convolution.cpp 51.2 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/cuda/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11
 */
M
Megvii Engine Team 已提交
12
#include "test/common/convolution.h"
13
#include "megdnn/dtype.h"
14
#include "megdnn/opr_param_defs.h"
M
Megvii Engine Team 已提交
15 16 17
#include "megdnn/oprs.h"
#include "src/cuda/utils.h"
#include "test/common/accuracy_shake_checker.h"
18 19
#include "test/common/checker.h"
#include "test/common/rng.h"
M
Megvii Engine Team 已提交
20 21
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
22
#include "test/cuda/benchmark.h"
M
Megvii Engine Team 已提交
23
#include "test/cuda/fixture.h"
24 25

#define V1(x) #x
M
Megvii Engine Team 已提交
26
#define V(x)  V1(x)
27 28 29 30 31 32
#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)

namespace megdnn {
namespace test {

33
TEST_F(CUDA, CONVOLUTION_8X8X32) {
34
    if (!cuda::is_compute_capability_required(6, 1)) {
35 36 37 38 39 40 41 42 43
        printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
               "doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args;
    {
        auto v = get_args();
44
        for (auto&& a : v) {
45 46 47 48 49
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_dilated_args();
50
        for (auto&& a : v) {
51 52 53 54 55
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_chanwise_args();
56
        for (auto&& a : v) {
57 58 59 60 61
            args.push_back(std::move(a));
        }
    }
    Checker<ConvolutionForward> checker(handle_cuda());
    UniformIntRNG rng(-4, 4);
62
    for (auto arg : args) {
63 64 65
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
66 67 68 69 70 71 72
        checker.set_dtype(0, dtype::Int8())
                .set_dtype(1, dtype::Int8())
                .set_dtype(2, dtype::Int32())
                .set_param(arg.param)
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .execs({arg.src, arg.filter, {}});
73 74 75
    }
}

76
TEST_F(CUDA, CONVOLUTION_FORWARD) {
77 78 79 80
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
81
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
82
        float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
83
        UniformFloatRNG rng(scale, 2 * scale);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
100 101 102 103 104 105 106 107 108
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
109 110 111 112 113 114
        checker.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16())
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
115 116 117 118
    }
}

TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
119
    if (!cuda::is_compute_capability_required(6, 1))
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        return;
    using namespace convolution;
    Checker<Convolution> checker(handle_cuda());
    UniformIntRNG int_rng{-127, 127};
    Convolution::Param param;
    param.format = Convolution::Param::Format::NCHW4;

    checker.set_dtype(0, dtype::QuantizedS8(0.132f))
            .set_dtype(1, dtype::QuantizedS8(0.0239f))
            .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
            .set_rng(0, &int_rng)
            .set_rng(1, &int_rng)
            .set_param(param);

134 135 136 137 138 139 140
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
                    "DEFAULT",
                    {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
                              "MATMUL8X8X32", {})
                              .c_str(),
                      {}}}}));
141 142 143 144 145 146 147 148 149 150

    param.sparse = Convolution::Param::Sparse::DENSE;
    param.pad_h = param.pad_w = 1;
    param.stride_h = param.stride_w = 1;
    checker.set_param(param);
    checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
}

151
TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
152 153 154 155
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
156
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
157
        float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
158
        UniformFloatRNG rng(scale, 2 * scale);
159 160 161 162 163 164 165
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
166 167 168
    }
}

169
TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
170 171 172 173
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Benchmarker<ConvolutionForward> marker(handle_cuda());
    NormalRNG default_rng;
174
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
175
        float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
176
        UniformFloatRNG rng(scale, 2 * scale);
177 178 179 180 181 182
        marker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
183 184 185
    }
}

186
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
187 188 189 190
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
191
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
192
        float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
208
        if (!cuda::is_compute_capability_required(6, 0)) {
209 210 211 212 213 214 215 216 217 218 219 220 221
            src.dtype = dst.dtype = filter.dtype = dtype::Float16();
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
            arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        }
M
Megvii Engine Team 已提交
222 223 224 225
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(ExecutionPolicyAlgoName{
                        "CONVOLUTION_BACKWARD_DATD_BFLOAT16",
                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
226 227 228 229 230 231 232 233 234
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
235 236 237
    }
}

238 239 240 241 242 243 244 245 246 247 248 249
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FP16_CUDNN7_5) {
    // algo CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 with
    // TensorCore operations produces incorrect result.
    // Maybe nvidia has fixed this issue
    // There is a test using incorrect case:
    // inp={2x8x18x18}, kern={8x8x2x2}, pad_h=pad_w=2, stride_h=stride_w=2,
    // dtype=float16
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_5_1_backward();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
250
        float scale = 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
267 268 269 270
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
271 272 273
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
274 275 276 277
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
278 279 280 281 282 283 284 285 286
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_NHWC) {
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
287
        float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        UniformFloatRNG rng(scale, 2 * scale);
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
303 304 305 306
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
307 308 309
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        checker.set_rng(0, &rng)
M
Megvii Engine Team 已提交
310 311 312 313
                .set_rng(1, &rng)
                .set_epsilon(1e-2)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
314 315 316
    }
}

317 318 319 320 321
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
M
Megvii Engine Team 已提交
322 323
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("CUDNN_CONVOLUTION"));
324 325 326 327 328 329 330 331 332 333 334 335
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
}

336
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
337 338 339 340 341 342 343
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
    NormalRNG default_rng;
344
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
345
        float scale = 64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
362 363 364 365 366 367 368 369 370 371
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
372 373
}

374
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
375
    if (!cuda::is_compute_capability_required(6, 1)) {
376 377
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
               "current device doesn't support\n");
378 379 380 381 382
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
383 384 385 386 387 388 389 390 391 392

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        std::string to_string() {
M
Megvii Engine Team 已提交
393 394 395
            return ssprintf(
                    "_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n,
                    threadblock_k, warp_m, warp_n, warp_k, stage);
396 397 398 399 400 401 402 403 404 405 406 407
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
M
Megvii Engine Team 已提交
408 409
        std::string algo_name(ssprintf(
                "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s", algo_param.to_string().c_str()));
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
    if (!cuda::is_compute_capability_required(6, 1)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
441 442
    Checker<ConvolutionBackwardData> checker(handle_cuda());

M
Megvii Engine Team 已提交
443 444
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
445 446

    checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    for (auto&& arg : args) {
        UniformIntRNG rng(-3, 3);
        auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
        auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.2f};
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                TensorLayoutArray{filter, dst, src});
    }
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
#if CUDA_VERSION >= 10020
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA) {
    if (!cuda::is_compute_capability_required(7, 5)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nhwc_conv_bwd_data();

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        int access_size;
        std::string to_string() {
M
Megvii Engine Team 已提交
485 486 487
            return ssprintf(
                    "_%dX%dX%d_%dX%dX%d_%dstage_%d", threadblock_m, threadblock_n,
                    threadblock_k, warp_m, warp_n, warp_k, stage, access_size);
488 489 490 491 492 493 494 495 496 497 498 499 500 501
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 4});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 8});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 16});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 4});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 8});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 16});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
M
Megvii Engine Team 已提交
502 503
        std::string algo_name(ssprintf(
                "INT8_NHWC_IMMA_IMPLICIT_GEMM%s", algo_param.to_string().c_str()));
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}
#endif

527
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
528 529 530 531 532 533 534 535
    // BRAIN-481 failed on architectures 7.0, remove the following if statement,
    // when cudnn fixed the problem.
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_7_5_failures();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
536
    for (auto&& arg : args) {
M
Megvii Engine Team 已提交
537
        float scale = 128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
538 539 540 541 542 543 544 545 546 547 548
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
549 550 551 552 553
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
554
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
555 556 557 558 559
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
560 561 562 563 564 565 566 567 568
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

569
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
570 571 572 573
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    bool f16_checked = false;
574
    for (auto&& arg : args) {
575 576 577 578 579 580 581 582 583 584 585
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
586 587 588 589 590
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
591 592 593 594 595 596 597

        // reduce on large f16 array may introduce significant error
        if (dst.total_nr_elems() >= 1000 && f16_checked)
            continue;

        f16_checked = true;
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
598 599 600 601 602
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
603 604 605 606 607 608
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
609

M
Megvii Engine Team 已提交
610 611 612 613
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardFilter>(ExecutionPolicyAlgoName{
                        "CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
614 615 616 617 618 619
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
620 621
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
622 623 624
    }
}

625
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
626 627 628 629 630
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
631
    for (auto&& arg : args) {
632 633 634 635 636 637 638 639 640 641 642
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
643 644 645 646 647
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
648
    }
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    //! noncontiguous case
    {
        NormalRNG default_rng;
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(param)
                .execl(TensorLayoutArray{
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
M
Megvii Engine Team 已提交
669 670
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardFilter>("CUDNN_CONVOLUTION"));
671 672 673 674 675 676 677
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
M
Megvii Engine Team 已提交
678
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}});
679
    }
680 681
}

682
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
683
    auto eps_getter = [](bool f16, int stage, const char* name) -> float {
684 685 686 687 688 689 690
        if (f16) {
            return stage == 2 ? 0.5 : 0.2;
        }
        if (strstr(name, "WINOGRAD_NONFUSED"))
            return 0.3;
        return 1e-3;
    };
M
Megvii Engine Team 已提交
691 692 693 694 695 696
    convolution::test_conv_config_combinations(
            2, handle_cuda(), false, true, true, eps_getter, true);
    convolution::test_conv_config_combinations(
            3, handle_cuda(), false, true, true, eps_getter, true);
    convolution::test_conv_config_combinations(
            5, handle_cuda(), false, true, true, eps_getter, true);
697 698 699 700 701 702 703 704 705 706
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
    NormalRNG default_rng;
M
Megvii Engine Team 已提交
707
    TensorShape s_filter = TensorShape{8, 8, 2, 2}, s_src = TensorShape{2, 8, 18, 18};
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
    UniformFloatRNG rng(scale, 2 * scale);
    auto src = TensorLayout(s_src, dtype::Float16());
    auto filter = TensorLayout(s_filter, dtype::Float16());
    TensorLayout dst;
    param::Convolution param;
    param.pad_h = param.pad_w = 2;
    param.stride_h = param.stride_w = 2;
    {
        auto opr = handle_cuda()->create_operator<Convolution>();
        opr->param() = param;
        opr->deduce_layout(src, filter, dst);
    }
    src.dtype = dst.dtype = filter.dtype = dtype::Float16();
    param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
M
Megvii Engine Team 已提交
723 724
    checker.set_rng(0, &rng).set_rng(1, &rng).set_epsilon(0.2).set_param(param).exec(
            TensorLayoutArray{filter, dst, src});
725 726
}

727 728 729 730
TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) {
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));
731
    for (auto dtype : std::vector<DType>{dtype::Float16()}) {
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        auto run = [&checker, &dtype](size_t n, size_t g, size_t h, size_t fh) {
            param::Convolution param;
            param.stride_h = param.stride_w = 1;
            param.pad_h = param.pad_w = fh / 2;
            param.mode = Convolution::Mode::CROSS_CORRELATION;
            param.sparse = param::Convolution::Sparse::GROUP;
            checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype);

            checker.set_param(param).execs(
                    {{g, 1, 1, fh, fh}, {n, g, h, h}, {n, g, h, h}});
        };
        run(4, 8, 32, 5);
        run(4, 8, 32, 7);
        run(4, 8, 32, 9);
        run(4, 8, 32, 11);
        run(4, 8, 32, 13);
        run(4, 8, 32, 15);
        run(4, 8, 32, 17);
        run(4, 8, 32, 19);
        run(4, 8, 32, 21);
        run(4, 8, 32, 23);
        run(4, 8, 32, 25);
        run(4, 8, 32, 27);
        run(4, 8, 32, 29);
        run(4, 8, 32, 31);
        run(4, 8, 64, 7);
        run(4, 8, 64, 5);
        run(4, 8, 64, 9);
        run(4, 8, 64, 11);
        run(4, 8, 64, 13);
        run(4, 8, 64, 15);
        run(4, 8, 64, 17);
        run(4, 8, 64, 19);
        run(4, 8, 64, 21);
        run(4, 8, 64, 23);
        run(4, 8, 64, 25);
        run(4, 8, 64, 27);
        run(4, 8, 64, 29);
        run(4, 8, 64, 31);
        run(1, 2, 128, 31);
        run(1, 2, 256, 31);
    }
}

776 777
#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, CONV_FWD_BENCHMARK) {
M
Megvii Engine Team 已提交
778 779 780
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t SH = 1,
                   size_t SW = 1, size_t FH = 1, size_t FW = 1, size_t PH = 0,
                   size_t PW = 0, bool fp16io_c32 = false) {
781 782
        auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
        benchmarker.set_dtype(0, dtype::Float16())
783 784
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
785 786 787 788 789 790
        ConvolutionForward::Param param;
        param.stride_h = SH;
        param.stride_w = SW;
        param.pad_h = PH;
        param.pad_w = PW;
        if (fp16io_c32) {
M
Megvii Engine Team 已提交
791
            param.compute_mode = ConvolutionForward::Param::ComputeMode::FLOAT32;
792 793
        }
        benchmarker.set_param(param);
794 795
        std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
                new OprProxy<ConvolutionForward>{true}};
796 797 798
        benchmarker.set_proxy(proxy);
        size_t OH = (IH - FH + 2 * PH) / SH + 1;
        size_t OW = (IW - FW + 2 * PW) / SW + 1;
M
Megvii Engine Team 已提交
799 800
        auto time =
                benchmarker.execs({{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
801
        time /= 1000.0 * 10.0;
802
        auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
803 804
        auto flops = flo / time / 1e12;
        printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
805
        printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
806 807 808 809 810 811 812
    };
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
}

TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
    CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
813 814
    std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
            new OprProxy<ConvolutionForward>{true}};
815 816 817
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
818 819
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
820 821 822 823 824 825 826 827
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
828
        bench.proxy()->target_execution_policy.algo.reset();
829 830 831 832 833 834 835 836 837 838
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
839
        bench.proxy()->target_execution_policy.algo.reset();
840 841 842 843 844
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
845
        bench.proxy()->target_execution_policy.algo.reset();
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
889 890
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
891 892 893 894 895 896 897 898
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
899
        bench.proxy()->target_execution_policy.algo.reset();
900 901 902 903 904 905 906 907 908 909
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
910
        bench.proxy()->target_execution_policy.algo.reset();
911 912 913 914 915
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
916
        bench.proxy()->target_execution_policy.algo.reset();
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

953 954 955 956 957
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER) {
    CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()};
    bencher.set_display(false);
    bencher.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));
958 959

    auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH,
960 961
                   size_t SH, size_t nr_times) {
        bencher.set_dtype(0, dtype::Float32())
962 963 964 965 966 967
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = FH / 2;
        param.sparse = param::Convolution::Sparse::GROUP;
968 969
        bencher.set_param(param);
        bencher.set_times(nr_times);
970 971 972 973 974 975 976 977
        TensorLayout src{{N, g, IH, IW}, dtype::Float32()},
                filter{{g, 1, 1, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
978
        auto time_ms_fp32 = bencher.execl({filter, dst, src}) / nr_times;
979 980 981 982 983 984
        float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32,
               (flo / (time_ms_fp32 * 1e9)));
    };
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    run(64, 384, 384, 32, 32, 3, 1, 10);
    run(64, 384, 384, 32, 32, 5, 1, 10);
    run(64, 384, 384, 32, 32, 7, 1, 10);
    run(64, 384, 384, 32, 32, 9, 1, 10);
    run(64, 384, 384, 32, 32, 11, 1, 10);
    run(64, 384, 384, 32, 32, 13, 1, 10);
    run(64, 384, 384, 32, 32, 15, 1, 10);
    run(64, 384, 384, 32, 32, 17, 1, 10);
    run(64, 384, 384, 32, 32, 19, 1, 10);
    run(64, 384, 384, 32, 32, 21, 1, 10);
    run(64, 384, 384, 32, 32, 23, 1, 10);
    run(64, 384, 384, 32, 32, 25, 1, 10);
    run(64, 384, 384, 32, 32, 27, 1, 10);
    run(64, 384, 384, 32, 32, 29, 1, 10);
    run(64, 384, 384, 32, 32, 31, 1, 10);
1000 1001
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER_FP16) {
    CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()};
    bencher.set_display(false);
    bencher.set_before_exec_callback(
            AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER"));

    auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t nr_times) {
        bencher.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = FH / 2;
        param.sparse = param::Convolution::Sparse::GROUP;
        bencher.set_param(param);
        bencher.set_times(nr_times);
        TensorLayout src{{N, g, IH, IW}, dtype::Float16()},
                filter{{g, 1, 1, FH, FH}, dtype::Float16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp16 = bencher.execl({filter, dst, src}) / nr_times;
        float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp16=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp16,
               (flo / (time_ms_fp16 * 1e9)));
    };
    run(64, 384, 384, 32, 32, 3, 1, 10);
    run(64, 384, 384, 32, 32, 5, 1, 10);
    run(64, 384, 384, 32, 32, 7, 1, 10);
    run(64, 384, 384, 32, 32, 9, 1, 10);
    run(64, 384, 384, 32, 32, 11, 1, 10);
    run(64, 384, 384, 32, 32, 13, 1, 10);
    run(64, 384, 384, 32, 32, 15, 1, 10);
    run(64, 384, 384, 32, 32, 17, 1, 10);
    run(64, 384, 384, 32, 32, 19, 1, 10);
    run(64, 384, 384, 32, 32, 21, 1, 10);
    run(64, 384, 384, 32, 32, 23, 1, 10);
    run(64, 384, 384, 32, 32, 25, 1, 10);
    run(64, 384, 384, 32, 32, 27, 1, 10);
    run(64, 384, 384, 32, 32, 29, 1, 10);
    run(64, 384, 384, 32, 32, 31, 1, 10);
}

1051 1052 1053 1054 1055 1056 1057
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
1058 1059
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        bench.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
                filter{{OC, IC, FH, FH}, dtype::BFloat16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
M
Megvii Engine Team 已提交
1081
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used, (flo / (used * 1e9)));
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

1105 1106 1107 1108 1109 1110 1111
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
1112 1113
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        bench.set_dtype(0, dtype::QuantizedS8{1.0f})
                .set_dtype(1, dtype::QuantizedS8{1.0f})
                .set_dtype(2, dtype::QuantizedS8{1.0f});
        param::Convolution param;
        param.format = param::Convolution::Format::NCHW4;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
                filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.0f};
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
M
Megvii Engine Team 已提交
1137
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used, (flo / (used * 1e9)));
1138 1139 1140 1141 1142 1143
    };
    run(64, 32, 32, 92, 180, 4, 2, 2);
    run(64, 32, 32, 46, 80, 4, 2, 2);
    run(16, 16, 16, 92, 180, 4, 2, 2);
    run(16, 16, 16, 46, 80, 4, 2, 2);
}
1144

1145 1146 1147 1148 1149 1150 1151
TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

M
Megvii Engine Team 已提交
1152 1153
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
1154 1155 1156 1157 1158 1159 1160 1161
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
1162
        bench.proxy()->target_execution_policy.algo.reset();
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
1173
        bench.proxy()->target_execution_policy.algo.reset();
1174 1175 1176 1177 1178
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
1179
        bench.proxy()->target_execution_policy.algo.reset();
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}
1215

1216
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_FILTER_DEPTHWISE_LARGE_FILTER) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    bench.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFTv7.6.3"));

    auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH,
                   size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = FH / 2;
        param.sparse = param::Convolution::Sparse::GROUP;
        bench.set_param(param);
        bench.proxy()->target_execution_policy.algo.reset();
        TensorLayout src{{N, g, IH, IW}, dtype::Float32()},
                filter{{g, 1, 1, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32,
               (flo / (time_ms_fp32 * 1e9)));
    };
    run(64, 384, 384, 32, 32, 31, 1, 15);
}

1255 1256 1257 1258 1259 1260
#endif

#undef CUDNN_VERSION_STRING
#undef V
#undef V1

1261 1262
}  // namespace test
}  // namespace megdnn
1263 1264

// vim: syntax=cpp.doxygen