convolution.cpp 33.7 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/cuda/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11
 */
12
#include "megdnn/dtype.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "megdnn/oprs.h"
#include "megdnn/opr_param_defs.h"
#include "test/cuda/fixture.h"
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
#include "test/common/checker.h"
#include "test/common/convolution.h"
#include "test/common/rng.h"
#include "test/cuda/benchmark.h"
#include "src/cuda/utils.h"

#define V1(x) #x
#define V(x) V1(x)
#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)

namespace megdnn {
namespace test {

32
TEST_F(CUDA, CONVOLUTION_8X8X32) {
33
    if (!cuda::is_compute_capability_required(6, 1)) {
34 35 36 37 38 39 40 41 42
        printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
               "doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args;
    {
        auto v = get_args();
43
        for (auto&& a : v) {
44 45 46 47 48
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_dilated_args();
49
        for (auto&& a : v) {
50 51 52 53 54
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_chanwise_args();
55
        for (auto&& a : v) {
56 57 58 59 60
            args.push_back(std::move(a));
        }
    }
    Checker<ConvolutionForward> checker(handle_cuda());
    UniformIntRNG rng(-4, 4);
61
    for (auto arg : args) {
62 63 64
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
65 66 67 68 69 70 71
        checker.set_dtype(0, dtype::Int8())
                .set_dtype(1, dtype::Int8())
                .set_dtype(2, dtype::Int32())
                .set_param(arg.param)
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .execs({arg.src, arg.filter, {}});
72 73 74
    }
}

75
TEST_F(CUDA, CONVOLUTION_FORWARD) {
76 77 78 79
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
80
    for (auto&& arg : args) {
81 82
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
83
        UniformFloatRNG rng(scale, 2 * scale);
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
100 101 102 103 104 105 106 107 108
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
109 110 111 112 113 114
        checker.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16())
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
115 116 117 118
    }
}

TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
119
    if (!cuda::is_compute_capability_required(6, 1))
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        return;
    using namespace convolution;
    Checker<Convolution> checker(handle_cuda());
    UniformIntRNG int_rng{-127, 127};
    Convolution::Param param;
    param.format = Convolution::Param::Format::NCHW4;

    checker.set_dtype(0, dtype::QuantizedS8(0.132f))
            .set_dtype(1, dtype::QuantizedS8(0.0239f))
            .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
            .set_rng(0, &int_rng)
            .set_rng(1, &int_rng)
            .set_param(param);

134 135 136 137 138 139 140
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
                    "DEFAULT",
                    {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
                              "MATMUL8X8X32", {})
                              .c_str(),
                      {}}}}));
141 142 143 144 145 146 147 148 149 150

    param.sparse = Convolution::Param::Sparse::DENSE;
    param.pad_h = param.pad_w = 1;
    param.stride_h = param.stride_w = 1;
    checker.set_param(param);
    checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
}

151
TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
152 153 154 155
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
156 157 158
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
159
        UniformFloatRNG rng(scale, 2 * scale);
160 161 162 163 164 165 166
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
167 168 169
    }
}

170
TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
171 172 173 174
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Benchmarker<ConvolutionForward> marker(handle_cuda());
    NormalRNG default_rng;
175 176 177
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
178
        UniformFloatRNG rng(scale, 2 * scale);
179 180 181 182 183 184
        marker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
185 186 187
    }
}

188
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
189 190 191 192
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
193
    for (auto&& arg : args) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
211
        if (!cuda::is_compute_capability_required(6, 0)) {
212 213 214 215 216 217 218 219 220 221 222 223 224
            src.dtype = dst.dtype = filter.dtype = dtype::Float16();
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
            arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        }
225 226
        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_DATD_BFLOAT16",
227
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
228 229 230 231 232 233 234 235 236
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
237 238 239
    }
}

240
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
241 242 243 244 245 246 247
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
    NormalRNG default_rng;
248
    for (auto&& arg : args) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_DP4A) {
    if (!cuda::is_compute_capability_required(6, 1)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_DP4A test as current "
               "device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "INT8_NCHW4_DOTPROD_IMPLICIT_GEMM"));

    checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    for (auto&& arg : args) {
        UniformIntRNG rng(-3, 3);
        auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
        auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.2f};
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                TensorLayoutArray{filter, dst, src});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
302 303 304 305 306 307 308 309
    // BRAIN-481 failed on architectures 7.0, remove the following if statement,
    // when cudnn fixed the problem.
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_7_5_failures();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
310 311 312
    for (auto&& arg : args) {
        float scale =
                128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
313 314 315 316 317 318 319 320 321 322 323
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
324 325 326 327 328
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
329
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
330 331 332 333 334
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
335 336 337 338 339 340 341 342 343
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

344
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
345 346 347 348
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    bool f16_checked = false;
349
    for (auto&& arg : args) {
350 351 352 353 354 355 356 357 358 359 360
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
361 362 363 364 365
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
366 367 368 369 370 371 372

        // reduce on large f16 array may introduce significant error
        if (dst.total_nr_elems() >= 1000 && f16_checked)
            continue;

        f16_checked = true;
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
373 374 375 376 377
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
378 379 380 381 382 383
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
384 385 386

        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
387
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
388 389 390 391 392 393
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
394 395
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
396 397 398
    }
}

399
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
400 401 402 403 404
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
405
    for (auto&& arg : args) {
406 407 408 409 410 411 412 413 414 415 416
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
417 418 419 420 421
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
422 423 424
    }
}

425
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
426
    auto eps_getter = [](bool f16, int stage, const char* name) -> float {
427 428 429 430 431 432 433
        if (f16) {
            return stage == 2 ? 0.5 : 0.2;
        }
        if (strstr(name, "WINOGRAD_NONFUSED"))
            return 0.3;
        return 1e-3;
    };
434 435 436 437 438 439
    convolution::test_conv_config_combinations(2, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(3, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(5, handle_cuda(), false, true,
                                               true, eps_getter, true);
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
    NormalRNG default_rng;
    TensorShape s_filter = TensorShape{8, 8, 2, 2},
                s_src = TensorShape{2, 8, 18, 18};
    float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
    UniformFloatRNG rng(scale, 2 * scale);
    auto src = TensorLayout(s_src, dtype::Float16());
    auto filter = TensorLayout(s_filter, dtype::Float16());
    TensorLayout dst;
    param::Convolution param;
    param.pad_h = param.pad_w = 2;
    param.stride_h = param.stride_w = 2;
    {
        auto opr = handle_cuda()->create_operator<Convolution>();
        opr->param() = param;
        opr->deduce_layout(src, filter, dst);
    }
    src.dtype = dst.dtype = filter.dtype = dtype::Float16();
    param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
    checker.set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_epsilon(0.2)
            .set_param(param)
            .exec(TensorLayoutArray{filter, dst, src});
}

#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, CONV_FWD_BENCHMARK) {
476 477 478
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1,
                   size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) {
479 480
        auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
        benchmarker.set_dtype(0, dtype::Float16())
481 482
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
483 484 485 486 487 488
        ConvolutionForward::Param param;
        param.stride_h = SH;
        param.stride_w = SW;
        param.pad_h = PH;
        param.pad_w = PW;
        if (fp16io_c32) {
489 490
            param.compute_mode =
                    ConvolutionForward::Param::ComputeMode::FLOAT32;
491 492
        }
        benchmarker.set_param(param);
493 494
        std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
                new OprProxy<ConvolutionForward>{true}};
495 496 497
        benchmarker.set_proxy(proxy);
        size_t OH = (IH - FH + 2 * PH) / SH + 1;
        size_t OW = (IW - FW + 2 * PW) / SW + 1;
498 499
        auto time = benchmarker.execs(
                {{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
500
        time /= 1000.0 * 10.0;
501
        auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
502 503
        auto flops = flo / time / 1e12;
        printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
504
        printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
505 506 507 508 509 510 511
    };
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
}

TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
    CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
512 513
    std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
            new OprProxy<ConvolutionForward>{true}};
514 515 516 517 518 519 520 521 522 523 524 525 526
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
527
        bench.proxy()->target_execution_policy.algo.reset();
528 529 530 531 532 533 534 535 536 537
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
538
        bench.proxy()->target_execution_policy.algo.reset();
539 540 541 542 543
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
544
        bench.proxy()->target_execution_policy.algo.reset();
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
598
        bench.proxy()->target_execution_policy.algo.reset();
599 600 601 602 603 604 605 606 607 608
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
609
        bench.proxy()->target_execution_policy.algo.reset();
610 611 612 613 614
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
615
        bench.proxy()->target_execution_policy.algo.reset();
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
                filter{{OC, IC, FH, FH}, dtype::BFloat16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::QuantizedS8{1.0f})
                .set_dtype(1, dtype::QuantizedS8{1.0f})
                .set_dtype(2, dtype::QuantizedS8{1.0f});
        param::Convolution param;
        param.format = param::Convolution::Format::NCHW4;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
                filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.0f};
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(64, 32, 32, 92, 180, 4, 2, 2);
    run(64, 32, 32, 46, 80, 4, 2, 2);
    run(16, 16, 16, 92, 180, 4, 2, 2);
    run(16, 16, 16, 46, 80, 4, 2, 2);
}
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
765
        bench.proxy()->target_execution_policy.algo.reset();
766 767 768 769 770 771 772 773 774 775
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
776
        bench.proxy()->target_execution_policy.algo.reset();
777 778 779 780 781
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
782
        bench.proxy()->target_execution_policy.algo.reset();
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}
#endif

#undef CUDNN_VERSION_STRING
#undef V
#undef V1

824 825
}  // namespace test
}  // namespace megdnn
826 827

// vim: syntax=cpp.doxygen