    FH = FW = 1
    IH = IW = 4
    OH = OW = 4
    ICPG = OCPG = 1
    grad_shape = (N, GROUP * ICPG, IH, IW)
    src_shape = grad_shape
    filter_shape = (GROUP, OCPG, ICPG, FH, FW)
    diff_shape = (N, GROUP * OCPG, OH, OW)
    rin_shape = (N, IH, IW)
    rout_shape = (N, OH, OW)

    def reduce(shape):
        mul = 1
        for x in shape:
            mul *= x
        return mul

    def get_groundtruth():
        src = tensor(
            np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32),
            device="cpu0",
        )
        filter = tensor(np.ones(filter_shape).astype(np.float32), device="cpu0")
        rin = tensor(np.ones(rin_shape).astype(np.int32), device="cpu0")
        rout = tensor(np.ones(rout_shape).astype(np.int32), device="cpu0")
1087 1088 1089 1090 1091
        bias_cpu = (
            tensor(np.ones(diff_shape).astype(np.float32), device="cpu0")
            if bias
            else None
        )
1092 1093 1094
        gm = GradManager().attach([src, filter])
        with gm:
            expected_out = F.region_restricted_conv(
1095
                src, filter, rin, rout, bias=bias_cpu, groups=GROUP
1096 1097 1098 1099 1100
            )
            gm.backward(
                expected_out,
                tensor(np.ones(diff_shape, dtype=np.float32), device="cpu0"),
            )
1101
        return src, filter, expected_out
1102

1103
    expected_src, expected_filter, expected_out = get_groundtruth()
1104 1105 1106 1107 1108 1109 1110 1111 1112

    # forward and dgrad/wgrad
    src = tensor(
        np.arange(reduce(src_shape)).reshape(src_shape).astype(np.float32),
        device=handle,
    )
    filter = tensor(np.ones(filter_shape).astype(np.float32), device=handle)
    rin = tensor(np.ones(rin_shape).astype(np.uint8), device=handle)
    rout = tensor(np.ones(rout_shape).astype(np.uint8), device=handle)
1113 1114 1115
    bias_gpu = (
        tensor(np.ones(diff_shape).astype(np.float32), device=handle) if bias else None
    )
1116 1117 1118

    gm = GradManager().attach([src, filter])
    with gm:
1119 1120 1121
        gpu_out = F.region_restricted_conv(
            src, filter, rin, rout, bias=bias_gpu, groups=GROUP
        )
1122 1123 1124 1125 1126 1127
        gm.backward(
            gpu_out, tensor(np.ones(diff_shape, dtype=np.float32), device=handle)
        )
        # assert uint8 gpu result close to cpu result
        np.testing.assert_allclose(src.grad, expected_src.grad)
        np.testing.assert_allclose(filter.grad, expected_filter.grad)
1128
        np.testing.assert_allclose(gpu_out, expected_out)
1129 1130


1131 1132
def test_conv2d_autocast():
    """check amp's result is equal to manually converted result"""
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    amp.enabled = True
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float32)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    amp.enabled = False
    expected = F.conv2d(
        inp.astype("float16"),
        weight.astype("float16"),
        None,
        (2, 2),
        (3, 3),
        (1, 1),
        1,
        compute_mode="float32",
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


1153
def test_conv2d_zero_stride_numpy_array():
1154 1155 1156 1157 1158 1159 1160 1161
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
def test_conv3d_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32)
    out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)
    out.numpy()


1172 1173
@pytest.mark.parametrize("bias", [True, False])
def test_conv1d(bias):
1174 1175
    inp = tensor(np.ones((2, 2, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2), dtype=np.float32))
1176 1177
    bias = tensor(np.ones((1, 3, 1), dtype=np.float32)) if bias else None
    out = F.conv1d(inp, weight, bias, 2, 0, 1, 1)
1178 1179
    np.testing.assert_equal(
        out.numpy(),
1180 1181 1182
        np.array([[[5, 5], [5, 5], [5, 5]], [[5, 5], [5, 5], [5, 5]]], dtype=np.float32)
        if bias is not None
        else np.array(
1183 1184 1185 1186 1187
            [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32
        ),
    )


1188 1189
def test_batchnorm2d_autocast():
    """check amp's result is equal to manually converted result"""
1190
    amp.enabled = True
1191 1192
    tshape = (1, 3, 224, 224)
    pshape = (1, 3, 1, 1)
1193 1194 1195
    inp = tensor(np.random.randn(*tshape), dtype=np.float32)
    weight = tensor(np.ones(pshape, dtype=np.float32))
    bias = tensor(np.zeros(pshape, dtype=np.float32))
1196 1197 1198 1199 1200

    out = F.batch_norm(inp, weight=weight, bias=bias, training=True, inplace=False)

    amp.enabled = False
    expected = F.batch_norm(
1201
        inp.astype("float16"), weight=weight, bias=bias, training=True, inplace=False,
1202 1203 1204 1205 1206 1207
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


1208 1209
@pytest.mark.parametrize("bias", [True, False])
def test_conv3d(bias):
1210 1211
    inp = tensor(np.ones((2, 2, 4, 4, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2, 2, 2), dtype=np.float32))
1212 1213 1214 1215 1216
    bias = tensor(np.ones((1, 3, 1, 1, 1), dtype=np.float32)) if bias else None
    out = F.conv3d(inp, weight, bias, 2, 0, 1, 1)
    target = np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16
    target = target + 1 if bias is not None else target
    np.testing.assert_equal(out.numpy(), target)
1217 1218


1219 1220 1221 1222 1223 1224 1225 1226
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
1227 1228


1229 1230
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_condtake(is_symbolic):
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    shapes = [
        (3, 3, 3),
        (0,),
        (3, 0, 3),
    ]

    def fn(mask, data):
        return F.cond_take(mask, data)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

    for shp in shapes:
        x_np = np.random.randn(*shp).astype("float32")
        mask_np = x_np > 0
        x = tensor(x_np)
        mask = tensor(mask_np)
        ref_out = x_np[mask_np]
        ref_idx = mask_np.flatten().nonzero()[0]
        for i in range(3):
            out, idx = fn(mask, x)
            np.testing.assert_equal(out.numpy(), ref_out)
            np.testing.assert_equal(idx.numpy(), ref_idx)
            if is_symbolic is None:
                break


1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
1273 1274


1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
def test_argmxx_on_inf():
    def run_argmax():
        x = F.zeros((100, 100))
        x[:] = -float("inf")
        idxs = F.argmax(x, axis=0)
        return idxs

    def run_argmin():
        x = F.zeros((100, 100))
        x[:] = float("inf")
        idxs = F.argmin(x, axis=0)
        return idxs

    assert all(run_argmax() >= 0)
    assert all(run_argmin() >= 0)
1290 1291


1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
def test_deformable_psroi_pooling():
    inp = np.random.random((1, 256, 64, 64)).astype("float32")
    rois = np.random.random((1, 5)).astype("float32")
    trans = np.random.random((24, 2, 7, 7)).astype("float32")

    pooled_h = 7
    pooled_w = 7
    sample_per_part = 4
    no_trans = False
    part_size = 7
    spatial_scale = 1.0 / 64
    trans_std = 0.1

    y = F.deformable_psroi_pooling(
        tensor(inp),
        tensor(rois),
        tensor(trans),
        no_trans,
        part_size,
        pooled_h,
        pooled_w,
        sample_per_part,
        spatial_scale,
        trans_std,
    )


1319 1320 1321 1322
def test_cvt_color():
    def rgb2gray(rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])

1323 1324 1325
    def bgr2gray(bgr):
        return np.dot(bgr[..., :3], [0.114, 0.587, 0.299])

1326 1327 1328
    inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
    out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
    x = tensor(inp)
1329
    y = F.vision.cvt_color(x, mode="RGB2GRAY")
1330
    np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
1331

1332 1333 1334 1335
    out1 = np.expand_dims(bgr2gray(inp), 3).astype(np.float32)
    y1 = F.vision.cvt_color(x, mode="BGR2GRAY")
    np.testing.assert_allclose(y1.numpy(), out1, atol=1e-5)

1336 1337 1338 1339 1340 1341

@pytest.mark.parametrize("val", [2, [2,], [2, 3]])
def test_ones(val):
    shp = tensor(val)
    np_shp = np.array(val)
    np.testing.assert_equal(F.ones(shp), np.ones(np_shp))
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356


def test_assert_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.00001
    z = F.utils._assert_equal(x, y)


def test_assert_not_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.1
    with pytest.raises(RuntimeError):
        z = F.utils._assert_equal(x, y)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372


def test_neg_axis():
    x = tensor(np.random.normal(0, 1, (32, 5)))

    y = F.argmax(x, axis=-1)
    yy = F.argmax(x, axis=1)
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmax(x, axis=(-1, -2))
    yy = F.argmax(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmin(x, axis=(-1, -2))
    yy = F.argmin(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397


def test_sliding_window():
    N, C, H, W = 2, 3, 7, 8
    inp = np.random.normal(size=(N, C, H, W))
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2))
    inp_pad[:, :, ph : H + ph, pw : W + pw] = inp
    gt_out = np.empty(
        (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32
    )
    for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])):
        ih, iw = oh * sh, ow * sw
        gt_out[n, c, oh, ow, :] = inp_pad[
            n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw
        ]

    out = F.sliding_window(
        tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw)
    )
    np.testing.assert_equal(gt_out, out.numpy())
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433


def test_sliding_window_transpose():
    N, C, H, W = 2, 3, 7, 8
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp = np.random.normal(
        size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww)
    ).astype(np.float32)
    gt_out = np.zeros((N, C, H, W), dtype=np.float32)

    for n, c in itertools.product(*map(range, inp.shape[:2])):
        oh = 0
        for ih in range(-ph, H + ph - dh * (wh - 1), sh):
            ow = 0
            for iw in range(-pw, W + pw - dw * (ww - 1), sw):
                for kh, kw in itertools.product(*map(range, inp.shape[-2:])):
                    ih2 = ih + dh * kh
                    iw2 = iw + dw * kw
                    if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W:
                        gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw]
                ow += 1
            oh += 1

    out = F.sliding_window_transpose(
        tensor(inp),
        (H, W),
        (wh, ww),
        padding=(ph, pw),
        stride=(sh, sw),
        dilation=(dh, dw),
    )
    np.testing.assert_equal(gt_out, out.numpy())
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452


def test_pad():
    src = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
    dst = np.pad(src, ((2, 2), (2, 2)), "constant")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "constant", constant_values=3)
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT", constant_value=3)
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "edge")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "EDGE")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "reflect")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT")
    np.testing.assert_allclose(res, dst, atol=1e-5)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482


def pixel_shuffle(data, r):
    high_dim = data.shape[:-3]
    data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1])
    inn, ic, ih, iw = data.shape
    res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r))
    for n in range(inn):
        for c in range(ic):
            for h in range(ih):
                for w in range(iw):
                    res[
                        n,
                        int(c / r / r),
                        h * r + int((c % (r * r)) / r),
                        w * r + c % r,
                    ] = data[n, c, h, w]
    if len(high_dim) > 0:
        res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r))
    else:
        res = res[0]
    return res


def test_pixel_shuffle():
    # ndim = 3
    inp = np.arange(16 * 3 * 3).reshape(16, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=4)
    golden = pixel_shuffle(inp, 4)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1483
    inp_float = np.float32(inp)
1484
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1485
    golden = pixel_shuffle(inp_float, 2)
1486
    np.testing.assert_equal(out.numpy(), golden)
1487 1488 1489 1490 1491 1492

    # ndim = 4
    inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=3)
    golden = pixel_shuffle(inp, 3)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1493
    inp_float = np.float32(inp)
1494 1495 1496
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=3)
    golden = pixel_shuffle(inp_float, 3)
    np.testing.assert_equal(out.numpy(), golden)
1497 1498 1499 1500 1501 1502

    # ndim = 5
    inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1503
    inp_float = np.float32(inp)
1504
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1505
    golden = pixel_shuffle(inp_float, 2)
1506
    np.testing.assert_equal(out.numpy(), golden)
1507 1508 1509 1510 1511
    # ndim = 6
    inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=5)
    golden = pixel_shuffle(inp, 5)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1512
    inp_float = np.float32(inp)
1513 1514 1515
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=5)
    golden = pixel_shuffle(inp_float, 5)
    np.testing.assert_equal(out.numpy(), golden)
1516 1517 1518 1519 1520 1521

    # ndim = 7
    inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1522
    inp_float = np.float32(inp)
1523
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1524
    golden = pixel_shuffle(inp_float, 2)
1525
    np.testing.assert_equal(out.numpy(), golden)
1526 1527


1528
@pytest.mark.parametrize("type", ["int32", "float32"])
1529
@pytest.mark.parametrize("is_symbolic", [False, True])
1530
def test_pixel_shuffle_symbolic(is_symbolic, type):
1531 1532 1533 1534 1535 1536
    def fn(inp, upscale_factor):
        return F.pixel_shuffle(inp, upscale_factor=upscale_factor)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

1537
    inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5).astype(type))
1538 1539 1540 1541 1542 1543
    golden = pixel_shuffle(inp, 2)
    for _ in range(3):
        out = fn(inp, 2)
        np.testing.assert_equal(out.numpy(), golden)
        if is_symbolic is None:
            break
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561


def test_set_conv2d_config():
    """check setting config by contextmanager is equal to manually converted result"""
    config._compute_mode = "float32"
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float16)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float16)
    config_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    config._compute_mode = "default"
    with config._override(compute_mode="float32"):
        context_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    expected = F.conv2d(
        inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32",
    )
    np.testing.assert_allclose(config_out.numpy(), expected.numpy())
    np.testing.assert_allclose(context_out.numpy(), expected.numpy())


1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
@pytest.mark.parametrize("stride", [(1, 1)])
@pytest.mark.parametrize("padding", [(1, 1)])
@pytest.mark.parametrize("dilation", [(1, 1)])
@pytest.mark.parametrize("ksize", [(3, 3)])
@pytest.mark.parametrize("groups", [1, 2])
def test_local_conv2d(stride, padding, dilation, ksize, groups):
    batch_size, in_channels, out_channels = 2, 4, 8
    input_height, input_width = 10, 10
    output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1
    output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1

    def local_conv2d_np(data, weight, stride, padding, dialtion):
        # naive calculation use numpy
        # only test output_height == input_height, output_width == input_width
        data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1)))
        expected = np.zeros(
            (batch_size, out_channels, output_height, output_width), dtype=np.float32,
        )
        ic_group_size = in_channels // groups
        oc_group_size = out_channels // groups
        for n, oc, oh, ow in itertools.product(
            *map(range, [batch_size, out_channels, output_height, output_width])
        ):
            ih, iw = oh * stride[0], ow * stride[1]
            g_id = oc // oc_group_size
            expected[n, oc, ih, iw] = np.sum(
                data[
                    n,
                    g_id * ic_group_size : (g_id + 1) * ic_group_size,
                    ih : ih + ksize[0],
                    iw : iw + ksize[1],
                ]
                * weight[g_id, oh, ow, :, :, :, oc % oc_group_size]
            )
        return expected

    data = np.random.rand(batch_size, in_channels, input_height, input_width).astype(
        "float32"
    )
    weight = np.random.rand(
        groups,
        output_height,
        output_width,
        in_channels // groups,
        *ksize,
        out_channels // groups,
    ).astype("float32")
    output = F.local_conv2d(
        tensor(data),
        tensor(weight),
        None,
        stride=stride,
        padding=padding,
        dilation=dilation,
    )
    ref = local_conv2d_np(data, weight, stride, padding, dilation)
    np.testing.assert_almost_equal(output.numpy(), ref, 5)
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652


def test_conv_transpose2d():
    m = ConvTranspose2d(
        16, 33, (3, 5), output_padding=(1, 2), stride=(2, 3), padding=(4, 2)
    )

    @trace(symbolic=True)
    def fwd(inp: Tensor):
        return m(inp)

    input = Tensor(np.random.rand(20, 16, 50, 100))
    output = fwd(input)
    output_shape = Tensor(output.shape)
    np.testing.assert_equal(
        output_shape.numpy(), np.array([20, 33, 94, 300], dtype=np.int32)
    )


def test_conv_transpose3d():
    m = ConvTranspose3d(
        16, 33, (3, 5, 2), output_padding=(2, 1, 1), stride=(3, 2, 2), padding=(0, 4, 2)
    )

    @trace(symbolic=True)
    def fwd(inp: Tensor):
        return m(inp)

    input = Tensor(np.random.rand(20, 16, 10, 50, 100))
    output = fwd(input)
    output_shape = Tensor(output.shape)
    np.testing.assert_equal(
        output_shape.numpy(), np.array([20, 33, 32, 96, 197], dtype=np.int32)
    )