convolution.cpp 40.5 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/cuda/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11
 */
12
#include "megdnn/dtype.h"
13 14 15 16 17 18 19 20 21 22
#include "megdnn/oprs.h"
#include "megdnn/opr_param_defs.h"
#include "test/cuda/fixture.h"
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
#include "test/common/checker.h"
#include "test/common/convolution.h"
#include "test/common/rng.h"
#include "test/cuda/benchmark.h"
#include "src/cuda/utils.h"
23
#include "test/common/accuracy_shake_checker.h"
24 25 26 27 28 29 30 31 32

#define V1(x) #x
#define V(x) V1(x)
#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)

namespace megdnn {
namespace test {

33
TEST_F(CUDA, CONVOLUTION_8X8X32) {
34
    if (!cuda::is_compute_capability_required(6, 1)) {
35 36 37 38 39 40 41 42 43
        printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
               "doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args;
    {
        auto v = get_args();
44
        for (auto&& a : v) {
45 46 47 48 49
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_dilated_args();
50
        for (auto&& a : v) {
51 52 53 54 55
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_chanwise_args();
56
        for (auto&& a : v) {
57 58 59 60 61
            args.push_back(std::move(a));
        }
    }
    Checker<ConvolutionForward> checker(handle_cuda());
    UniformIntRNG rng(-4, 4);
62
    for (auto arg : args) {
63 64 65
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
66 67 68 69 70 71 72
        checker.set_dtype(0, dtype::Int8())
                .set_dtype(1, dtype::Int8())
                .set_dtype(2, dtype::Int32())
                .set_param(arg.param)
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .execs({arg.src, arg.filter, {}});
73 74 75
    }
}

76
TEST_F(CUDA, CONVOLUTION_FORWARD) {
77 78 79 80
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
81
    for (auto&& arg : args) {
82 83
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
84
        UniformFloatRNG rng(scale, 2 * scale);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
101 102 103 104 105 106 107 108 109
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
110 111 112 113 114 115
        checker.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16())
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
116 117 118 119
    }
}

TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
120
    if (!cuda::is_compute_capability_required(6, 1))
121 122 123 124 125 126 127 128 129 130 131 132 133 134
        return;
    using namespace convolution;
    Checker<Convolution> checker(handle_cuda());
    UniformIntRNG int_rng{-127, 127};
    Convolution::Param param;
    param.format = Convolution::Param::Format::NCHW4;

    checker.set_dtype(0, dtype::QuantizedS8(0.132f))
            .set_dtype(1, dtype::QuantizedS8(0.0239f))
            .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
            .set_rng(0, &int_rng)
            .set_rng(1, &int_rng)
            .set_param(param);

135 136 137 138 139 140 141
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
                    "DEFAULT",
                    {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
                              "MATMUL8X8X32", {})
                              .c_str(),
                      {}}}}));
142 143 144 145 146 147 148 149 150 151

    param.sparse = Convolution::Param::Sparse::DENSE;
    param.pad_h = param.pad_w = 1;
    param.stride_h = param.stride_w = 1;
    checker.set_param(param);
    checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
}

152
TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
153 154 155 156
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
157 158 159
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
160
        UniformFloatRNG rng(scale, 2 * scale);
161 162 163 164 165 166 167
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
168 169 170
    }
}

171
TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
172 173 174 175
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Benchmarker<ConvolutionForward> marker(handle_cuda());
    NormalRNG default_rng;
176 177 178
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
179
        UniformFloatRNG rng(scale, 2 * scale);
180 181 182 183 184 185
        marker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
186 187 188
    }
}

189
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
190 191 192 193
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
194
    for (auto&& arg : args) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
212
        if (!cuda::is_compute_capability_required(6, 0)) {
213 214 215 216 217 218 219 220 221 222 223 224 225
            src.dtype = dst.dtype = filter.dtype = dtype::Float16();
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
            arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        }
226 227
        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_DATD_BFLOAT16",
228
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
229 230 231 232 233 234 235 236 237
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
238 239 240
    }
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION"));
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
}

260
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
261 262 263 264 265 266 267
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
    NormalRNG default_rng;
268
    for (auto&& arg : args) {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
287 288 289 290 291 292 293 294 295 296
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
297 298
}

299
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
300
    if (!cuda::is_compute_capability_required(6, 1)) {
301 302
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
               "current device doesn't support\n");
303 304 305 306 307
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        std::string to_string() {
            return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m,
                            threadblock_n, threadblock_k, warp_m, warp_n,
                            warp_k, stage);
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
        std::string algo_name(ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s",
                                       algo_param.to_string().c_str()));
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
    if (!cuda::is_compute_capability_required(6, 1)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
366 367 368
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
369
            "INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
370 371

    checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    for (auto&& arg : args) {
        UniformIntRNG rng(-3, 3);
        auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
        auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.2f};
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                TensorLayoutArray{filter, dst, src});
    }
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
#if CUDA_VERSION >= 10020
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA) {
    if (!cuda::is_compute_capability_required(7, 5)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nhwc_conv_bwd_data();

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        int access_size;
        std::string to_string() {
            return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage_%d", threadblock_m,
                            threadblock_n, threadblock_k, warp_m, warp_n,
                            warp_k, stage, access_size);
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 4});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 8});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 16});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 4});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 8});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 16});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
        std::string algo_name(ssprintf("INT8_NHWC_IMMA_IMPLICIT_GEMM%s",
                                       algo_param.to_string().c_str()));
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}
#endif

452
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
453 454 455 456 457 458 459 460
    // BRAIN-481 failed on architectures 7.0, remove the following if statement,
    // when cudnn fixed the problem.
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_7_5_failures();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
461 462 463
    for (auto&& arg : args) {
        float scale =
                128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
464 465 466 467 468 469 470 471 472 473 474
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
475 476 477 478 479
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
480
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
481 482 483 484 485
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
486 487 488 489 490 491 492 493 494
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

495
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
496 497 498 499
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    bool f16_checked = false;
500
    for (auto&& arg : args) {
501 502 503 504 505 506 507 508 509 510 511
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
512 513 514 515 516
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
517 518 519 520 521 522 523

        // reduce on large f16 array may introduce significant error
        if (dst.total_nr_elems() >= 1000 && f16_checked)
            continue;

        f16_checked = true;
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
524 525 526 527 528
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
529 530 531 532 533 534
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
535 536 537

        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
538
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
539 540 541 542 543 544
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
545 546
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
547 548 549
    }
}

550
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
551 552 553 554 555
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
556
    for (auto&& arg : args) {
557 558 559 560 561 562 563 564 565 566 567
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
568 569 570 571 572
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
573
    }
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    //! noncontiguous case
    {
        NormalRNG default_rng;
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(param)
                .execl(TensorLayoutArray{
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            "CUDNN_CONVOLUTION"));
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}
        });
    }
606 607
}

608
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
609
    auto eps_getter = [](bool f16, int stage, const char* name) -> float {
610 611 612 613 614 615 616
        if (f16) {
            return stage == 2 ? 0.5 : 0.2;
        }
        if (strstr(name, "WINOGRAD_NONFUSED"))
            return 0.3;
        return 1e-3;
    };
617 618 619 620 621 622
    convolution::test_conv_config_combinations(2, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(3, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(5, handle_cuda(), false, true,
                                               true, eps_getter, true);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
    NormalRNG default_rng;
    TensorShape s_filter = TensorShape{8, 8, 2, 2},
                s_src = TensorShape{2, 8, 18, 18};
    float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
    UniformFloatRNG rng(scale, 2 * scale);
    auto src = TensorLayout(s_src, dtype::Float16());
    auto filter = TensorLayout(s_filter, dtype::Float16());
    TensorLayout dst;
    param::Convolution param;
    param.pad_h = param.pad_w = 2;
    param.stride_h = param.stride_w = 2;
    {
        auto opr = handle_cuda()->create_operator<Convolution>();
        opr->param() = param;
        opr->deduce_layout(src, filter, dst);
    }
    src.dtype = dst.dtype = filter.dtype = dtype::Float16();
    param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
    checker.set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_epsilon(0.2)
            .set_param(param)
            .exec(TensorLayoutArray{filter, dst, src});
}

#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, CONV_FWD_BENCHMARK) {
659 660 661
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1,
                   size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) {
662 663
        auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
        benchmarker.set_dtype(0, dtype::Float16())
664 665
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
666 667 668 669 670 671
        ConvolutionForward::Param param;
        param.stride_h = SH;
        param.stride_w = SW;
        param.pad_h = PH;
        param.pad_w = PW;
        if (fp16io_c32) {
672 673
            param.compute_mode =
                    ConvolutionForward::Param::ComputeMode::FLOAT32;
674 675
        }
        benchmarker.set_param(param);
676 677
        std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
                new OprProxy<ConvolutionForward>{true}};
678 679 680
        benchmarker.set_proxy(proxy);
        size_t OH = (IH - FH + 2 * PH) / SH + 1;
        size_t OW = (IW - FW + 2 * PW) / SW + 1;
681 682
        auto time = benchmarker.execs(
                {{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
683
        time /= 1000.0 * 10.0;
684
        auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
685 686
        auto flops = flo / time / 1e12;
        printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
687
        printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
688 689 690 691 692 693 694
    };
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
}

TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
    CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
695 696
    std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
            new OprProxy<ConvolutionForward>{true}};
697 698 699 700 701 702 703 704 705 706 707 708 709
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
710
        bench.proxy()->target_execution_policy.algo.reset();
711 712 713 714 715 716 717 718 719 720
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
721
        bench.proxy()->target_execution_policy.algo.reset();
722 723 724 725 726
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
727
        bench.proxy()->target_execution_policy.algo.reset();
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
781
        bench.proxy()->target_execution_policy.algo.reset();
782 783 784 785 786 787 788 789 790 791
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
792
        bench.proxy()->target_execution_policy.algo.reset();
793 794 795 796 797
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
798
        bench.proxy()->target_execution_policy.algo.reset();
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
                filter{{OC, IC, FH, FH}, dtype::BFloat16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::QuantizedS8{1.0f})
                .set_dtype(1, dtype::QuantizedS8{1.0f})
                .set_dtype(2, dtype::QuantizedS8{1.0f});
        param::Convolution param;
        param.format = param::Convolution::Format::NCHW4;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
                filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.0f};
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(64, 32, 32, 92, 180, 4, 2, 2);
    run(64, 32, 32, 46, 80, 4, 2, 2);
    run(16, 16, 16, 92, 180, 4, 2, 2);
    run(16, 16, 16, 46, 80, 4, 2, 2);
}
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
948
        bench.proxy()->target_execution_policy.algo.reset();
949 950 951 952 953 954 955 956 957 958
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
959
        bench.proxy()->target_execution_policy.algo.reset();
960 961 962 963 964
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
965
        bench.proxy()->target_execution_policy.algo.reset();
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}
#endif

#undef CUDNN_VERSION_STRING
#undef V
#undef V1

1007 1008
}  // namespace test
}  // namespace megdnn
1009 1010

// vim: syntax=cpp.doxygen