test_functional.py 43.2 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8 9
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools
10
import platform
11
from functools import partial
12 13 14

import numpy as np
import pytest
15
from utils import opr_test
16

17
import megengine.amp as amp
18
import megengine.config as config
19
import megengine.core.ops.builtin as builtin
20 21
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
22
import megengine.jit as jit
M
Megvii Engine Team 已提交
23
from megengine import Parameter, Tensor, is_cuda_available, tensor
24
from megengine.core._trace_option import use_symbolic_shape
25
from megengine.core.autodiff.grad import Grad
26
from megengine.core.tensor.utils import make_shape_tuple
27
from megengine.device import get_device_count
28
from megengine.module import LayerNorm
29

30 31
_assert_allclose = partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6)

32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

50 51 52 53
    maskv4 = np.array(1, dtype=np.bool_)
    xv4 = np.array(1, dtype=np.float32)
    yv4 = np.array(0, dtype=np.float32)

54
    cases = [
55 56
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
57 58
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
59
        {"input": [maskv4, xv4, yv4]},
60
    ]
61
    opr_test(cases, F.where, ref_fn=np.where, test_trace=True)
62 63


64
def test_dropout():
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    from megengine.autodiff import GradManager
    from megengine.core._imperative_rt.ops import set_global_rng_seed

    def test_dropout_with_shape(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out = F.nn.dropout(data, rate, training=True)
            gm.backward(out, tensor(np.ones(shape, dtype=np.float32)))
            assert not out.numpy().all()
            np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_multiple_dropout(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out1 = F.nn.dropout(data, rate, training=True)
            out2 = F.nn.dropout(out1, rate, training=True)
            out3 = F.nn.dropout(out2, rate, training=True)
            gm.backward(out3, tensor(np.ones(shape, dtype=np.float32)))
            np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_dropout_seed(shape, rate):
        data = tensor(np.random.randn(*shape), dtype="float32")
        set_global_rng_seed(111)
        out1 = F.nn.dropout(data, rate, training=True)
        out2 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out2.numpy()).all()

        set_global_rng_seed(111)
        out3 = F.nn.dropout(data, rate, training=True)
        assert (out1.numpy() == out3.numpy()).all()

        set_global_rng_seed(222)
        out4 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out4.numpy()).all()

    test_dropout_with_shape([13, 17, 63, 21], 0.4)
    test_dropout_with_shape([16, 32, 64], 0.3)
    test_multiple_dropout([1024], 0.2)
    test_dropout_seed([16, 32], 0.2)
106 107


108 109 110 111 112
def test_matinv():
    shape1 = (5, 5)
    shape2 = (3, 9, 9)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
M
Megvii Engine Team 已提交
113 114 115
    # make matrix diagonally dominant for numerical stability
    data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32")
    data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2)
116 117 118 119 120 121 122 123 124

    cases = [
        {"input": data1},
        {"input": data2},
    ]

    opr_test(
        cases,
        F.matinv,
125
        compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4),
126 127 128 129
        ref_fn=np.linalg.inv,
    )


130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
148 149 150 151 152
    shape1 = (2,)
    shape2 = (batch_size, 2, 3)
    shape3 = (batch_size, 3, 4)
    shape4 = (batch_size, 10, 4, 2)
    shape5 = (batch_size, 10, 2, 4)
153 154 155
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
156 157
    data4 = np.random.random(shape4).astype("float32")
    data5 = np.random.random(shape5).astype("float32")
158

159 160 161 162 163 164
    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
        {"input": [data4, data5]},
    ]
165
    opr_test(cases, F.matmul, ref_fn=np.matmul)
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    opr_test(
        [{"input": [data1, data4]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)),
        transpose_b=True,
    )

    opr_test(
        [{"input": [data3, data2]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)),
        transpose_a=True,
        transpose_b=True,
    )

182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
@pytest.mark.parametrize(
    "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic):
    def func(a, b):
        return F.matmul(a, b)

    if is_symbolic is not None:
        func = jit.trace(symbolic=is_symbolic)(func)

    a = tensor(np.random.randn(*shape_a))
    b = tensor(np.random.randn(*shape_b))
    for _ in range(3):
        out = func(a, b)
        assert np.all(out.numpy() == 0)
        if is_symbolic is None:
            break


203 204 205 206
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

207 208
        out = F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
        out2 = F.vision.interpolate(inp, 4, mode="linear")
209

210
        np.testing.assert_allclose(
211 212
            out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )
213
        np.testing.assert_allclose(
214 215 216 217 218 219
            out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

220 221
        out = F.vision.interpolate(inp, [4, 4])
        out2 = F.vision.interpolate(inp, scale_factor=2.0)
222

223
        np.testing.assert_allclose(out.numpy(), out2.numpy())
224 225 226 227

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

228 229
        out = F.vision.interpolate(inp, [4, 4], align_corners=True)
        out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True)
230

231
        np.testing.assert_allclose(out.numpy(), out2.numpy())
232 233 234 235 236

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
237
            F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
238 239 240 241 242

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
243
            F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear")
244 245 246 247 248 249 250 251 252

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
    inappropriate_scale_linear_interpolate()


def _save_to(self, name="grad"):
253
    def callback(grad):
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))

        output_shape = (7, 7)
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
293

294
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
295 296


297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)):
    if random:
        inp_feat1 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
        inp_feat2 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
    else:
        inp_feat1 = np.ones(image_shape) * constant
        inp_feat2 = np.ones(image_shape) * constant

    return tensor(inp_feat1), tensor(inp_feat2)


def test_correlation():
    ##test case 0 check the grad shape
    data1, data2 = _gen_correlation()

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    with Grad() as grad:
        grad.wrt(data1, callback=_save_to(data1))

        out_feat = F.vision.correlation(
            data1,
            data2,
            kernel_size=5,
            max_displacement=4,
            stride1=2,
            stride2=2,
            pad_size=2,
            is_multiply=True,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

    assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape)

    ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=True,
    )
    assert abs(out_feat.sum() - 1) < 1e-9

    ##test case 2 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 3 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 4 check correlation
    data1, _ = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=2.0
    )
    _, data2 = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=1.0
    )

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=2,
        stride1=1,
        stride2=2,
        pad_size=0,
        is_multiply=False,
    )
    assert abs(out_feat.mean() - 1) < 1e-9


400 401
def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
402 403 404 405 406 407 408 409 410 411 412 413 414
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))
        output_shape = (7, 7)
        out_feat = F.vision.roi_pooling(
            inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
415

416
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
417 418


419 420 421
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
422 423 424 425 426 427 428 429 430
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_avg_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
454 455 456 457 458 459 460 461 462
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_max_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


483 484 485 486
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
487

488
        np.testing.assert_allclose(
489 490
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
491

492 493 494 495 496
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
497

498 499
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
500

501
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
502

503 504
    onehot_low_dimension()
    onehot_high_dimension()
505 506


507
def test_interpolate_fastpath():
508 509 510 511 512
    # check shape
    test_cases = [
        [(1, 1, 10, 10), (5, 5)],
        [(1, 3, 10, 10), (20, 20)],
        [(10, 1, 10, 10), (1, 1)],
513
        [(10, 10, 1, 1), (10, 10)],
514 515 516
    ]
    for inp_shape, target_shape in test_cases:
        x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
517
        out = F.vision.interpolate(x, target_shape, mode="bilinear")
518 519 520 521 522
        assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
        assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]

    # check value
    x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
523
    out = F.vision.interpolate(x, (15, 5), mode="bilinear")
524 525 526 527
    np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))

    np_x = np.arange(32)
    x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
528
    out = F.vision.interpolate(x, (1, 1), mode="bilinear")
529 530 531
    np.testing.assert_equal(out.item(), np_x.mean())


532 533
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective(dt):
534
    inp_shape = (1, 1, 4, 4)
535
    x = tensor(np.arange(16, dtype=dt).reshape(inp_shape))
536 537 538 539 540 541 542
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
543
    outp = F.vision.warp_perspective(x, M, (2, 2))
544
    np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt))
545 546


547 548
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective_mat_idx(dt):
549
    inp_shape = (2, 1, 4, 4)
550
    x = tensor(np.arange(32, dtype=dt).reshape(inp_shape))
551 552 553 554 555 556 557 558 559 560 561 562 563
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
    M = F.concat([M,] * 4, 0)
    outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
    np.testing.assert_equal(
        outp.numpy(),
        np.array(
            [
564 565 566 567
                [[[5, 6], [9, 10]]],
                [[[21, 22], [25, 26]]],
                [[[21, 22], [25, 26]]],
                [[[5, 6], [9, 10]]],
568
            ],
569
            dtype=dt,
570 571 572 573
        ),
    )


574 575 576 577
def test_warp_affine():
    inp_shape = (1, 3, 3, 3)
    x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
    weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
578
    outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap")
579 580 581 582 583 584 585 586 587 588 589 590 591
    res = np.array(
        [
            [
                [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]],
                [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]],
            ]
        ],
        dtype=np.float32,
    )
    if not is_cuda_available():
        np.testing.assert_almost_equal(outp.numpy(), res, 5)


592 593 594 595 596 597 598 599 600
def test_remap():
    inp_shape = (1, 1, 4, 4)
    inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    map_xy_shape = (1, 2, 2, 2)
    map_xy = tensor(
        np.array(
            [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
        ).reshape(map_xy_shape)
    )
601
    outp = F.vision.remap(inp, map_xy)
602 603 604 605 606
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
    )


607 608 609 610 611 612 613 614 615 616
def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
617
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
618 619

    np.random.seed(123)
620
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
621
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
622
    expect1 = np.array(0.6361, dtype=np.float32)
623 624

    np.random.seed(123)
625
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
626
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
627
    expect2 = np.array(0.6750, dtype=np.float32)
628 629 630 631 632

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
633

634
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
635

636 637 638 639 640
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
641 642 643
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
644 645
    )

646 647 648 649 650 651 652 653 654 655 656

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

657
    opr_test(cases, F.nn.hinge_loss)
658 659 660 661 662 663 664 665 666 667

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
668
        return F.nn.hinge_loss(pred, label, "L2")
669 670 671 672

    opr_test(cases, hinge_loss_with_l2_norm)


673 674 675 676 677 678 679 680 681 682 683 684 685
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_nms(is_symbolic):
    def fn(inp, scores):
        return F.vision.nms(
            inp,
            scores=scores,
            iou_thresh=0.5,
            max_output=None if is_symbolic is None else 4,
        )

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

686 687 688 689 690 691 692 693 694 695 696
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
697 698 699 700 701 702 703 704 705 706
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))

    x = np.array([], dtype=np.float32,).reshape(0, 4)
    inp = tensor(x)
    scores = tensor([], dtype=np.float32)
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([], dtype=np.int32))
707 708


709
@pytest.mark.skipif(
710
    get_device_count("gpu") > 0, reason="cuda does not support nchw int8"
711
)
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
734
        nonlinear_mode="identity",
735 736
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
737
        w_v = np.random.normal(size=(OC, IC, KH, KW))
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
759
            var = F.transpose(var, (0, 1, 3, 4, 2))
760 761 762 763 764 765
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
766
            if nonlinear_mode == "relu":
767 768 769 770 771 772 773 774 775 776
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
777
            return F.quantized.conv_bias_activation(
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
795
            result = F.transpose(result, (0, 1, 4, 2, 3))
796 797
        expected = F.flatten(expected)
        result = F.flatten(result)
798
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
799 800 801 802 803 804 805 806 807

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

808 809
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu")
810 811


812
@pytest.mark.skipif(get_device_count("gpu") > 0, reason="no int8 algorithm on cuda")
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
def test_batch_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True,
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(N, OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def run_batch_conv_bias(inp, w, b):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            result = F.quantized.batch_conv_bias_activation(
                inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype,
            )
            return result.astype("float32")

        expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0]
        expected = expected.astype(out_dtype).astype("float32")
        expected = F.flatten(expected)

        result = run_batch_conv_bias(inp_int8, w_int8, b_int32)
        result = F.flatten(result)

        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True)


863 864
def test_conv2d_autocast():
    """check amp's result is equal to manually converted result"""
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    amp.enabled = True
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float32)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    amp.enabled = False
    expected = F.conv2d(
        inp.astype("float16"),
        weight.astype("float16"),
        None,
        (2, 2),
        (3, 3),
        (1, 1),
        1,
        compute_mode="float32",
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


885
def test_conv2d_zero_stride_numpy_array():
886 887 888 889 890 891 892 893
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


894 895 896 897 898 899 900 901 902 903
def test_conv3d_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32)
    out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)
    out.numpy()


904
def test_conv1d():
905 906
    inp = tensor(np.ones((2, 2, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2), dtype=np.float32))
907 908 909 910 911 912 913 914 915
    out = F.conv1d(inp, weight, None, 2, 0, 1, 1)
    np.testing.assert_equal(
        out.numpy(),
        np.array(
            [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32
        ),
    )


916 917
def test_batchnorm2d_autocast():
    """check amp's result is equal to manually converted result"""
918
    amp.enabled = True
919 920
    tshape = (1, 3, 224, 224)
    pshape = (1, 3, 1, 1)
921 922 923
    inp = tensor(np.random.randn(*tshape), dtype=np.float32)
    weight = tensor(np.ones(pshape, dtype=np.float32))
    bias = tensor(np.zeros(pshape, dtype=np.float32))
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

    out = F.batch_norm(inp, weight=weight, bias=bias, training=True, inplace=False)

    amp.enabled = False
    expected = F.batch_norm(
        inp.astype("float16"),
        weight=weight,
        bias=bias,
        training=True,
        inplace=False,
        compute_mode="float32",
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


941
def test_conv3d():
942 943
    inp = tensor(np.ones((2, 2, 4, 4, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2, 2, 2), dtype=np.float32))
944 945 946 947 948 949
    out = F.conv3d(inp, weight, None, 2, 0, 1, 1)
    np.testing.assert_equal(
        out.numpy(), np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16
    )


950 951 952 953 954 955 956 957
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
958 959


960 961
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_condtake(is_symbolic):
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    shapes = [
        (3, 3, 3),
        (0,),
        (3, 0, 3),
    ]

    def fn(mask, data):
        return F.cond_take(mask, data)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

    for shp in shapes:
        x_np = np.random.randn(*shp).astype("float32")
        mask_np = x_np > 0
        x = tensor(x_np)
        mask = tensor(mask_np)
        ref_out = x_np[mask_np]
        ref_idx = mask_np.flatten().nonzero()[0]
        for i in range(3):
            out, idx = fn(mask, x)
            np.testing.assert_equal(out.numpy(), ref_out)
            np.testing.assert_equal(idx.numpy(), ref_idx)
            if is_symbolic is None:
                break


989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
1004 1005


1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
def test_argmxx_on_inf():
    def run_argmax():
        x = F.zeros((100, 100))
        x[:] = -float("inf")
        idxs = F.argmax(x, axis=0)
        return idxs

    def run_argmin():
        x = F.zeros((100, 100))
        x[:] = float("inf")
        idxs = F.argmin(x, axis=0)
        return idxs

    assert all(run_argmax() >= 0)
    assert all(run_argmin() >= 0)
1021 1022


1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
def test_deformable_psroi_pooling():
    inp = np.random.random((1, 256, 64, 64)).astype("float32")
    rois = np.random.random((1, 5)).astype("float32")
    trans = np.random.random((24, 2, 7, 7)).astype("float32")

    pooled_h = 7
    pooled_w = 7
    sample_per_part = 4
    no_trans = False
    part_size = 7
    spatial_scale = 1.0 / 64
    trans_std = 0.1

    y = F.deformable_psroi_pooling(
        tensor(inp),
        tensor(rois),
        tensor(trans),
        no_trans,
        part_size,
        pooled_h,
        pooled_w,
        sample_per_part,
        spatial_scale,
        trans_std,
    )


1050 1051 1052 1053
def test_cvt_color():
    def rgb2gray(rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])

1054 1055 1056
    def bgr2gray(bgr):
        return np.dot(bgr[..., :3], [0.114, 0.587, 0.299])

1057 1058 1059
    inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
    out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
    x = tensor(inp)
1060
    y = F.vision.cvt_color(x, mode="RGB2GRAY")
1061
    np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
1062

1063 1064 1065 1066
    out1 = np.expand_dims(bgr2gray(inp), 3).astype(np.float32)
    y1 = F.vision.cvt_color(x, mode="BGR2GRAY")
    np.testing.assert_allclose(y1.numpy(), out1, atol=1e-5)

1067 1068 1069 1070 1071 1072

@pytest.mark.parametrize("val", [2, [2,], [2, 3]])
def test_ones(val):
    shp = tensor(val)
    np_shp = np.array(val)
    np.testing.assert_equal(F.ones(shp), np.ones(np_shp))
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087


def test_assert_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.00001
    z = F.utils._assert_equal(x, y)


def test_assert_not_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.1
    with pytest.raises(RuntimeError):
        z = F.utils._assert_equal(x, y)
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103


def test_neg_axis():
    x = tensor(np.random.normal(0, 1, (32, 5)))

    y = F.argmax(x, axis=-1)
    yy = F.argmax(x, axis=1)
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmax(x, axis=(-1, -2))
    yy = F.argmax(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmin(x, axis=(-1, -2))
    yy = F.argmin(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128


def test_sliding_window():
    N, C, H, W = 2, 3, 7, 8
    inp = np.random.normal(size=(N, C, H, W))
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2))
    inp_pad[:, :, ph : H + ph, pw : W + pw] = inp
    gt_out = np.empty(
        (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32
    )
    for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])):
        ih, iw = oh * sh, ow * sw
        gt_out[n, c, oh, ow, :] = inp_pad[
            n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw
        ]

    out = F.sliding_window(
        tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw)
    )
    np.testing.assert_equal(gt_out, out.numpy())
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164


def test_sliding_window_transpose():
    N, C, H, W = 2, 3, 7, 8
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp = np.random.normal(
        size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww)
    ).astype(np.float32)
    gt_out = np.zeros((N, C, H, W), dtype=np.float32)

    for n, c in itertools.product(*map(range, inp.shape[:2])):
        oh = 0
        for ih in range(-ph, H + ph - dh * (wh - 1), sh):
            ow = 0
            for iw in range(-pw, W + pw - dw * (ww - 1), sw):
                for kh, kw in itertools.product(*map(range, inp.shape[-2:])):
                    ih2 = ih + dh * kh
                    iw2 = iw + dw * kw
                    if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W:
                        gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw]
                ow += 1
            oh += 1

    out = F.sliding_window_transpose(
        tensor(inp),
        (H, W),
        (wh, ww),
        padding=(ph, pw),
        stride=(sh, sw),
        dilation=(dh, dw),
    )
    np.testing.assert_equal(gt_out, out.numpy())
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183


def test_pad():
    src = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
    dst = np.pad(src, ((2, 2), (2, 2)), "constant")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "constant", constant_values=3)
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT", constant_value=3)
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "edge")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "EDGE")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "reflect")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT")
    np.testing.assert_allclose(res, dst, atol=1e-5)
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213


def pixel_shuffle(data, r):
    high_dim = data.shape[:-3]
    data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1])
    inn, ic, ih, iw = data.shape
    res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r))
    for n in range(inn):
        for c in range(ic):
            for h in range(ih):
                for w in range(iw):
                    res[
                        n,
                        int(c / r / r),
                        h * r + int((c % (r * r)) / r),
                        w * r + c % r,
                    ] = data[n, c, h, w]
    if len(high_dim) > 0:
        res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r))
    else:
        res = res[0]
    return res


def test_pixel_shuffle():
    # ndim = 3
    inp = np.arange(16 * 3 * 3).reshape(16, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=4)
    golden = pixel_shuffle(inp, 4)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1214
    inp_float = np.float32(inp)
1215
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1216
    golden = pixel_shuffle(inp_float, 2)
1217
    np.testing.assert_equal(out.numpy(), golden)
1218 1219 1220 1221 1222 1223

    # ndim = 4
    inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=3)
    golden = pixel_shuffle(inp, 3)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1224
    inp_float = np.float32(inp)
1225 1226 1227
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=3)
    golden = pixel_shuffle(inp_float, 3)
    np.testing.assert_equal(out.numpy(), golden)
1228 1229 1230 1231 1232 1233

    # ndim = 5
    inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1234
    inp_float = np.float32(inp)
1235
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1236
    golden = pixel_shuffle(inp_float, 2)
1237
    np.testing.assert_equal(out.numpy(), golden)
1238 1239 1240 1241 1242
    # ndim = 6
    inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=5)
    golden = pixel_shuffle(inp, 5)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1243
    inp_float = np.float32(inp)
1244 1245 1246
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=5)
    golden = pixel_shuffle(inp_float, 5)
    np.testing.assert_equal(out.numpy(), golden)
1247 1248 1249 1250 1251 1252

    # ndim = 7
    inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1253
    inp_float = np.float32(inp)
1254
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1255
    golden = pixel_shuffle(inp_float, 2)
1256
    np.testing.assert_equal(out.numpy(), golden)
1257 1258


1259
@pytest.mark.parametrize("type", ["int32", "float32"])
1260
@pytest.mark.parametrize("is_symbolic", [False, True])
1261
def test_pixel_shuffle_symbolic(is_symbolic, type):
1262 1263 1264 1265 1266 1267
    def fn(inp, upscale_factor):
        return F.pixel_shuffle(inp, upscale_factor=upscale_factor)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

1268
    inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5).astype(type))
1269 1270 1271 1272 1273 1274
    golden = pixel_shuffle(inp, 2)
    for _ in range(3):
        out = fn(inp, 2)
        np.testing.assert_equal(out.numpy(), golden)
        if is_symbolic is None:
            break
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305


def test_set_conv2d_config():
    """check setting config by contextmanager is equal to manually converted result"""
    config._compute_mode = "float32"
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float16)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float16)
    config_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    config._compute_mode = "default"
    with config._override(compute_mode="float32"):
        context_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    expected = F.conv2d(
        inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32",
    )
    np.testing.assert_allclose(config_out.numpy(), expected.numpy())
    np.testing.assert_allclose(context_out.numpy(), expected.numpy())


def test_set_warp_perspective_config():
    config._conv_format = "NHWC"
    inp_shape = (1, 1, 4, 4)
    inp = Tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    M_shape = (1, 3, 3)
    M = Tensor(np.random.randn(3, 3), dtype=np.float32).reshape(M_shape)
    config_out = F.vision.warp_perspective(inp, M, (2, 2))
    config._conv_format = "default"
    with config._override(conv_format="NHWC"):
        context_out = F.vision.warp_perspective(inp, M, (2, 2))
    expected = F.vision.warp_perspective(inp, M, (2, 2), format="NHWC")
    np.testing.assert_allclose(config_out.numpy(), expected.numpy())
    np.testing.assert_allclose(context_out.numpy(), expected.numpy())
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364


@pytest.mark.parametrize("stride", [(1, 1)])
@pytest.mark.parametrize("padding", [(1, 1)])
@pytest.mark.parametrize("dilation", [(1, 1)])
@pytest.mark.parametrize("ksize", [(3, 3)])
@pytest.mark.parametrize("groups", [1, 2])
def test_local_conv2d(stride, padding, dilation, ksize, groups):
    batch_size, in_channels, out_channels = 2, 4, 8
    input_height, input_width = 10, 10
    output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1
    output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1

    def local_conv2d_np(data, weight, stride, padding, dialtion):
        # naive calculation use numpy
        # only test output_height == input_height, output_width == input_width
        data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1)))
        expected = np.zeros(
            (batch_size, out_channels, output_height, output_width), dtype=np.float32,
        )
        ic_group_size = in_channels // groups
        oc_group_size = out_channels // groups
        for n, oc, oh, ow in itertools.product(
            *map(range, [batch_size, out_channels, output_height, output_width])
        ):
            ih, iw = oh * stride[0], ow * stride[1]
            g_id = oc // oc_group_size
            expected[n, oc, ih, iw] = np.sum(
                data[
                    n,
                    g_id * ic_group_size : (g_id + 1) * ic_group_size,
                    ih : ih + ksize[0],
                    iw : iw + ksize[1],
                ]
                * weight[g_id, oh, ow, :, :, :, oc % oc_group_size]
            )
        return expected

    data = np.random.rand(batch_size, in_channels, input_height, input_width).astype(
        "float32"
    )
    weight = np.random.rand(
        groups,
        output_height,
        output_width,
        in_channels // groups,
        *ksize,
        out_channels // groups,
    ).astype("float32")
    output = F.local_conv2d(
        tensor(data),
        tensor(weight),
        None,
        stride=stride,
        padding=padding,
        dilation=dilation,
    )
    ref = local_conv2d_np(data, weight, stride, padding, dilation)
    np.testing.assert_almost_equal(output.numpy(), ref, 5)