test_functional.py 43.5 KB
Newer Older
1 2
# -*- coding: utf-8 -*-
import itertools
3
import platform
4
from functools import partial
5 6 7

import numpy as np
import pytest
8
from utils import opr_test
9

10
import megengine.amp as amp
11
import megengine.config as config
12
import megengine.core.ops.builtin as builtin
13 14
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
15
import megengine.jit as jit
M
Megvii Engine Team 已提交
16
from megengine import Parameter, Tensor, is_cuda_available, tensor
17
from megengine.core._trace_option import use_symbolic_shape
18
from megengine.core.autodiff.grad import Grad
19
from megengine.core.tensor.utils import make_shape_tuple
20
from megengine.device import get_device_count
21
from megengine.module import LayerNorm
22

23 24
_assert_allclose = partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6)

25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

43 44 45 46
    maskv4 = np.array(1, dtype=np.bool_)
    xv4 = np.array(1, dtype=np.float32)
    yv4 = np.array(0, dtype=np.float32)

47
    cases = [
48 49
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
50 51
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
52
        {"input": [maskv4, xv4, yv4]},
53
    ]
54
    opr_test(cases, F.where, ref_fn=np.where, test_trace=True)
55 56


57
def test_dropout():
58 59 60 61 62 63 64 65 66
    from megengine.autodiff import GradManager
    from megengine.core._imperative_rt.ops import set_global_rng_seed

    def test_dropout_with_shape(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out = F.nn.dropout(data, rate, training=True)
            gm.backward(out, tensor(np.ones(shape, dtype=np.float32)))
67 68
            if len(shape) != 0:
                assert not out.numpy().all()
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_multiple_dropout(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out1 = F.nn.dropout(data, rate, training=True)
            out2 = F.nn.dropout(out1, rate, training=True)
            out3 = F.nn.dropout(out2, rate, training=True)
            gm.backward(out3, tensor(np.ones(shape, dtype=np.float32)))
            np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_dropout_seed(shape, rate):
        data = tensor(np.random.randn(*shape), dtype="float32")
        set_global_rng_seed(111)
        out1 = F.nn.dropout(data, rate, training=True)
        out2 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out2.numpy()).all()

        set_global_rng_seed(111)
        out3 = F.nn.dropout(data, rate, training=True)
        assert (out1.numpy() == out3.numpy()).all()

        set_global_rng_seed(222)
        out4 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out4.numpy()).all()

96
    test_dropout_with_shape([], 0.4)
97 98 99 100
    test_dropout_with_shape([13, 17, 63, 21], 0.4)
    test_dropout_with_shape([16, 32, 64], 0.3)
    test_multiple_dropout([1024], 0.2)
    test_dropout_seed([16, 32], 0.2)
101 102


103 104 105 106 107
def test_matinv():
    shape1 = (5, 5)
    shape2 = (3, 9, 9)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
M
Megvii Engine Team 已提交
108 109 110
    # make matrix diagonally dominant for numerical stability
    data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32")
    data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2)
111 112 113 114 115 116 117 118 119

    cases = [
        {"input": data1},
        {"input": data2},
    ]

    opr_test(
        cases,
        F.matinv,
120
        compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4),
121 122 123 124
        ref_fn=np.linalg.inv,
    )


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
143 144 145 146 147
    shape1 = (2,)
    shape2 = (batch_size, 2, 3)
    shape3 = (batch_size, 3, 4)
    shape4 = (batch_size, 10, 4, 2)
    shape5 = (batch_size, 10, 2, 4)
148 149 150
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
151 152
    data4 = np.random.random(shape4).astype("float32")
    data5 = np.random.random(shape5).astype("float32")
153

154 155 156 157 158 159
    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
        {"input": [data4, data5]},
    ]
160
    opr_test(cases, F.matmul, ref_fn=np.matmul)
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    opr_test(
        [{"input": [data1, data4]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)),
        transpose_b=True,
    )

    opr_test(
        [{"input": [data3, data2]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)),
        transpose_a=True,
        transpose_b=True,
    )

177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
@pytest.mark.parametrize(
    "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic):
    def func(a, b):
        return F.matmul(a, b)

    if is_symbolic is not None:
        func = jit.trace(symbolic=is_symbolic)(func)

    a = tensor(np.random.randn(*shape_a))
    b = tensor(np.random.randn(*shape_b))
    for _ in range(3):
        out = func(a, b)
        assert np.all(out.numpy() == 0)
        if is_symbolic is None:
            break


198 199 200 201
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

202 203
        test_func = lambda inp: F.vision.interpolate(
            inp, scale_factor=2.0, mode="linear"
204
        )
205 206 207 208
        ref_func = lambda inp: F.vision.interpolate(inp, 4, mode="linear").numpy()

        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
209 210 211 212

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

213 214
        test_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0)
        ref_func = lambda inp: F.vision.interpolate(inp, [4, 4]).numpy()
215

216 217
        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
218 219 220 221

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

222 223
        test_func = lambda inp: F.vision.interpolate(inp, [4, 4])
        ref_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0).numpy()
224

225 226
        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
227 228 229 230 231

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
232
            F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
233 234 235 236 237

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
238
            F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear")
239 240 241 242 243

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
244
    # inappropriate_scale_linear_interpolate()
245 246 247


def _save_to(self, name="grad"):
248
    def callback(grad):
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))

        output_shape = (7, 7)
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
288

289
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
290 291


292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
@pytest.mark.parametrize("shapes", [((2, 0, 26, 26), (4, 5)), ((2, 3, 26, 26), (0, 5))])
@pytest.mark.parametrize("is_tracing", [False, True])
def test_roi_align_empty(shapes, is_tracing):
    inp_feat = tensor(np.random.randn(*(shapes[0])))
    rois = tensor(np.random.random(shapes[1]))
    output_shape = (7, 7)

    def func(inp, rois):
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        return out_feat

    if is_tracing:
        func = jit.trace(func)

    for _ in range(3):
        out_feat = func(inp_feat, rois)
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )


323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)):
    if random:
        inp_feat1 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
        inp_feat2 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
    else:
        inp_feat1 = np.ones(image_shape) * constant
        inp_feat2 = np.ones(image_shape) * constant

    return tensor(inp_feat1), tensor(inp_feat2)


def test_correlation():
    ##test case 0 check the grad shape
    data1, data2 = _gen_correlation()

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    with Grad() as grad:
        grad.wrt(data1, callback=_save_to(data1))

        out_feat = F.vision.correlation(
            data1,
            data2,
            kernel_size=5,
            max_displacement=4,
            stride1=2,
            stride2=2,
            pad_size=2,
            is_multiply=True,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

    assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape)

    ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=True,
    )
    assert abs(out_feat.sum() - 1) < 1e-9

    ##test case 2 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 3 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 4 check correlation
    data1, _ = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=2.0
    )
    _, data2 = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=1.0
    )

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=2,
        stride1=1,
        stride2=2,
        pad_size=0,
        is_multiply=False,
    )
    assert abs(out_feat.mean() - 1) < 1e-9


426 427
def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
428 429 430 431 432 433 434 435 436 437 438 439 440
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))
        output_shape = (7, 7)
        out_feat = F.vision.roi_pooling(
            inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
441

442
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
443 444


445 446 447
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
448 449 450 451 452 453 454 455 456
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_avg_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
480 481 482 483 484 485 486 487 488
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_max_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


509 510 511 512
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
513

514
        np.testing.assert_allclose(
515 516
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
517

518 519 520 521 522
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
523

524 525
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
526

527
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
528

529 530
    onehot_low_dimension()
    onehot_high_dimension()
531 532


533
def test_interpolate_fastpath():
534 535 536 537 538
    # check shape
    test_cases = [
        [(1, 1, 10, 10), (5, 5)],
        [(1, 3, 10, 10), (20, 20)],
        [(10, 1, 10, 10), (1, 1)],
539
        [(10, 10, 1, 1), (10, 10)],
540 541 542
    ]
    for inp_shape, target_shape in test_cases:
        x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
543
        out = F.vision.interpolate(x, target_shape, mode="bilinear")
544 545 546 547 548
        assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
        assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]

    # check value
    x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
549
    out = F.vision.interpolate(x, (15, 5), mode="bilinear")
550 551 552 553
    np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))

    np_x = np.arange(32)
    x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
554
    out = F.vision.interpolate(x, (1, 1), mode="bilinear")
555 556 557
    np.testing.assert_equal(out.item(), np_x.mean())


558 559
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective(dt):
560
    inp_shape = (1, 1, 4, 4)
561
    x = tensor(np.arange(16, dtype=dt).reshape(inp_shape))
562 563 564 565 566 567 568
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
569
    outp = F.vision.warp_perspective(x, M, (2, 2))
570
    np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt))
571 572


573 574
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective_mat_idx(dt):
575
    inp_shape = (2, 1, 4, 4)
576
    x = tensor(np.arange(32, dtype=dt).reshape(inp_shape))
577 578 579 580 581 582 583 584 585 586 587 588 589
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
    M = F.concat([M,] * 4, 0)
    outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
    np.testing.assert_equal(
        outp.numpy(),
        np.array(
            [
590 591 592 593
                [[[5, 6], [9, 10]]],
                [[[21, 22], [25, 26]]],
                [[[21, 22], [25, 26]]],
                [[[5, 6], [9, 10]]],
594
            ],
595
            dtype=dt,
596 597 598 599
        ),
    )


600 601 602 603
def test_warp_affine():
    inp_shape = (1, 3, 3, 3)
    x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
    weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
604
    outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap")
605 606 607 608 609 610 611 612 613 614 615 616 617
    res = np.array(
        [
            [
                [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]],
                [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]],
            ]
        ],
        dtype=np.float32,
    )
    if not is_cuda_available():
        np.testing.assert_almost_equal(outp.numpy(), res, 5)


618 619 620 621 622 623 624 625 626
def test_remap():
    inp_shape = (1, 1, 4, 4)
    inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    map_xy_shape = (1, 2, 2, 2)
    map_xy = tensor(
        np.array(
            [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
        ).reshape(map_xy_shape)
    )
627
    outp = F.vision.remap(inp, map_xy)
628 629 630 631 632
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
    )


633 634 635 636 637 638 639 640 641 642
def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
643
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
644 645

    np.random.seed(123)
646
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
647
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
648
    expect1 = np.array(0.6361, dtype=np.float32)
649 650

    np.random.seed(123)
651
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
652
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
653
    expect2 = np.array(0.6750, dtype=np.float32)
654 655 656 657 658

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
659

660
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
661

662 663 664 665 666
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
667 668 669
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
670 671
    )

672 673 674 675 676 677 678 679 680 681 682

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

683
    opr_test(cases, F.nn.hinge_loss)
684 685 686 687 688 689 690 691 692 693

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
694
        return F.nn.hinge_loss(pred, label, "L2")
695 696 697 698

    opr_test(cases, hinge_loss_with_l2_norm)


699 700 701 702 703 704 705 706 707 708 709 710 711
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_nms(is_symbolic):
    def fn(inp, scores):
        return F.vision.nms(
            inp,
            scores=scores,
            iou_thresh=0.5,
            max_output=None if is_symbolic is None else 4,
        )

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

712 713 714 715 716 717 718 719 720 721 722
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
723 724 725 726 727 728 729 730 731 732
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))

    x = np.array([], dtype=np.float32,).reshape(0, 4)
    inp = tensor(x)
    scores = tensor([], dtype=np.float32)
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([], dtype=np.int32))
733 734


735
@pytest.mark.skipif(
736
    get_device_count("gpu") > 0, reason="cuda does not support nchw int8"
737
)
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
760
        nonlinear_mode="identity",
761 762
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
763
        w_v = np.random.normal(size=(OC, IC, KH, KW))
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
785
            var = F.transpose(var, (0, 1, 3, 4, 2))
786 787 788 789 790 791
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
792
            if nonlinear_mode == "relu":
793 794 795 796 797 798 799 800 801 802
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
803
            return F.quantized.conv_bias_activation(
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
821
            result = F.transpose(result, (0, 1, 4, 2, 3))
822 823
        expected = F.flatten(expected)
        result = F.flatten(result)
824
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
825 826 827 828 829 830 831 832 833

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

834 835
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu")
836 837


838
@pytest.mark.skipif(get_device_count("gpu") > 0, reason="no int8 algorithm on cuda")
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
def test_batch_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True,
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(N, OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def run_batch_conv_bias(inp, w, b):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            result = F.quantized.batch_conv_bias_activation(
                inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype,
            )
            return result.astype("float32")

        expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0]
        expected = expected.astype(out_dtype).astype("float32")
        expected = F.flatten(expected)

        result = run_batch_conv_bias(inp_int8, w_int8, b_int32)
        result = F.flatten(result)

        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True)


889 890
def test_conv2d_autocast():
    """check amp's result is equal to manually converted result"""
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    amp.enabled = True
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float32)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    amp.enabled = False
    expected = F.conv2d(
        inp.astype("float16"),
        weight.astype("float16"),
        None,
        (2, 2),
        (3, 3),
        (1, 1),
        1,
        compute_mode="float32",
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


911
def test_conv2d_zero_stride_numpy_array():
912 913 914 915 916 917 918 919
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


920 921 922 923 924 925 926 927 928 929
def test_conv3d_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32)
    out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)
    out.numpy()


930 931
@pytest.mark.parametrize("bias", [True, False])
def test_conv1d(bias):
932 933
    inp = tensor(np.ones((2, 2, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2), dtype=np.float32))
934 935
    bias = tensor(np.ones((1, 3, 1), dtype=np.float32)) if bias else None
    out = F.conv1d(inp, weight, bias, 2, 0, 1, 1)
936 937
    np.testing.assert_equal(
        out.numpy(),
938 939 940
        np.array([[[5, 5], [5, 5], [5, 5]], [[5, 5], [5, 5], [5, 5]]], dtype=np.float32)
        if bias is not None
        else np.array(
941 942 943 944 945
            [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32
        ),
    )


946 947
def test_batchnorm2d_autocast():
    """check amp's result is equal to manually converted result"""
948
    amp.enabled = True
949 950
    tshape = (1, 3, 224, 224)
    pshape = (1, 3, 1, 1)
951 952 953
    inp = tensor(np.random.randn(*tshape), dtype=np.float32)
    weight = tensor(np.ones(pshape, dtype=np.float32))
    bias = tensor(np.zeros(pshape, dtype=np.float32))
954 955 956 957 958

    out = F.batch_norm(inp, weight=weight, bias=bias, training=True, inplace=False)

    amp.enabled = False
    expected = F.batch_norm(
959
        inp.astype("float16"), weight=weight, bias=bias, training=True, inplace=False,
960 961 962 963 964 965
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


966 967
@pytest.mark.parametrize("bias", [True, False])
def test_conv3d(bias):
968 969
    inp = tensor(np.ones((2, 2, 4, 4, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2, 2, 2), dtype=np.float32))
970 971 972 973 974
    bias = tensor(np.ones((1, 3, 1, 1, 1), dtype=np.float32)) if bias else None
    out = F.conv3d(inp, weight, bias, 2, 0, 1, 1)
    target = np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16
    target = target + 1 if bias is not None else target
    np.testing.assert_equal(out.numpy(), target)
975 976


977 978 979 980 981 982 983 984
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
985 986


987 988
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_condtake(is_symbolic):
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    shapes = [
        (3, 3, 3),
        (0,),
        (3, 0, 3),
    ]

    def fn(mask, data):
        return F.cond_take(mask, data)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

    for shp in shapes:
        x_np = np.random.randn(*shp).astype("float32")
        mask_np = x_np > 0
        x = tensor(x_np)
        mask = tensor(mask_np)
        ref_out = x_np[mask_np]
        ref_idx = mask_np.flatten().nonzero()[0]
        for i in range(3):
            out, idx = fn(mask, x)
            np.testing.assert_equal(out.numpy(), ref_out)
            np.testing.assert_equal(idx.numpy(), ref_idx)
            if is_symbolic is None:
                break


1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
1031 1032


1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
def test_argmxx_on_inf():
    def run_argmax():
        x = F.zeros((100, 100))
        x[:] = -float("inf")
        idxs = F.argmax(x, axis=0)
        return idxs

    def run_argmin():
        x = F.zeros((100, 100))
        x[:] = float("inf")
        idxs = F.argmin(x, axis=0)
        return idxs

    assert all(run_argmax() >= 0)
    assert all(run_argmin() >= 0)
1048 1049


1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
def test_deformable_psroi_pooling():
    inp = np.random.random((1, 256, 64, 64)).astype("float32")
    rois = np.random.random((1, 5)).astype("float32")
    trans = np.random.random((24, 2, 7, 7)).astype("float32")

    pooled_h = 7
    pooled_w = 7
    sample_per_part = 4
    no_trans = False
    part_size = 7
    spatial_scale = 1.0 / 64
    trans_std = 0.1

    y = F.deformable_psroi_pooling(
        tensor(inp),
        tensor(rois),
        tensor(trans),
        no_trans,
        part_size,
        pooled_h,
        pooled_w,
        sample_per_part,
        spatial_scale,
        trans_std,
    )


1077 1078 1079 1080
def test_cvt_color():
    def rgb2gray(rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])

1081 1082 1083
    def bgr2gray(bgr):
        return np.dot(bgr[..., :3], [0.114, 0.587, 0.299])

1084 1085 1086
    inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
    out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
    x = tensor(inp)
1087
    y = F.vision.cvt_color(x, mode="RGB2GRAY")
1088
    np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
1089

1090 1091 1092 1093
    out1 = np.expand_dims(bgr2gray(inp), 3).astype(np.float32)
    y1 = F.vision.cvt_color(x, mode="BGR2GRAY")
    np.testing.assert_allclose(y1.numpy(), out1, atol=1e-5)

1094 1095 1096 1097 1098 1099

@pytest.mark.parametrize("val", [2, [2,], [2, 3]])
def test_ones(val):
    shp = tensor(val)
    np_shp = np.array(val)
    np.testing.assert_equal(F.ones(shp), np.ones(np_shp))
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114


def test_assert_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.00001
    z = F.utils._assert_equal(x, y)


def test_assert_not_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.1
    with pytest.raises(RuntimeError):
        z = F.utils._assert_equal(x, y)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130


def test_neg_axis():
    x = tensor(np.random.normal(0, 1, (32, 5)))

    y = F.argmax(x, axis=-1)
    yy = F.argmax(x, axis=1)
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmax(x, axis=(-1, -2))
    yy = F.argmax(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmin(x, axis=(-1, -2))
    yy = F.argmin(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155


def test_sliding_window():
    N, C, H, W = 2, 3, 7, 8
    inp = np.random.normal(size=(N, C, H, W))
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2))
    inp_pad[:, :, ph : H + ph, pw : W + pw] = inp
    gt_out = np.empty(
        (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32
    )
    for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])):
        ih, iw = oh * sh, ow * sw
        gt_out[n, c, oh, ow, :] = inp_pad[
            n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw
        ]

    out = F.sliding_window(
        tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw)
    )
    np.testing.assert_equal(gt_out, out.numpy())
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191


def test_sliding_window_transpose():
    N, C, H, W = 2, 3, 7, 8
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp = np.random.normal(
        size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww)
    ).astype(np.float32)
    gt_out = np.zeros((N, C, H, W), dtype=np.float32)

    for n, c in itertools.product(*map(range, inp.shape[:2])):
        oh = 0
        for ih in range(-ph, H + ph - dh * (wh - 1), sh):
            ow = 0
            for iw in range(-pw, W + pw - dw * (ww - 1), sw):
                for kh, kw in itertools.product(*map(range, inp.shape[-2:])):
                    ih2 = ih + dh * kh
                    iw2 = iw + dw * kw
                    if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W:
                        gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw]
                ow += 1
            oh += 1

    out = F.sliding_window_transpose(
        tensor(inp),
        (H, W),
        (wh, ww),
        padding=(ph, pw),
        stride=(sh, sw),
        dilation=(dh, dw),
    )
    np.testing.assert_equal(gt_out, out.numpy())
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210


def test_pad():
    src = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
    dst = np.pad(src, ((2, 2), (2, 2)), "constant")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "constant", constant_values=3)
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT", constant_value=3)
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "edge")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "EDGE")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "reflect")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT")
    np.testing.assert_allclose(res, dst, atol=1e-5)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240


def pixel_shuffle(data, r):
    high_dim = data.shape[:-3]
    data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1])
    inn, ic, ih, iw = data.shape
    res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r))
    for n in range(inn):
        for c in range(ic):
            for h in range(ih):
                for w in range(iw):
                    res[
                        n,
                        int(c / r / r),
                        h * r + int((c % (r * r)) / r),
                        w * r + c % r,
                    ] = data[n, c, h, w]
    if len(high_dim) > 0:
        res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r))
    else:
        res = res[0]
    return res


def test_pixel_shuffle():
    # ndim = 3
    inp = np.arange(16 * 3 * 3).reshape(16, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=4)
    golden = pixel_shuffle(inp, 4)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1241
    inp_float = np.float32(inp)
1242
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1243
    golden = pixel_shuffle(inp_float, 2)
1244
    np.testing.assert_equal(out.numpy(), golden)
1245 1246 1247 1248 1249 1250

    # ndim = 4
    inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=3)
    golden = pixel_shuffle(inp, 3)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1251
    inp_float = np.float32(inp)
1252 1253 1254
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=3)
    golden = pixel_shuffle(inp_float, 3)
    np.testing.assert_equal(out.numpy(), golden)
1255 1256 1257 1258 1259 1260

    # ndim = 5
    inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1261
    inp_float = np.float32(inp)
1262
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1263
    golden = pixel_shuffle(inp_float, 2)
1264
    np.testing.assert_equal(out.numpy(), golden)
1265 1266 1267 1268 1269
    # ndim = 6
    inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=5)
    golden = pixel_shuffle(inp, 5)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1270
    inp_float = np.float32(inp)
1271 1272 1273
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=5)
    golden = pixel_shuffle(inp_float, 5)
    np.testing.assert_equal(out.numpy(), golden)
1274 1275 1276 1277 1278 1279

    # ndim = 7
    inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1280
    inp_float = np.float32(inp)
1281
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1282
    golden = pixel_shuffle(inp_float, 2)
1283
    np.testing.assert_equal(out.numpy(), golden)
1284 1285


1286
@pytest.mark.parametrize("type", ["int32", "float32"])
1287
@pytest.mark.parametrize("is_symbolic", [False, True])
1288
def test_pixel_shuffle_symbolic(is_symbolic, type):
1289 1290 1291 1292 1293 1294
    def fn(inp, upscale_factor):
        return F.pixel_shuffle(inp, upscale_factor=upscale_factor)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

1295
    inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5).astype(type))
1296 1297 1298 1299 1300 1301
    golden = pixel_shuffle(inp, 2)
    for _ in range(3):
        out = fn(inp, 2)
        np.testing.assert_equal(out.numpy(), golden)
        if is_symbolic is None:
            break
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319


def test_set_conv2d_config():
    """check setting config by contextmanager is equal to manually converted result"""
    config._compute_mode = "float32"
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float16)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float16)
    config_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    config._compute_mode = "default"
    with config._override(compute_mode="float32"):
        context_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    expected = F.conv2d(
        inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32",
    )
    np.testing.assert_allclose(config_out.numpy(), expected.numpy())
    np.testing.assert_allclose(context_out.numpy(), expected.numpy())


1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
@pytest.mark.parametrize("stride", [(1, 1)])
@pytest.mark.parametrize("padding", [(1, 1)])
@pytest.mark.parametrize("dilation", [(1, 1)])
@pytest.mark.parametrize("ksize", [(3, 3)])
@pytest.mark.parametrize("groups", [1, 2])
def test_local_conv2d(stride, padding, dilation, ksize, groups):
    batch_size, in_channels, out_channels = 2, 4, 8
    input_height, input_width = 10, 10
    output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1
    output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1

    def local_conv2d_np(data, weight, stride, padding, dialtion):
        # naive calculation use numpy
        # only test output_height == input_height, output_width == input_width
        data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1)))
        expected = np.zeros(
            (batch_size, out_channels, output_height, output_width), dtype=np.float32,
        )
        ic_group_size = in_channels // groups
        oc_group_size = out_channels // groups
        for n, oc, oh, ow in itertools.product(
            *map(range, [batch_size, out_channels, output_height, output_width])
        ):
            ih, iw = oh * stride[0], ow * stride[1]
            g_id = oc // oc_group_size
            expected[n, oc, ih, iw] = np.sum(
                data[
                    n,
                    g_id * ic_group_size : (g_id + 1) * ic_group_size,
                    ih : ih + ksize[0],
                    iw : iw + ksize[1],
                ]
                * weight[g_id, oh, ow, :, :, :, oc % oc_group_size]
            )
        return expected

    data = np.random.rand(batch_size, in_channels, input_height, input_width).astype(
        "float32"
    )
    weight = np.random.rand(
        groups,
        output_height,
        output_width,
        in_channels // groups,
        *ksize,
        out_channels // groups,
    ).astype("float32")
    output = F.local_conv2d(
        tensor(data),
        tensor(weight),
        None,
        stride=stride,
        padding=padding,
        dilation=dilation,
    )
    ref = local_conv2d_np(data, weight, stride, padding, dilation)
    np.testing.assert_almost_equal(output.numpy(), ref, 5)