convolution.cpp 52.1 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/cuda/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11
 */
M
Megvii Engine Team 已提交
12
#include "test/common/convolution.h"
13
#include "megdnn/dtype.h"
14
#include "megdnn/opr_param_defs.h"
M
Megvii Engine Team 已提交
15 16 17
#include "megdnn/oprs.h"
#include "src/cuda/utils.h"
#include "test/common/accuracy_shake_checker.h"
18 19
#include "test/common/checker.h"
#include "test/common/rng.h"
M
Megvii Engine Team 已提交
20 21
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
22
#include "test/cuda/benchmark.h"
M
Megvii Engine Team 已提交
23
#include "test/cuda/fixture.h"
24 25

#define V1(x) #x
M
Megvii Engine Team 已提交
26
#define V(x)  V1(x)
27 28 29 30 31 32
#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)

namespace megdnn {
namespace test {

33
TEST_F(CUDA, CONVOLUTION_8X8X32) {
34
    if (!cuda::is_compute_capability_required(6, 1)) {
35 36 37 38 39 40 41 42 43
        printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
               "doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args;
    {
        auto v = get_args();
44
        for (auto&& a : v) {
45 46 47 48 49
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_dilated_args();
50
        for (auto&& a : v) {
51 52 53 54 55
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_chanwise_args();
56
        for (auto&& a : v) {
57 58 59 60 61
            args.push_back(std::move(a));
        }
    }
    Checker<ConvolutionForward> checker(handle_cuda());
    UniformIntRNG rng(-4, 4);
62
    for (auto arg : args) {
63 64 65
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
66 67 68 69 70 71 72
        checker.set_dtype(0, dtype::Int8())
                .set_dtype(1, dtype::Int8())
                .set_dtype(2, dtype::Int32())
                .set_param(arg.param)
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .execs({arg.src, arg.filter, {}});
73 74 75
    }
}

76
TEST_F(CUDA, CONVOLUTION_FORWARD) {
77 78 79 80
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
81
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
82
        float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
83
        UniformFloatRNG rng(scale, 2 * scale);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
100 101 102 103 104 105 106 107 108
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
109 110 111 112 113 114
        checker.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16())
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
115 116 117 118
    }
}

TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
119
    if (!cuda::is_compute_capability_required(6, 1))
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        return;
    using namespace convolution;
    Checker<Convolution> checker(handle_cuda());
    UniformIntRNG int_rng{-127, 127};
    Convolution::Param param;
    param.format = Convolution::Param::Format::NCHW4;

    checker.set_dtype(0, dtype::QuantizedS8(0.132f))
            .set_dtype(1, dtype::QuantizedS8(0.0239f))
            .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
            .set_rng(0, &int_rng)
            .set_rng(1, &int_rng)
            .set_param(param);

134 135 136 137 138 139 140
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
                    "DEFAULT",
                    {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
                              "MATMUL8X8X32", {})
                              .c_str(),
                      {}}}}));
141 142 143 144 145 146 147 148 149 150

    param.sparse = Convolution::Param::Sparse::DENSE;
    param.pad_h = param.pad_w = 1;
    param.stride_h = param.stride_w = 1;
    checker.set_param(param);
    checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
}

151
TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
152 153 154 155
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
156
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
157
        float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
158
        UniformFloatRNG rng(scale, 2 * scale);
159 160 161 162 163 164 165
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
166 167 168
    }
}

169
TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
170 171 172 173
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Benchmarker<ConvolutionForward> marker(handle_cuda());
    NormalRNG default_rng;
174
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
175
        float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
176
        UniformFloatRNG rng(scale, 2 * scale);
177 178 179 180 181 182
        marker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
183 184 185
    }
}

186
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
187 188 189 190
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
191
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
192
        float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
208
        if (!cuda::is_compute_capability_required(6, 0)) {
209 210 211 212 213 214 215 216 217 218 219 220 221
            src.dtype = dst.dtype = filter.dtype = dtype::Float16();
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
            arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        }
M
Megvii Engine Team 已提交
222 223 224 225
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(ExecutionPolicyAlgoName{
                        "CONVOLUTION_BACKWARD_DATD_BFLOAT16",
                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
226 227 228 229 230 231 232 233 234
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
235 236 237
    }
}

238 239 240 241 242 243 244 245 246 247 248 249
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FP16_CUDNN7_5) {
    // algo CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 with
    // TensorCore operations produces incorrect result.
    // Maybe nvidia has fixed this issue
    // There is a test using incorrect case:
    // inp={2x8x18x18}, kern={8x8x2x2}, pad_h=pad_w=2, stride_h=stride_w=2,
    // dtype=float16
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_5_1_backward();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
250
        float scale = 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
267 268 269 270
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
271 272 273
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
274 275 276 277
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
278 279 280 281 282 283 284 285 286
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_NHWC) {
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
287
        float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        UniformFloatRNG rng(scale, 2 * scale);
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
303 304 305 306
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
307 308 309
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
310 311 312 313
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
314 315 316
    }
}

317 318 319 320 321
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
M
Megvii Engine Team 已提交
322 323
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("CUDNN_CONVOLUTION"));
324 325 326 327 328 329 330 331 332 333 334 335
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
}

336
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
337 338 339 340 341 342 343
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
    NormalRNG default_rng;
344
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
345
        float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
362 363 364 365 366 367 368 369 370 371
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
372 373
}

374
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
375
    if (!cuda::is_compute_capability_required(6, 1)) {
376 377
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
               "current device doesn't support\n");
378 379 380 381 382
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
383 384 385 386 387 388 389 390 391 392

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        std::string to_string() {
M
Megvii Engine Team 已提交
393 394 395
            return ssprintf(
                    "_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n,
                    threadblock_k, warp_m, warp_n, warp_k, stage);
396 397 398 399 400 401 402 403 404 405 406 407
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
M
Megvii Engine Team 已提交
408 409
        std::string algo_name(ssprintf(
                "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s", algo_param.to_string().c_str()));
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
    if (!cuda::is_compute_capability_required(6, 1)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
441 442
    Checker<ConvolutionBackwardData> checker(handle_cuda());

M
Megvii Engine Team 已提交
443 444
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
445 446

    checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    for (auto&& arg : args) {
        UniformIntRNG rng(-3, 3);
        auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
        auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.2f};
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                TensorLayoutArray{filter, dst, src});
    }
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
#if CUDA_VERSION >= 10020
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA) {
    if (!cuda::is_compute_capability_required(7, 5)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nhwc_conv_bwd_data();

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        int access_size;
        std::string to_string() {
M
Megvii Engine Team 已提交
485 486 487
            return ssprintf(
                    "_%dX%dX%d_%dX%dX%d_%dstage_%d", threadblock_m, threadblock_n,
                    threadblock_k, warp_m, warp_n, warp_k, stage, access_size);
488 489 490 491 492 493 494 495 496 497 498 499 500 501
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 4});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 8});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 16});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 4});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 8});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 16});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
M
Megvii Engine Team 已提交
502 503
        std::string algo_name(ssprintf(
                "INT8_NHWC_IMMA_IMPLICIT_GEMM%s", algo_param.to_string().c_str()));
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}
#endif

527
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
528 529 530 531 532 533 534 535
    // BRAIN-481 failed on architectures 7.0, remove the following if statement,
    // when cudnn fixed the problem.
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_7_5_failures();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
536
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
537
        float scale = 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
538 539 540 541 542 543 544 545 546 547 548
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
549 550 551 552 553
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
554
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
555 556 557 558 559
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
560 561 562 563 564 565 566 567 568
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

569
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
570 571 572 573
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    bool f16_checked = false;
574
    for (auto&& arg : args) {
575 576 577 578 579 580 581 582 583 584 585
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
586 587 588 589 590
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
591 592 593 594 595 596 597

        // reduce on large f16 array may introduce significant error
        if (dst.total_nr_elems() >= 1000 && f16_checked)
            continue;

        f16_checked = true;
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
598 599 600 601 602
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
603 604 605 606 607 608
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
609

M
Megvii Engine Team 已提交
610 611 612 613
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardFilter>(ExecutionPolicyAlgoName{
                        "CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
614 615 616 617 618 619
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
620 621
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
622 623 624
    }
}

625
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
626 627 628 629 630
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
631
    for (auto&& arg : args) {
632 633 634 635 636 637 638 639 640 641 642
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
643 644 645 646 647
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
648
    }
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    //! noncontiguous case
    {
        NormalRNG default_rng;
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(param)
                .execl(TensorLayoutArray{
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
M
Megvii Engine Team 已提交
669 670
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardFilter>("CUDNN_CONVOLUTION"));
671 672 673 674 675 676 677
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
M
Megvii Engine Team 已提交
678
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}});
679
    }
680 681
}

682
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
683
    auto eps_getter = [](bool f16, int stage, const char* name) -> float {
684 685 686 687 688 689 690
        if (f16) {
            return stage == 2 ? 0.5 : 0.2;
        }
        if (strstr(name, "WINOGRAD_NONFUSED"))
            return 0.3;
        return 1e-3;
    };
M
Megvii Engine Team 已提交
691 692 693 694 695 696
    convolution::test_conv_config_combinations(
            2, handle_cuda(), false, true, true, eps_getter, true);
    convolution::test_conv_config_combinations(
            3, handle_cuda(), false, true, true, eps_getter, true);
    convolution::test_conv_config_combinations(
            5, handle_cuda(), false, true, true, eps_getter, true);
697 698 699 700 701 702 703 704 705 706
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
    NormalRNG default_rng;
M
Megvii Engine Team 已提交
707
    TensorShape s_filter = TensorShape{8, 8, 2, 2}, s_src = TensorShape{2, 8, 18, 18};
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
    UniformFloatRNG rng(scale, 2 * scale);
    auto src = TensorLayout(s_src, dtype::Float16());
    auto filter = TensorLayout(s_filter, dtype::Float16());
    TensorLayout dst;
    param::Convolution param;
    param.pad_h = param.pad_w = 2;
    param.stride_h = param.stride_w = 2;
    {
        auto opr = handle_cuda()->create_operator<Convolution>();
        opr->param() = param;
        opr->deduce_layout(src, filter, dst);
    }
    src.dtype = dst.dtype = filter.dtype = dtype::Float16();
    param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
M
Megvii Engine Team 已提交
723 724
    checker.set_rng(0, &rng).set_rng(1, &rng).set_epsilon(0.2).set_param(param).exec(
            TensorLayoutArray{filter, dst, src});
725 726
}

727 728 729 730
TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) {
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));
731 732 733 734 735 736
    for (auto dtype : std::vector<DType> {
             dtype::Float32(),
#if CUDA_VERSION >= 9000
                     dtype::Float16()
#endif
         }) {
737 738 739
        auto run = [&checker, &dtype](
                           size_t n, size_t g, size_t h, size_t fh, size_t padding,
                           size_t stride) {
740
            param::Convolution param;
741 742
            param.stride_h = param.stride_w = stride;
            param.pad_h = param.pad_w = padding;
743 744 745
            param.mode = Convolution::Mode::CROSS_CORRELATION;
            param.sparse = param::Convolution::Sparse::GROUP;
            checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);
746
            float scale = 64.f / sqrt(fh * fh);
747
            UniformFloatRNG rng(scale, scale * 2);
748 749 750
            checker.set_rng(0, &rng).set_rng(1, &rng).set_rng(2, &rng);
            if (dtype.enumv() == DTypeEnum::Float16)
                checker.set_epsilon(1e-1);
751 752

            checker.set_param(param).execs(
753 754 755 756
                    {{g, 1, 1, fh, fh},
                     {n, g, (h + 2 * padding - fh + 1) / stride,
                      (h + 2 * padding - fh + 1) / stride},
                     {n, g, h, h}});
757
        };
758
        run(4, 8, 32, 5, 5 / 2, 1);
759 760 761 762 763 764 765 766 767 768 769 770 771
        run(4, 8, 32, 7, 7 / 2, 1);
        run(4, 8, 32, 9, 9 / 2, 1);
        run(4, 8, 32, 11, 11 / 2, 1);
        run(4, 8, 32, 13, 13 / 2, 1);
        run(4, 8, 32, 15, 15 / 2, 1);
        run(4, 8, 32, 17, 17 / 2, 1);
        run(4, 8, 32, 19, 19 / 2, 1);
        run(4, 8, 32, 21, 21 / 2, 1);
        run(4, 8, 32, 23, 23 / 2, 1);
        run(4, 8, 32, 25, 25 / 2, 1);
        run(4, 8, 32, 27, 27 / 2, 1);
        run(4, 8, 32, 29, 29 / 2, 1);
        run(4, 8, 32, 31, 31 / 2, 1);
772
        run(4, 8, 64, 5, 5 / 2, 2);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        run(4, 8, 64, 7, 7 / 3, 2);
        run(4, 8, 64, 9, 9 / 3, 2);
        run(4, 8, 64, 11, 11 / 3, 2);
        run(4, 8, 64, 13, 13 / 3, 2);
        run(4, 8, 64, 15, 15 / 3, 2);
        run(4, 8, 64, 17, 17 / 3, 2);
        run(4, 8, 64, 19, 19 / 3, 2);
        run(4, 8, 64, 21, 21 / 3, 2);
        run(4, 8, 64, 23, 23 / 3, 2);
        run(4, 8, 64, 25, 25 / 3, 2);
        run(4, 8, 64, 27, 27 / 3, 2);
        run(4, 8, 64, 29, 29 / 3, 2);
        run(4, 8, 64, 31, 31 / 3, 2);
        run(1, 2, 128, 31, 31 / 3, 2);
        run(1, 2, 256, 31, 31 / 3, 2);
788 789 790
    }
}

791 792
#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, CONV_FWD_BENCHMARK) {
M
Megvii Engine Team 已提交
793 794 795
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t SH = 1,
                   size_t SW = 1, size_t FH = 1, size_t FW = 1, size_t PH = 0,
                   size_t PW = 0, bool fp16io_c32 = false) {
796 797
        auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
        benchmarker.set_dtype(0, dtype::Float16())
798 799
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
800 801 802 803 804 805
        ConvolutionForward::Param param;
        param.stride_h = SH;
        param.stride_w = SW;
        param.pad_h = PH;
        param.pad_w = PW;
        if (fp16io_c32) {
M
Megvii Engine Team 已提交
806
            param.compute_mode = ConvolutionForward::Param::ComputeMode::FLOAT32;
807 808
        }
        benchmarker.set_param(param);
809 810
        std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
                new OprProxy<ConvolutionForward>{true}};
811 812 813
        benchmarker.set_proxy(proxy);
        size_t OH = (IH - FH + 2 * PH) / SH + 1;
        size_t OW = (IW - FW + 2 * PW) / SW + 1;
M
Megvii Engine Team 已提交
814 815
        auto time =
                benchmarker.execs({{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
816
        time /= 1000.0 * 10.0;
817
        auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
818 819
        auto flops = flo / time / 1e12;
        printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
820
        printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
821 822 823 824 825 826 827
    };
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
}

TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
    CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
828 829
    std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
            new OprProxy<ConvolutionForward>{true}};
830 831 832
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
833 834
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
835 836 837 838 839 840 841 842
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
843
        bench.proxy()->target_execution_policy.algo.reset();
844 845 846 847 848 849 850 851 852 853
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
854
        bench.proxy()->target_execution_policy.algo.reset();
855 856 857 858 859
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
860
        bench.proxy()->target_execution_policy.algo.reset();
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
904 905
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
906 907 908 909 910 911 912 913
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
914
        bench.proxy()->target_execution_policy.algo.reset();
915 916 917 918 919 920 921 922 923 924
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
925
        bench.proxy()->target_execution_policy.algo.reset();
926 927 928 929 930
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
931
        bench.proxy()->target_execution_policy.algo.reset();
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

968
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER_FP32) {
969 970 971 972
    CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()};
    bencher.set_display(false);
    bencher.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));
973 974

    auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH,
975 976
                   size_t SH, size_t nr_times) {
        bencher.set_dtype(0, dtype::Float32())
977 978 979 980 981 982
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = FH / 2;
        param.sparse = param::Convolution::Sparse::GROUP;
983 984
        bencher.set_param(param);
        bencher.set_times(nr_times);
985 986 987 988 989 990 991 992
        TensorLayout src{{N, g, IH, IW}, dtype::Float32()},
                filter{{g, 1, 1, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
993
        auto time_ms_fp32 = bencher.execl({filter, dst, src}) / nr_times;
994 995 996 997 998 999
        float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32,
               (flo / (time_ms_fp32 * 1e9)));
    };
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    run(64, 384, 384, 32, 32, 3, 1, 10);
    run(64, 384, 384, 32, 32, 5, 1, 10);
    run(64, 384, 384, 32, 32, 7, 1, 10);
    run(64, 384, 384, 32, 32, 9, 1, 10);
    run(64, 384, 384, 32, 32, 11, 1, 10);
    run(64, 384, 384, 32, 32, 13, 1, 10);
    run(64, 384, 384, 32, 32, 15, 1, 10);
    run(64, 384, 384, 32, 32, 17, 1, 10);
    run(64, 384, 384, 32, 32, 19, 1, 10);
    run(64, 384, 384, 32, 32, 21, 1, 10);
    run(64, 384, 384, 32, 32, 23, 1, 10);
    run(64, 384, 384, 32, 32, 25, 1, 10);
    run(64, 384, 384, 32, 32, 27, 1, 10);
    run(64, 384, 384, 32, 32, 29, 1, 10);
    run(64, 384, 384, 32, 32, 31, 1, 10);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER_FP16) {
    CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()};
    bencher.set_display(false);
    bencher.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));

    auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t nr_times) {
        bencher.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = FH / 2;
        param.sparse = param::Convolution::Sparse::GROUP;
        bencher.set_param(param);
        bencher.set_times(nr_times);
        TensorLayout src{{N, g, IH, IW}, dtype::Float16()},
                filter{{g, 1, 1, FH, FH}, dtype::Float16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp16 = bencher.execl({filter, dst, src}) / nr_times;
        float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp16=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp16,
               (flo / (time_ms_fp16 * 1e9)));
    };
    run(64, 384, 384, 32, 32, 3, 1, 10);
    run(64, 384, 384, 32, 32, 5, 1, 10);
    run(64, 384, 384, 32, 32, 7, 1, 10);
    run(64, 384, 384, 32, 32, 9, 1, 10);
    run(64, 384, 384, 32, 32, 11, 1, 10);
    run(64, 384, 384, 32, 32, 13, 1, 10);
    run(64, 384, 384, 32, 32, 15, 1, 10);
    run(64, 384, 384, 32, 32, 17, 1, 10);
    run(64, 384, 384, 32, 32, 19, 1, 10);
    run(64, 384, 384, 32, 32, 21, 1, 10);
    run(64, 384, 384, 32, 32, 23, 1, 10);
    run(64, 384, 384, 32, 32, 25, 1, 10);
    run(64, 384, 384, 32, 32, 27, 1, 10);
    run(64, 384, 384, 32, 32, 29, 1, 10);
    run(64, 384, 384, 32, 32, 31, 1, 10);
}

1066 1067 1068 1069 1070 1071 1072
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
1073 1074
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        bench.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
                filter{{OC, IC, FH, FH}, dtype::BFloat16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
M
Megvii Engine Team 已提交
1096
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used, (flo / (used * 1e9)));
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

1120 1121 1122 1123 1124 1125 1126
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
1127 1128
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        bench.set_dtype(0, dtype::QuantizedS8{1.0f})
                .set_dtype(1, dtype::QuantizedS8{1.0f})
                .set_dtype(2, dtype::QuantizedS8{1.0f});
        param::Convolution param;
        param.format = param::Convolution::Format::NCHW4;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
                filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.0f};
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
M
Megvii Engine Team 已提交
1152
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used, (flo / (used * 1e9)));
1153 1154 1155 1156 1157 1158
    };
    run(64, 32, 32, 92, 180, 4, 2, 2);
    run(64, 32, 32, 46, 80, 4, 2, 2);
    run(16, 16, 16, 92, 180, 4, 2, 2);
    run(16, 16, 16, 46, 80, 4, 2, 2);
}
1159

1160 1161 1162 1163 1164 1165 1166
TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
1167 1168
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
1169 1170 1171 1172 1173 1174 1175 1176
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
1177
        bench.proxy()->target_execution_policy.algo.reset();
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
1188
        bench.proxy()->target_execution_policy.algo.reset();
1189 1190 1191 1192 1193
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
1194
        bench.proxy()->target_execution_policy.algo.reset();
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}
1230

1231
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_FILTER_DEPTHWISE_LARGE_FILTER) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    bench.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFTv7.6.3"));

    auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = FH / 2;
        param.sparse = param::Convolution::Sparse::GROUP;
        bench.set_param(param);
        bench.proxy()->target_execution_policy.algo.reset();
        TensorLayout src{{N, g, IH, IW}, dtype::Float32()},
                filter{{g, 1, 1, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32,
               (flo / (time_ms_fp32 * 1e9)));
    };
    run(64, 384, 384, 32, 32, 31, 1, 15);
}

1270 1271 1272 1273 1274 1275
#endif

#undef CUDNN_VERSION_STRING
#undef V
#undef V1

1276 1277
}  // namespace test
}  // namespace megdnn
1278 1279

// vim: syntax=cpp.doxygen