Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
c1c1d6d1
MegEngine
项目概览
MegEngine 天元
/
MegEngine
1 年多 前同步成功
通知
404
Star
4705
Fork
582
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
c1c1d6d1
编写于
10月 09, 2022
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat(imperative): region restrictd conv support bias in python
GitOrigin-RevId: 9a2c1ee27a0ca576f98c072d2854ebe59a2ff5ce
上级
f287501e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
55 addition
and
21 deletion
+55
-21
imperative/python/megengine/functional/nn.py
imperative/python/megengine/functional/nn.py
+6
-0
imperative/python/megengine/module/conv.py
imperative/python/megengine/module/conv.py
+6
-3
imperative/python/test/unit/functional/test_functional.py
imperative/python/test/unit/functional/test_functional.py
+43
-18
未找到文件。
imperative/python/megengine/functional/nn.py
浏览文件 @
c1c1d6d1
...
...
@@ -1980,6 +1980,7 @@ def region_restricted_conv(
weight
:
Tensor
,
rin
:
Tensor
,
rout
:
Tensor
,
bias
:
Optional
[
Tensor
]
=
None
,
stride
:
Union
[
int
,
Tuple
[
int
,
int
,
int
]]
=
1
,
padding
:
Union
[
int
,
Tuple
[
int
,
int
,
int
]]
=
0
,
dilation
:
Union
[
int
,
Tuple
[
int
,
int
,
int
]]
=
1
,
...
...
@@ -1994,6 +1995,9 @@ def region_restricted_conv(
Args:
inp: feature map of the convolution operation.
weight: convolution kernel.
rin: input mask
rout: output mask
bias: bias added to the result of convolution (if given).
stride: stride of the 2D region restricted convolution operation. Default: 1
padding: size of the paddings added to the input on both sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
...
...
@@ -2027,6 +2031,8 @@ def region_restricted_conv(
sparse
=
sparse_type
,
)
(
output
,)
=
apply
(
op
,
inp
,
weight
,
rin
,
rout
)
if
bias
is
not
None
:
output
+=
bias
return
output
...
...
imperative/python/megengine/module/conv.py
浏览文件 @
c1c1d6d1
...
...
@@ -1040,6 +1040,7 @@ class RegionRestrictedConv(_ConvNd):
``in_channels`` and ``out_channels`` must be divisible by ``groups``,
and the shape of weight should be ``(groups, out_channel // groups,
in_channels // groups, height, width)``. Default: 1
bias: whether to add a bias onto the result of convolution. Default: True
conv_mode: Supports `cross_correlation`. Default: `cross_correlation`
compute_mode: When set to "default", no special requirements will be
placed on the precision of intermediate results. When set to "float32",
...
...
@@ -1071,6 +1072,7 @@ class RegionRestrictedConv(_ConvNd):
out_channels
:
int
,
kernel_size
:
Union
[
int
,
Tuple
[
int
,
int
]],
groups
:
int
,
bias
:
bool
=
True
,
stride
:
Union
[
int
,
Tuple
[
int
,
int
]]
=
1
,
padding
:
Union
[
int
,
Tuple
[
int
,
int
]]
=
0
,
dilation
:
Union
[
int
,
Tuple
[
int
,
int
]]
=
1
,
...
...
@@ -1095,7 +1097,7 @@ class RegionRestrictedConv(_ConvNd):
0
,
dilation
,
groups
,
False
,
bias
,
**
kwargs
,
)
...
...
@@ -1133,7 +1135,7 @@ class RegionRestrictedConv(_ConvNd):
(
self
.
padding
[
1
],
self
.
padding
[
1
]),
)
def
calc_conv
(
self
,
inp
,
weight
,
rin
,
rout
):
def
calc_conv
(
self
,
inp
,
weight
,
rin
,
rout
,
bias
):
assert
self
.
padding_mode
in
[
"zeros"
,
"reflect"
,
...
...
@@ -1144,6 +1146,7 @@ class RegionRestrictedConv(_ConvNd):
weight
,
rin
,
rout
,
bias
,
self
.
stride
,
self
.
padding
,
self
.
dilation
,
...
...
@@ -1153,4 +1156,4 @@ class RegionRestrictedConv(_ConvNd):
)
def
forward
(
self
,
inp
,
rin
,
rout
):
return
self
.
calc_conv
(
inp
,
self
.
weight
,
rin
,
rout
)
return
self
.
calc_conv
(
inp
,
self
.
weight
,
rin
,
rout
,
self
.
bias
)
imperative/python/test/unit/functional/test_functional.py
浏览文件 @
c1c1d6d1
...
...
@@ -930,7 +930,8 @@ def test_batch_conv_bias():
run
(
1
,
4
,
4
,
5
,
5
,
3
,
3
,
0
,
0
,
1
,
1
,
True
)
def
test_region_restricted_conv_forward_backward_naive
():
@
pytest
.
mark
.
parametrize
(
"bias"
,
[
True
,
False
])
def
test_region_restricted_conv_forward_backward_naive
(
bias
):
import
megengine
as
mge
import
megengine.module
as
M
from
megengine.autodiff
import
GradManager
...
...
@@ -943,15 +944,22 @@ def test_region_restricted_conv_forward_backward_naive():
cpu_src
=
tensor
(
src_1
,
device
=
handle
)
cpu_filter
=
tensor
(
filter_1
,
device
=
handle
)
gm
=
GradManager
().
attach
([
cpu_src
,
cpu_filter
])
cpu_bias
=
(
tensor
(
np
.
ones
((
1
,
2
,
1
,
1
),
dtype
=
np
.
float32
),
device
=
handle
)
if
bias
else
None
)
with
gm
:
cpu_out
=
F
.
region_restricted_conv
(
cpu_src
,
cpu_filter
,
tensor
(
rin_1
,
device
=
handle
),
tensor
(
rout_1
,
device
=
handle
),
bias
=
cpu_bias
,
groups
=
2
,
)
gm
.
backward
(
cpu_out
,
tensor
(
np
.
ones
((
1
,
2
,
1
,
1
)),
device
=
handle
))
if
cpu_bias
is
not
None
:
cpu_out
=
cpu_out
-
cpu_bias
np
.
testing
.
assert_allclose
(
cpu_out
,
np
.
array
([
14
,
126
]).
reshape
(
1
,
2
,
1
,
1
))
np
.
testing
.
assert_allclose
(
cpu_src
.
grad
,
np
.
array
([
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
]).
reshape
(
1
,
2
,
2
,
2
)
)
...
...
@@ -963,7 +971,8 @@ def test_region_restricted_conv_forward_backward_naive():
@
pytest
.
mark
.
skipif
(
not
is_cuda_available
(),
reason
=
"rrconv cuda kernel requires cuda available"
)
def
test_region_restricted_conv_forward_backward_cuda
():
@
pytest
.
mark
.
parametrize
(
"bias"
,
[
True
,
False
])
def
test_region_restricted_conv_forward_backward_cuda
(
bias
):
import
megengine
as
mge
import
megengine.module
as
M
from
megengine.autodiff
import
GradManager
...
...
@@ -998,18 +1007,23 @@ def test_region_restricted_conv_forward_backward_cuda():
filter
=
tensor
(
np
.
ones
(
filter_shape
).
astype
(
np
.
float32
),
device
=
"cpu0"
)
rin
=
tensor
(
np
.
ones
(
rin_shape
).
astype
(
np
.
int32
),
device
=
"cpu0"
)
rout
=
tensor
(
np
.
ones
(
rout_shape
).
astype
(
np
.
int32
),
device
=
"cpu0"
)
bias_cpu
=
(
tensor
(
np
.
ones
(
diff_shape
).
astype
(
np
.
float32
),
device
=
"cpu0"
)
if
bias
else
None
)
gm
=
GradManager
().
attach
([
src
,
filter
])
with
gm
:
expected_out
=
F
.
region_restricted_conv
(
src
,
filter
,
rin
,
rout
,
groups
=
GROUP
src
,
filter
,
rin
,
rout
,
bias
=
bias_cpu
,
groups
=
GROUP
)
gm
.
backward
(
expected_out
,
tensor
(
np
.
ones
(
diff_shape
,
dtype
=
np
.
float32
),
device
=
"cpu0"
),
)
return
src
,
filter
return
src
,
filter
,
expected_out
expected_src
,
expected_filter
=
get_groundtruth
()
expected_src
,
expected_filter
,
expected_out
=
get_groundtruth
()
src
=
tensor
(
np
.
arange
(
reduce
(
src_shape
)).
reshape
(
src_shape
).
astype
(
np
.
float32
),
...
...
@@ -1018,18 +1032,25 @@ def test_region_restricted_conv_forward_backward_cuda():
filter
=
tensor
(
np
.
ones
(
filter_shape
).
astype
(
np
.
float32
),
device
=
handle
)
rin
=
tensor
(
np
.
ones
(
rin_shape
).
astype
(
np
.
int32
),
device
=
handle
)
rout
=
tensor
(
np
.
ones
(
rout_shape
).
astype
(
np
.
int32
),
device
=
handle
)
bias_gpu
=
(
tensor
(
np
.
ones
(
diff_shape
).
astype
(
np
.
float32
),
device
=
handle
)
if
bias
else
None
)
gm
=
GradManager
().
attach
([
src
,
filter
])
with
gm
:
gpu_out
=
F
.
region_restricted_conv
(
src
,
filter
,
rin
,
rout
,
groups
=
GROUP
)
gpu_out
=
F
.
region_restricted_conv
(
src
,
filter
,
rin
,
rout
,
bias
=
bias_gpu
,
groups
=
GROUP
)
gm
.
backward
(
gpu_out
,
tensor
(
np
.
ones
(
diff_shape
),
device
=
handle
))
np
.
testing
.
assert_allclose
(
src
.
grad
,
expected_src
.
grad
)
np
.
testing
.
assert_allclose
(
filter
.
grad
,
expected_filter
.
grad
)
np
.
testing
.
assert_allclose
(
gpu_out
,
expected_out
)
@
pytest
.
mark
.
skipif
(
not
is_cuda_available
(),
reason
=
"rrconv cuda kernel requires cuda available"
)
def
test_region_restricted_conv_forward_backward_uint8
():
@
pytest
.
mark
.
parametrize
(
"bias"
,
[
True
,
False
])
def
test_region_restricted_conv_forward_backward_uint8
(
bias
):
import
megengine
as
mge
import
megengine.module
as
M
from
megengine.autodiff
import
GradManager
...
...
@@ -1063,18 +1084,23 @@ def test_region_restricted_conv_forward_backward_uint8():
filter
=
tensor
(
np
.
ones
(
filter_shape
).
astype
(
np
.
float32
),
device
=
"cpu0"
)
rin
=
tensor
(
np
.
ones
(
rin_shape
).
astype
(
np
.
int32
),
device
=
"cpu0"
)
rout
=
tensor
(
np
.
ones
(
rout_shape
).
astype
(
np
.
int32
),
device
=
"cpu0"
)
bias_cpu
=
(
tensor
(
np
.
ones
(
diff_shape
).
astype
(
np
.
float32
),
device
=
"cpu0"
)
if
bias
else
None
)
gm
=
GradManager
().
attach
([
src
,
filter
])
with
gm
:
expected_out
=
F
.
region_restricted_conv
(
src
,
filter
,
rin
,
rout
,
groups
=
GROUP
src
,
filter
,
rin
,
rout
,
bias
=
bias_cpu
,
groups
=
GROUP
)
gm
.
backward
(
expected_out
,
tensor
(
np
.
ones
(
diff_shape
,
dtype
=
np
.
float32
),
device
=
"cpu0"
),
)
return
src
,
filter
return
src
,
filter
,
expected_out
expected_src
,
expected_filter
=
get_groundtruth
()
expected_src
,
expected_filter
,
expected_out
=
get_groundtruth
()
# forward and dgrad/wgrad
src
=
tensor
(
...
...
@@ -1084,23 +1110,22 @@ def test_region_restricted_conv_forward_backward_uint8():
filter
=
tensor
(
np
.
ones
(
filter_shape
).
astype
(
np
.
float32
),
device
=
handle
)
rin
=
tensor
(
np
.
ones
(
rin_shape
).
astype
(
np
.
uint8
),
device
=
handle
)
rout
=
tensor
(
np
.
ones
(
rout_shape
).
astype
(
np
.
uint8
),
device
=
handle
)
bias_gpu
=
(
tensor
(
np
.
ones
(
diff_shape
).
astype
(
np
.
float32
),
device
=
handle
)
if
bias
else
None
)
gm
=
GradManager
().
attach
([
src
,
filter
])
with
gm
:
gpu_out
=
F
.
region_restricted_conv
(
src
,
filter
,
rin
,
rout
,
groups
=
GROUP
)
gpu_out
=
F
.
region_restricted_conv
(
src
,
filter
,
rin
,
rout
,
bias
=
bias_gpu
,
groups
=
GROUP
)
gm
.
backward
(
gpu_out
,
tensor
(
np
.
ones
(
diff_shape
,
dtype
=
np
.
float32
),
device
=
handle
)
)
# assert uint8 gpu result close to cpu result
np
.
testing
.
assert_allclose
(
src
.
grad
,
expected_src
.
grad
)
np
.
testing
.
assert_allclose
(
filter
.
grad
,
expected_filter
.
grad
)
def
test_region_restricted_conv
():
test_region_restricted_conv_forward_backward_naive
()
if
is_cuda_available
():
test_region_restricted_conv_forward_backward_cuda
()
test_region_restricted_conv_forward_backward_uint8
()
np
.
testing
.
assert_allclose
(
gpu_out
,
expected_out
)
def
test_conv2d_autocast
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录