test_functional.py 44.5 KB
Newer Older
1 2
# -*- coding: utf-8 -*-
import itertools
3
import platform
4
from functools import partial
5 6 7

import numpy as np
import pytest
8
from utils import opr_test
9

10
import megengine.amp as amp
11
import megengine.config as config
12
import megengine.core.ops.builtin as builtin
13 14
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
15
import megengine.jit as jit
M
Megvii Engine Team 已提交
16
from megengine import Parameter, Tensor, is_cuda_available, tensor
17
from megengine.core._trace_option import use_symbolic_shape
18
from megengine.core.autodiff.grad import Grad
19
from megengine.core.tensor.utils import make_shape_tuple
20
from megengine.device import get_device_count
21 22
from megengine.jit.tracing import trace
from megengine.module import ConvTranspose2d, ConvTranspose3d, LayerNorm
23

24 25
_assert_allclose = partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6)

26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

44 45 46 47
    maskv4 = np.array(1, dtype=np.bool_)
    xv4 = np.array(1, dtype=np.float32)
    yv4 = np.array(0, dtype=np.float32)

48
    cases = [
49 50
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
51 52
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
53
        {"input": [maskv4, xv4, yv4]},
54
    ]
55
    opr_test(cases, F.where, ref_fn=np.where, test_trace=True)
56 57


58
def test_dropout():
59 60 61 62 63 64 65 66 67
    from megengine.autodiff import GradManager
    from megengine.core._imperative_rt.ops import set_global_rng_seed

    def test_dropout_with_shape(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out = F.nn.dropout(data, rate, training=True)
            gm.backward(out, tensor(np.ones(shape, dtype=np.float32)))
68 69
            if len(shape) != 0:
                assert not out.numpy().all()
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
            np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_multiple_dropout(shape, rate):
        data = tensor(np.ones(shape, dtype=np.float32))
        gm = GradManager().attach([data])
        with gm:
            out1 = F.nn.dropout(data, rate, training=True)
            out2 = F.nn.dropout(out1, rate, training=True)
            out3 = F.nn.dropout(out2, rate, training=True)
            gm.backward(out3, tensor(np.ones(shape, dtype=np.float32)))
            np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7)

    def test_dropout_seed(shape, rate):
        data = tensor(np.random.randn(*shape), dtype="float32")
        set_global_rng_seed(111)
        out1 = F.nn.dropout(data, rate, training=True)
        out2 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out2.numpy()).all()

        set_global_rng_seed(111)
        out3 = F.nn.dropout(data, rate, training=True)
        assert (out1.numpy() == out3.numpy()).all()

        set_global_rng_seed(222)
        out4 = F.nn.dropout(data, rate, training=True)
        assert not (out1.numpy() == out4.numpy()).all()

97
    test_dropout_with_shape([], 0.4)
98 99 100 101
    test_dropout_with_shape([13, 17, 63, 21], 0.4)
    test_dropout_with_shape([16, 32, 64], 0.3)
    test_multiple_dropout([1024], 0.2)
    test_dropout_seed([16, 32], 0.2)
102 103


104 105 106 107 108
def test_matinv():
    shape1 = (5, 5)
    shape2 = (3, 9, 9)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
M
Megvii Engine Team 已提交
109 110 111
    # make matrix diagonally dominant for numerical stability
    data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32")
    data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2)
112 113 114 115 116 117 118 119 120

    cases = [
        {"input": data1},
        {"input": data2},
    ]

    opr_test(
        cases,
        F.matinv,
121
        compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4),
122 123 124 125
        ref_fn=np.linalg.inv,
    )


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
144 145 146 147 148
    shape1 = (2,)
    shape2 = (batch_size, 2, 3)
    shape3 = (batch_size, 3, 4)
    shape4 = (batch_size, 10, 4, 2)
    shape5 = (batch_size, 10, 2, 4)
149 150 151
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
152 153
    data4 = np.random.random(shape4).astype("float32")
    data5 = np.random.random(shape5).astype("float32")
154

155 156 157 158 159 160
    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
        {"input": [data4, data5]},
    ]
161
    opr_test(cases, F.matmul, ref_fn=np.matmul)
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    opr_test(
        [{"input": [data1, data4]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)),
        transpose_b=True,
    )

    opr_test(
        [{"input": [data3, data2]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)),
        transpose_a=True,
        transpose_b=True,
    )

178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
@pytest.mark.parametrize(
    "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic):
    def func(a, b):
        return F.matmul(a, b)

    if is_symbolic is not None:
        func = jit.trace(symbolic=is_symbolic)(func)

    a = tensor(np.random.randn(*shape_a))
    b = tensor(np.random.randn(*shape_b))
    for _ in range(3):
        out = func(a, b)
        assert np.all(out.numpy() == 0)
        if is_symbolic is None:
            break


199 200 201 202
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

203 204
        test_func = lambda inp: F.vision.interpolate(
            inp, scale_factor=2.0, mode="linear"
205
        )
206 207 208 209
        ref_func = lambda inp: F.vision.interpolate(inp, 4, mode="linear").numpy()

        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
210 211 212 213

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

214 215
        test_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0)
        ref_func = lambda inp: F.vision.interpolate(inp, [4, 4]).numpy()
216

217 218
        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
219 220 221 222

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

223 224
        test_func = lambda inp: F.vision.interpolate(inp, [4, 4])
        ref_func = lambda inp: F.vision.interpolate(inp, scale_factor=2.0).numpy()
225

226 227
        cases = [{"input": inp}]
        opr_test(cases, test_func, ref_fn=ref_func, test_trace=True)
228 229 230 231 232

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
233
            F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
234 235 236 237 238

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
239
            F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear")
240 241 242 243 244

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
245
    # inappropriate_scale_linear_interpolate()
246 247 248


def _save_to(self, name="grad"):
249
    def callback(grad):
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))

        output_shape = (7, 7)
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
289

290
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
291 292


293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
@pytest.mark.parametrize("shapes", [((2, 0, 26, 26), (4, 5)), ((2, 3, 26, 26), (0, 5))])
@pytest.mark.parametrize("is_tracing", [False, True])
def test_roi_align_empty(shapes, is_tracing):
    inp_feat = tensor(np.random.randn(*(shapes[0])))
    rois = tensor(np.random.random(shapes[1]))
    output_shape = (7, 7)

    def func(inp, rois):
        out_feat = F.vision.roi_align(
            inp_feat,
            rois,
            output_shape=output_shape,
            mode="average",
            spatial_scale=1.0 / 4,
            sample_points=2,
            aligned=True,
        )
        return out_feat

    if is_tracing:
        func = jit.trace(func)

    for _ in range(3):
        out_feat = func(inp_feat, rois)
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )


324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)):
    if random:
        inp_feat1 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
        inp_feat2 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
    else:
        inp_feat1 = np.ones(image_shape) * constant
        inp_feat2 = np.ones(image_shape) * constant

    return tensor(inp_feat1), tensor(inp_feat2)


def test_correlation():
    ##test case 0 check the grad shape
    data1, data2 = _gen_correlation()

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    with Grad() as grad:
        grad.wrt(data1, callback=_save_to(data1))

        out_feat = F.vision.correlation(
            data1,
            data2,
            kernel_size=5,
            max_displacement=4,
            stride1=2,
            stride2=2,
            pad_size=2,
            is_multiply=True,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426

    assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape)

    ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=True,
    )
    assert abs(out_feat.sum() - 1) < 1e-9

    ##test case 2 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 3 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 4 check correlation
    data1, _ = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=2.0
    )
    _, data2 = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=1.0
    )

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=2,
        stride1=1,
        stride2=2,
        pad_size=0,
        is_multiply=False,
    )
    assert abs(out_feat.mean() - 1) < 1e-9


427 428
def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
429 430 431 432 433 434 435 436 437 438 439 440 441
    with Grad() as grad:
        grad.wrt(inp_feat, callback=_save_to(inp_feat))
        output_shape = (7, 7)
        out_feat = F.vision.roi_pooling(
            inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
        )
        assert make_shape_tuple(out_feat.shape) == (
            rois.shape[0],
            inp_feat.shape[1],
            *output_shape,
        )

        grad(out_feat, tensor(F.ones_like(out_feat)))
442

443
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
444 445


446 447 448
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
449 450 451 452 453 454 455 456 457
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_avg_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
481 482 483 484 485 486 487 488 489
    with Grad() as grad:
        grad.wrt(inp, callback=_save_to(inp))
        outp = F.adaptive_max_pool2d(inp, oshp,)
        assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
        np.testing.assert_equal(
            outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
        )

        grad(outp, tensor(F.ones_like(outp)))
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


510 511 512 513
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
514

515
        np.testing.assert_allclose(
516 517
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
518

519 520 521 522 523
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
524

525 526
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
527

528
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
529

530 531
    onehot_low_dimension()
    onehot_high_dimension()
532 533


534
def test_interpolate_fastpath():
535 536 537 538 539
    # check shape
    test_cases = [
        [(1, 1, 10, 10), (5, 5)],
        [(1, 3, 10, 10), (20, 20)],
        [(10, 1, 10, 10), (1, 1)],
540
        [(10, 10, 1, 1), (10, 10)],
541 542 543
    ]
    for inp_shape, target_shape in test_cases:
        x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
544
        out = F.vision.interpolate(x, target_shape, mode="bilinear")
545 546 547 548 549
        assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
        assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]

    # check value
    x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
550
    out = F.vision.interpolate(x, (15, 5), mode="bilinear")
551 552 553 554
    np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))

    np_x = np.arange(32)
    x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
555
    out = F.vision.interpolate(x, (1, 1), mode="bilinear")
556 557 558
    np.testing.assert_equal(out.item(), np_x.mean())


559 560
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective(dt):
561
    inp_shape = (1, 1, 4, 4)
562
    x = tensor(np.arange(16, dtype=dt).reshape(inp_shape))
563 564 565 566 567 568 569
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
570
    outp = F.vision.warp_perspective(x, M, (2, 2))
571
    np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt))
572 573


574 575
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16])
def test_warp_perspective_mat_idx(dt):
576
    inp_shape = (2, 1, 4, 4)
577
    x = tensor(np.arange(32, dtype=dt).reshape(inp_shape))
578 579 580 581 582 583 584 585 586 587 588 589 590
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
    M = F.concat([M,] * 4, 0)
    outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
    np.testing.assert_equal(
        outp.numpy(),
        np.array(
            [
591 592 593 594
                [[[5, 6], [9, 10]]],
                [[[21, 22], [25, 26]]],
                [[[21, 22], [25, 26]]],
                [[[5, 6], [9, 10]]],
595
            ],
596
            dtype=dt,
597 598 599 600
        ),
    )


601 602 603 604
def test_warp_affine():
    inp_shape = (1, 3, 3, 3)
    x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
    weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
605
    outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap")
606 607 608 609 610 611 612 613 614 615 616 617 618
    res = np.array(
        [
            [
                [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]],
                [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]],
            ]
        ],
        dtype=np.float32,
    )
    if not is_cuda_available():
        np.testing.assert_almost_equal(outp.numpy(), res, 5)


619 620 621 622 623 624 625 626 627
def test_remap():
    inp_shape = (1, 1, 4, 4)
    inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    map_xy_shape = (1, 2, 2, 2)
    map_xy = tensor(
        np.array(
            [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
        ).reshape(map_xy_shape)
    )
628
    outp = F.vision.remap(inp, map_xy)
629 630 631 632 633
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
    )


634 635 636 637 638 639 640 641 642 643
def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
644
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
645 646

    np.random.seed(123)
647
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
648
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
649
    expect1 = np.array(0.6361, dtype=np.float32)
650 651

    np.random.seed(123)
652
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
653
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
654
    expect2 = np.array(0.6750, dtype=np.float32)
655 656 657 658 659

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
660

661
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
662

663 664 665 666 667
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
668 669 670
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
671 672
    )

673 674 675 676 677 678 679 680 681 682 683

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

684
    opr_test(cases, F.nn.hinge_loss)
685 686 687 688 689 690 691 692 693 694

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
695
        return F.nn.hinge_loss(pred, label, "L2")
696 697 698 699

    opr_test(cases, hinge_loss_with_l2_norm)


700 701 702 703 704 705 706 707 708 709 710 711 712
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_nms(is_symbolic):
    def fn(inp, scores):
        return F.vision.nms(
            inp,
            scores=scores,
            iou_thresh=0.5,
            max_output=None if is_symbolic is None else 4,
        )

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

713 714 715 716 717 718 719 720 721 722 723
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
724 725 726 727 728 729 730 731 732 733
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))

    x = np.array([], dtype=np.float32,).reshape(0, 4)
    inp = tensor(x)
    scores = tensor([], dtype=np.float32)
    for _ in range(3):
        result = fn(inp, scores=scores)
        np.testing.assert_equal(result.numpy(), np.array([], dtype=np.int32))
734 735


736
@pytest.mark.skipif(
737
    get_device_count("gpu") > 0, reason="cuda does not support nchw int8"
738
)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
761
        nonlinear_mode="identity",
762 763
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
764
        w_v = np.random.normal(size=(OC, IC, KH, KW))
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
786
            var = F.transpose(var, (0, 1, 3, 4, 2))
787 788 789 790 791 792
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
793
            if nonlinear_mode == "relu":
794 795 796 797 798 799 800 801 802 803
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
804
            return F.quantized.conv_bias_activation(
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
822
            result = F.transpose(result, (0, 1, 4, 2, 3))
823 824
        expected = F.flatten(expected)
        result = F.flatten(result)
825
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
826 827 828 829 830 831 832 833 834

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

835 836
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu")
837 838


839
@pytest.mark.skipif(get_device_count("gpu") > 0, reason="no int8 algorithm on cuda")
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
def test_batch_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True,
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(N, OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def run_batch_conv_bias(inp, w, b):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            result = F.quantized.batch_conv_bias_activation(
                inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype,
            )
            return result.astype("float32")

        expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0]
        expected = expected.astype(out_dtype).astype("float32")
        expected = F.flatten(expected)

        result = run_batch_conv_bias(inp_int8, w_int8, b_int32)
        result = F.flatten(result)

        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True)


890 891
def test_conv2d_autocast():
    """check amp's result is equal to manually converted result"""
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
    amp.enabled = True
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float32)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    amp.enabled = False
    expected = F.conv2d(
        inp.astype("float16"),
        weight.astype("float16"),
        None,
        (2, 2),
        (3, 3),
        (1, 1),
        1,
        compute_mode="float32",
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


912
def test_conv2d_zero_stride_numpy_array():
913 914 915 916 917 918 919 920
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


921 922 923 924 925 926 927 928 929 930
def test_conv3d_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32)
    out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)
    out.numpy()


931 932
@pytest.mark.parametrize("bias", [True, False])
def test_conv1d(bias):
933 934
    inp = tensor(np.ones((2, 2, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2), dtype=np.float32))
935 936
    bias = tensor(np.ones((1, 3, 1), dtype=np.float32)) if bias else None
    out = F.conv1d(inp, weight, bias, 2, 0, 1, 1)
937 938
    np.testing.assert_equal(
        out.numpy(),
939 940 941
        np.array([[[5, 5], [5, 5], [5, 5]], [[5, 5], [5, 5], [5, 5]]], dtype=np.float32)
        if bias is not None
        else np.array(
942 943 944 945 946
            [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32
        ),
    )


947 948
def test_batchnorm2d_autocast():
    """check amp's result is equal to manually converted result"""
949
    amp.enabled = True
950 951
    tshape = (1, 3, 224, 224)
    pshape = (1, 3, 1, 1)
952 953 954
    inp = tensor(np.random.randn(*tshape), dtype=np.float32)
    weight = tensor(np.ones(pshape, dtype=np.float32))
    bias = tensor(np.zeros(pshape, dtype=np.float32))
955 956 957 958 959

    out = F.batch_norm(inp, weight=weight, bias=bias, training=True, inplace=False)

    amp.enabled = False
    expected = F.batch_norm(
960
        inp.astype("float16"), weight=weight, bias=bias, training=True, inplace=False,
961 962 963 964 965 966
    )
    assert out.dtype == np.float16
    assert expected.dtype == np.float16
    np.testing.assert_allclose(out.numpy(), expected.numpy())


967 968
@pytest.mark.parametrize("bias", [True, False])
def test_conv3d(bias):
969 970
    inp = tensor(np.ones((2, 2, 4, 4, 4), dtype=np.float32))
    weight = tensor(np.ones((3, 2, 2, 2, 2), dtype=np.float32))
971 972 973 974 975
    bias = tensor(np.ones((1, 3, 1, 1, 1), dtype=np.float32)) if bias else None
    out = F.conv3d(inp, weight, bias, 2, 0, 1, 1)
    target = np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16
    target = target + 1 if bias is not None else target
    np.testing.assert_equal(out.numpy(), target)
976 977


978 979 980 981 982 983 984 985
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
986 987


988 989
@pytest.mark.parametrize("is_symbolic", [None, False, True])
def test_condtake(is_symbolic):
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    shapes = [
        (3, 3, 3),
        (0,),
        (3, 0, 3),
    ]

    def fn(mask, data):
        return F.cond_take(mask, data)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

    for shp in shapes:
        x_np = np.random.randn(*shp).astype("float32")
        mask_np = x_np > 0
        x = tensor(x_np)
        mask = tensor(mask_np)
        ref_out = x_np[mask_np]
        ref_idx = mask_np.flatten().nonzero()[0]
        for i in range(3):
            out, idx = fn(mask, x)
            np.testing.assert_equal(out.numpy(), ref_out)
            np.testing.assert_equal(idx.numpy(), ref_idx)
            if is_symbolic is None:
                break


1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
1032 1033


1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
def test_argmxx_on_inf():
    def run_argmax():
        x = F.zeros((100, 100))
        x[:] = -float("inf")
        idxs = F.argmax(x, axis=0)
        return idxs

    def run_argmin():
        x = F.zeros((100, 100))
        x[:] = float("inf")
        idxs = F.argmin(x, axis=0)
        return idxs

    assert all(run_argmax() >= 0)
    assert all(run_argmin() >= 0)
1049 1050


1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
def test_deformable_psroi_pooling():
    inp = np.random.random((1, 256, 64, 64)).astype("float32")
    rois = np.random.random((1, 5)).astype("float32")
    trans = np.random.random((24, 2, 7, 7)).astype("float32")

    pooled_h = 7
    pooled_w = 7
    sample_per_part = 4
    no_trans = False
    part_size = 7
    spatial_scale = 1.0 / 64
    trans_std = 0.1

    y = F.deformable_psroi_pooling(
        tensor(inp),
        tensor(rois),
        tensor(trans),
        no_trans,
        part_size,
        pooled_h,
        pooled_w,
        sample_per_part,
        spatial_scale,
        trans_std,
    )


1078 1079 1080 1081
def test_cvt_color():
    def rgb2gray(rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])

1082 1083 1084
    def bgr2gray(bgr):
        return np.dot(bgr[..., :3], [0.114, 0.587, 0.299])

1085 1086 1087
    inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
    out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
    x = tensor(inp)
1088
    y = F.vision.cvt_color(x, mode="RGB2GRAY")
1089
    np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
1090

1091 1092 1093 1094
    out1 = np.expand_dims(bgr2gray(inp), 3).astype(np.float32)
    y1 = F.vision.cvt_color(x, mode="BGR2GRAY")
    np.testing.assert_allclose(y1.numpy(), out1, atol=1e-5)

1095 1096 1097 1098 1099 1100

@pytest.mark.parametrize("val", [2, [2,], [2, 3]])
def test_ones(val):
    shp = tensor(val)
    np_shp = np.array(val)
    np.testing.assert_equal(F.ones(shp), np.ones(np_shp))
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115


def test_assert_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.00001
    z = F.utils._assert_equal(x, y)


def test_assert_not_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.1
    with pytest.raises(RuntimeError):
        z = F.utils._assert_equal(x, y)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131


def test_neg_axis():
    x = tensor(np.random.normal(0, 1, (32, 5)))

    y = F.argmax(x, axis=-1)
    yy = F.argmax(x, axis=1)
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmax(x, axis=(-1, -2))
    yy = F.argmax(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmin(x, axis=(-1, -2))
    yy = F.argmin(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156


def test_sliding_window():
    N, C, H, W = 2, 3, 7, 8
    inp = np.random.normal(size=(N, C, H, W))
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2))
    inp_pad[:, :, ph : H + ph, pw : W + pw] = inp
    gt_out = np.empty(
        (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32
    )
    for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])):
        ih, iw = oh * sh, ow * sw
        gt_out[n, c, oh, ow, :] = inp_pad[
            n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw
        ]

    out = F.sliding_window(
        tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw)
    )
    np.testing.assert_equal(gt_out, out.numpy())
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192


def test_sliding_window_transpose():
    N, C, H, W = 2, 3, 7, 8
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp = np.random.normal(
        size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww)
    ).astype(np.float32)
    gt_out = np.zeros((N, C, H, W), dtype=np.float32)

    for n, c in itertools.product(*map(range, inp.shape[:2])):
        oh = 0
        for ih in range(-ph, H + ph - dh * (wh - 1), sh):
            ow = 0
            for iw in range(-pw, W + pw - dw * (ww - 1), sw):
                for kh, kw in itertools.product(*map(range, inp.shape[-2:])):
                    ih2 = ih + dh * kh
                    iw2 = iw + dw * kw
                    if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W:
                        gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw]
                ow += 1
            oh += 1

    out = F.sliding_window_transpose(
        tensor(inp),
        (H, W),
        (wh, ww),
        padding=(ph, pw),
        stride=(sh, sw),
        dilation=(dh, dw),
    )
    np.testing.assert_equal(gt_out, out.numpy())
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211


def test_pad():
    src = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
    dst = np.pad(src, ((2, 2), (2, 2)), "constant")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "constant", constant_values=3)
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT", constant_value=3)
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "edge")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "EDGE")
    np.testing.assert_allclose(res, dst, atol=1e-5)

    dst = np.pad(src, ((2, 2), (2, 2)), "reflect")
    res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT")
    np.testing.assert_allclose(res, dst, atol=1e-5)
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241


def pixel_shuffle(data, r):
    high_dim = data.shape[:-3]
    data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1])
    inn, ic, ih, iw = data.shape
    res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r))
    for n in range(inn):
        for c in range(ic):
            for h in range(ih):
                for w in range(iw):
                    res[
                        n,
                        int(c / r / r),
                        h * r + int((c % (r * r)) / r),
                        w * r + c % r,
                    ] = data[n, c, h, w]
    if len(high_dim) > 0:
        res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r))
    else:
        res = res[0]
    return res


def test_pixel_shuffle():
    # ndim = 3
    inp = np.arange(16 * 3 * 3).reshape(16, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=4)
    golden = pixel_shuffle(inp, 4)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1242
    inp_float = np.float32(inp)
1243
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1244
    golden = pixel_shuffle(inp_float, 2)
1245
    np.testing.assert_equal(out.numpy(), golden)
1246 1247 1248 1249 1250 1251

    # ndim = 4
    inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=3)
    golden = pixel_shuffle(inp, 3)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1252
    inp_float = np.float32(inp)
1253 1254 1255
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=3)
    golden = pixel_shuffle(inp_float, 3)
    np.testing.assert_equal(out.numpy(), golden)
1256 1257 1258 1259 1260 1261

    # ndim = 5
    inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1262
    inp_float = np.float32(inp)
1263
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1264
    golden = pixel_shuffle(inp_float, 2)
1265
    np.testing.assert_equal(out.numpy(), golden)
1266 1267 1268 1269 1270
    # ndim = 6
    inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=5)
    golden = pixel_shuffle(inp, 5)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1271
    inp_float = np.float32(inp)
1272 1273 1274
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=5)
    golden = pixel_shuffle(inp_float, 5)
    np.testing.assert_equal(out.numpy(), golden)
1275 1276 1277 1278 1279 1280

    # ndim = 7
    inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4)
    out = F.pixel_shuffle(tensor(inp), upscale_factor=2)
    golden = pixel_shuffle(inp, 2)
    np.testing.assert_equal(out.numpy(), golden)
Q
Qsingle 已提交
1281
    inp_float = np.float32(inp)
1282
    out = F.pixel_shuffle(tensor(inp_float), upscale_factor=2)
Q
Qsingle 已提交
1283
    golden = pixel_shuffle(inp_float, 2)
1284
    np.testing.assert_equal(out.numpy(), golden)
1285 1286


1287
@pytest.mark.parametrize("type", ["int32", "float32"])
1288
@pytest.mark.parametrize("is_symbolic", [False, True])
1289
def test_pixel_shuffle_symbolic(is_symbolic, type):
1290 1291 1292 1293 1294 1295
    def fn(inp, upscale_factor):
        return F.pixel_shuffle(inp, upscale_factor=upscale_factor)

    if is_symbolic is not None:
        fn = jit.trace(symbolic=is_symbolic)(fn)

1296
    inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5).astype(type))
1297 1298 1299 1300 1301 1302
    golden = pixel_shuffle(inp, 2)
    for _ in range(3):
        out = fn(inp, 2)
        np.testing.assert_equal(out.numpy(), golden)
        if is_symbolic is None:
            break
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320


def test_set_conv2d_config():
    """check setting config by contextmanager is equal to manually converted result"""
    config._compute_mode = "float32"
    inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float16)
    weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float16)
    config_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    config._compute_mode = "default"
    with config._override(compute_mode="float32"):
        context_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)
    expected = F.conv2d(
        inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32",
    )
    np.testing.assert_allclose(config_out.numpy(), expected.numpy())
    np.testing.assert_allclose(context_out.numpy(), expected.numpy())


1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
@pytest.mark.parametrize("stride", [(1, 1)])
@pytest.mark.parametrize("padding", [(1, 1)])
@pytest.mark.parametrize("dilation", [(1, 1)])
@pytest.mark.parametrize("ksize", [(3, 3)])
@pytest.mark.parametrize("groups", [1, 2])
def test_local_conv2d(stride, padding, dilation, ksize, groups):
    batch_size, in_channels, out_channels = 2, 4, 8
    input_height, input_width = 10, 10
    output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1
    output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1

    def local_conv2d_np(data, weight, stride, padding, dialtion):
        # naive calculation use numpy
        # only test output_height == input_height, output_width == input_width
        data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1)))
        expected = np.zeros(
            (batch_size, out_channels, output_height, output_width), dtype=np.float32,
        )
        ic_group_size = in_channels // groups
        oc_group_size = out_channels // groups
        for n, oc, oh, ow in itertools.product(
            *map(range, [batch_size, out_channels, output_height, output_width])
        ):
            ih, iw = oh * stride[0], ow * stride[1]
            g_id = oc // oc_group_size
            expected[n, oc, ih, iw] = np.sum(
                data[
                    n,
                    g_id * ic_group_size : (g_id + 1) * ic_group_size,
                    ih : ih + ksize[0],
                    iw : iw + ksize[1],
                ]
                * weight[g_id, oh, ow, :, :, :, oc % oc_group_size]
            )
        return expected

    data = np.random.rand(batch_size, in_channels, input_height, input_width).astype(
        "float32"
    )
    weight = np.random.rand(
        groups,
        output_height,
        output_width,
        in_channels // groups,
        *ksize,
        out_channels // groups,
    ).astype("float32")
    output = F.local_conv2d(
        tensor(data),
        tensor(weight),
        None,
        stride=stride,
        padding=padding,
        dilation=dilation,
    )
    ref = local_conv2d_np(data, weight, stride, padding, dilation)
    np.testing.assert_almost_equal(output.numpy(), ref, 5)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411


def test_conv_transpose2d():
    m = ConvTranspose2d(
        16, 33, (3, 5), output_padding=(1, 2), stride=(2, 3), padding=(4, 2)
    )

    @trace(symbolic=True)
    def fwd(inp: Tensor):
        return m(inp)

    input = Tensor(np.random.rand(20, 16, 50, 100))
    output = fwd(input)
    output_shape = Tensor(output.shape)
    np.testing.assert_equal(
        output_shape.numpy(), np.array([20, 33, 94, 300], dtype=np.int32)
    )


def test_conv_transpose3d():
    m = ConvTranspose3d(
        16, 33, (3, 5, 2), output_padding=(2, 1, 1), stride=(3, 2, 2), padding=(0, 4, 2)
    )

    @trace(symbolic=True)
    def fwd(inp: Tensor):
        return m(inp)

    input = Tensor(np.random.rand(20, 16, 10, 50, 100))
    output = fwd(input)
    output_shape = Tensor(output.shape)
    np.testing.assert_equal(
        output_shape.numpy(), np.array([20, 33, 32, 96, 197], dtype=np.int32)
    )