convolution.cpp 44.1 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/cuda/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11
 */
12
#include "megdnn/dtype.h"
13 14 15 16 17 18 19 20 21 22
#include "megdnn/oprs.h"
#include "megdnn/opr_param_defs.h"
#include "test/cuda/fixture.h"
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
#include "test/common/checker.h"
#include "test/common/convolution.h"
#include "test/common/rng.h"
#include "test/cuda/benchmark.h"
#include "src/cuda/utils.h"
23
#include "test/common/accuracy_shake_checker.h"
24 25 26 27 28 29 30 31 32

#define V1(x) #x
#define V(x) V1(x)
#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)

namespace megdnn {
namespace test {

33
TEST_F(CUDA, CONVOLUTION_8X8X32) {
34
    if (!cuda::is_compute_capability_required(6, 1)) {
35 36 37 38 39 40 41 42 43
        printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device"
               "doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args;
    {
        auto v = get_args();
44
        for (auto&& a : v) {
45 46 47 48 49
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_dilated_args();
50
        for (auto&& a : v) {
51 52 53 54 55
            args.push_back(std::move(a));
        }
    }
    {
        auto v = get_chanwise_args();
56
        for (auto&& a : v) {
57 58 59 60 61
            args.push_back(std::move(a));
        }
    }
    Checker<ConvolutionForward> checker(handle_cuda());
    UniformIntRNG rng(-4, 4);
62
    for (auto arg : args) {
63 64 65
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
66 67 68 69 70 71 72
        checker.set_dtype(0, dtype::Int8())
                .set_dtype(1, dtype::Int8())
                .set_dtype(2, dtype::Int32())
                .set_param(arg.param)
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .execs({arg.src, arg.filter, {}});
73 74 75
    }
}

76
TEST_F(CUDA, CONVOLUTION_FORWARD) {
77 78 79 80
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
81
    for (auto&& arg : args) {
82 83
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
84
        UniformFloatRNG rng(scale, 2 * scale);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
101 102 103 104 105 106 107 108 109
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16())
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
110 111 112 113 114 115
        checker.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16())
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
116 117 118 119
    }
}

TEST_F(CUDA, CONV_FORWARD_MATMUL_NCHW4) {
120
    if (!cuda::is_compute_capability_required(6, 1))
121 122 123 124 125 126 127 128 129 130 131 132 133 134
        return;
    using namespace convolution;
    Checker<Convolution> checker(handle_cuda());
    UniformIntRNG int_rng{-127, 127};
    Convolution::Param param;
    param.format = Convolution::Param::Format::NCHW4;

    checker.set_dtype(0, dtype::QuantizedS8(0.132f))
            .set_dtype(1, dtype::QuantizedS8(0.0239f))
            .set_dtype(2, dtype::QuantizedS32(0.132f * 0.0239f))
            .set_rng(0, &int_rng)
            .set_rng(1, &int_rng)
            .set_param(param);

135 136 137 138 139 140 141
    checker.set_before_exec_callback(
            AlgoChecker<ConvolutionForward>(ExecutionPolicyAlgoName{
                    "DEFAULT",
                    {{ConvBiasForward::algo_name<ConvBiasForward::MatmulParam>(
                              "MATMUL8X8X32", {})
                              .c_str(),
                      {}}}}));
142 143 144 145 146 147 148 149 150 151

    param.sparse = Convolution::Param::Sparse::DENSE;
    param.pad_h = param.pad_w = 1;
    param.stride_h = param.stride_w = 1;
    checker.set_param(param);
    checker.exec({{8, 4, 10, 10, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {}});
    checker.exec({{8, 64, 12, 12, 4}, {256, 64, 3, 3, 4}, {}});
}

152
TEST_F(CUDA, CONVOLUTION_1X1_FORWARD) {
153 154 155 156
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Checker<ConvolutionForward> checker(handle_cuda());
    NormalRNG default_rng;
157 158 159
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
160
        UniformFloatRNG rng(scale, 2 * scale);
161 162 163 164 165 166 167
        checker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
168 169 170
    }
}

171
TEST_F(CUDA, BENCHMARK_CONVOLUTION_1X1_FORWARD) {
172 173 174 175
    using namespace convolution;
    std::vector<TestArg> args = get_1x1_args();
    Benchmarker<ConvolutionForward> marker(handle_cuda());
    NormalRNG default_rng;
176 177 178
    for (auto&& arg : args) {
        float scale =
                1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3]);
179
        UniformFloatRNG rng(scale, 2 * scale);
180 181 182 183 184 185
        marker.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}});
186 187 188
    }
}

189
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA) {
190 191 192 193
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
194
    for (auto&& arg : args) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
212
        if (!cuda::is_compute_capability_required(6, 0)) {
213 214 215 216 217 218 219 220 221 222 223 224 225
            src.dtype = dst.dtype = filter.dtype = dtype::Float16();
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
            arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
            checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-1)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        }
226 227
        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_DATD_BFLOAT16",
228
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
229 230 231 232 233 234 235 236 237
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
238 239 240
    }
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FP16_CUDNN7_5) {
    // algo CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 with
    // TensorCore operations produces incorrect result.
    // Maybe nvidia has fixed this issue
    // There is a test using incorrect case:
    // inp={2x8x18x18}, kern={8x8x2x2}, pad_h=pad_w=2, stride_h=stride_w=2,
    // dtype=float16
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_5_1_backward();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
    for (auto&& arg : args) {
        float scale =
                128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-2)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-2)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_NHWC) {
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
    for (auto&& arg : args) {
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        arg.param.format = param::Convolution::Format::NHWC;
        arg.src = cvt_src_or_dst_nchw2nhwc(arg.src);
        arg.filter = cvt_filter_nchw2nhwc(arg.filter);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-2)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        arg.param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        checker.set_rng(0, &rng)
                    .set_rng(1, &rng)
                    .set_epsilon(1e-2)
                    .set_param(arg.param)
                    .exec(TensorLayoutArray{filter, dst, src});
    }
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION"));
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
}

341
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_MATMUL) {
342 343 344 345 346 347 348
    using namespace convolution;
    std::vector<TestArg> args = get_args_cuda_conv_bwd_data();
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
    NormalRNG default_rng;
349
    for (auto&& arg : args) {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        float scale =
                64.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
368 369 370 371 372 373 374 375 376 377
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
        });
    }
378 379
}

380
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) {
381
    if (!cuda::is_compute_capability_required(6, 1)) {
382 383
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A test as "
               "current device doesn't support\n");
384 385 386 387 388
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw4_conv_bwd_data();
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        std::string to_string() {
            return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m,
                            threadblock_n, threadblock_k, warp_m, warp_n,
                            warp_k, stage);
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2});
    all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
        std::string algo_name(ssprintf("INT8_NCHW4_DOTPROD_IMPLICIT_GEMM%s",
                                       algo_param.to_string().c_str()));
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A) {
    if (!cuda::is_compute_capability_required(6, 1)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NCHW_DP4A test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nchw_conv_bwd_data();
447 448 449
    Checker<ConvolutionBackwardData> checker(handle_cuda());

    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
450
            "INT8_NCHW_DOTPROD_IMPLICIT_GEMM"));
451 452

    checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    for (auto&& arg : args) {
        UniformIntRNG rng(-3, 3);
        auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
        auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.2f};
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                TensorLayoutArray{filter, dst, src});
    }
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
#if CUDA_VERSION >= 10020
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA) {
    if (!cuda::is_compute_capability_required(7, 5)) {
        printf("Skip CUDA.CONVOLUTION_BACKWARD_DATA_INT8_NHWC_IMMA test as "
               "current device doesn't support\n");
        return;
    }

    using namespace convolution;
    std::vector<TestArg> args = get_args_int8_nhwc_conv_bwd_data();

    struct AlgoParam {
        int threadblock_m;
        int threadblock_n;
        int threadblock_k;
        int warp_m;
        int warp_n;
        int warp_k;
        int stage;
        int access_size;
        std::string to_string() {
            return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage_%d", threadblock_m,
                            threadblock_n, threadblock_k, warp_m, warp_n,
                            warp_k, stage, access_size);
        }
    };

    std::vector<AlgoParam> all_params;

    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 4});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 8});
    all_params.emplace_back(AlgoParam{64, 16, 32, 64, 16, 32, 2, 16});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 4});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 8});
    all_params.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 1, 16});

    for (auto algo_param : all_params) {
        Checker<ConvolutionBackwardData> checker(handle_cuda());
        std::string algo_name(ssprintf("INT8_NHWC_IMMA_IMPLICIT_GEMM%s",
                                       algo_param.to_string().c_str()));
        checker.set_before_exec_callback(
                AlgoChecker<ConvolutionBackwardData>(algo_name.c_str()));

        checker.set_epsilon(1 + 1e-3).set_max_avg_error(1e-1);

        for (auto&& arg : args) {
            UniformIntRNG rng(-3, 3);
            auto src = TensorLayout(arg.src, dtype::QuantizedS8{1.2f});
            auto filter = TensorLayout(arg.filter, dtype::QuantizedS8{1.3f});
            TensorLayout dst;
            dst.dtype = dtype::QuantizedS8{1.2f};
            {
                auto opr = handle_cuda()->create_operator<Convolution>();
                opr->param() = arg.param;
                opr->deduce_layout(src, filter, dst);
            }
            checker.set_rng(0, &rng).set_rng(1, &rng).set_param(arg.param).exec(
                    TensorLayoutArray{filter, dst, src});
        }
    }
}
#endif

533
TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_FAILED_CUDNN7_5) {
534 535 536 537 538 539 540 541
    // BRAIN-481 failed on architectures 7.0, remove the following if statement,
    // when cudnn fixed the problem.
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    std::vector<TestArg> args = get_args_cudnn_7_5_failures();
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    NormalRNG default_rng;
542 543 544
    for (auto&& arg : args) {
        float scale =
                128.f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3]);
545 546 547 548 549 550 551 552 553 554 555
        scale = std::max(scale, 1.f);
        UniformFloatRNG rng(scale, 2 * scale);
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
556 557 558 559 560
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
561
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
562 563 564 565 566
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
567 568 569 570 571 572 573 574 575
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{filter, dst, src});
    }
}

576
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER) {
577 578 579 580
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    bool f16_checked = false;
581
    for (auto&& arg : args) {
582 583 584 585 586 587 588 589 590 591 592
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
593 594 595 596 597
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
598 599 600 601 602 603 604

        // reduce on large f16 array may introduce significant error
        if (dst.total_nr_elems() >= 1000 && f16_checked)
            continue;

        f16_checked = true;
        src.dtype = dst.dtype = filter.dtype = dtype::Float16();
605 606 607 608 609
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
610 611 612 613 614 615
        arg.param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
616 617 618

        checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
                ExecutionPolicyAlgoName{"CONVOLUTION_BACKWARD_FILTER_BFLOAT16",
619
                                        {{"MATMUL", {{"CUBLAS", {}}}}}}));
620 621 622 623 624 625
        src.dtype = dst.dtype = filter.dtype = dtype::BFloat16();
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-1)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
626 627
        checker.reset_before_exec_callback();
        checker.opr()->execution_policy() = {};
628 629 630
    }
}

631
TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_MATMUL) {
632 633 634 635 636
    using namespace convolution;
    std::vector<TestArg> args = get_args();
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            ExecutionPolicyAlgoName{"MATMUL", {{"CUBLAS", {}}}}));
637
    for (auto&& arg : args) {
638 639 640 641 642 643 644 645 646 647 648
        auto src = TensorLayout(arg.src, dtype::Float32());
        auto filter = TensorLayout(arg.filter, dtype::Float32());
        TensorLayout dst;
        {
            auto opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = arg.param;
            opr->deduce_layout(src, filter, dst);
        }
        float scale = 1.0f / sqrt(dst[2] * dst[3]);
        UniformFloatRNG rng(scale, 2 * scale);
        src.dtype = dst.dtype = filter.dtype = dtype::Float32();
649 650 651 652 653
        checker.set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_epsilon(1e-3)
                .set_param(arg.param)
                .exec(TensorLayoutArray{src, dst, filter});
654
    }
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    //! noncontiguous case
    {
        NormalRNG default_rng;
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_rng(0, &default_rng)
                .set_rng(1, &default_rng)
                .set_param(param)
                .execl(TensorLayoutArray{
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                        {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}});
    }
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_FILTER_CUDNN) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardFilter> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>(
            "CUDNN_CONVOLUTION"));
    //! noncontiguous case
    {
        param::Convolution param;
        param.pad_h = param.pad_w = 1;
        checker.set_param(param).execl(TensorLayoutArray{
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{2, 16, 7, 7}, {1568, 49, 7, 1}, dtype::Float32()},
                {{16, 16, 3, 3}, {144, 9, 3, 1}, dtype::Float32()}
        });
    }
687 688
}

689
TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) {
690
    auto eps_getter = [](bool f16, int stage, const char* name) -> float {
691 692 693 694 695 696 697
        if (f16) {
            return stage == 2 ? 0.5 : 0.2;
        }
        if (strstr(name, "WINOGRAD_NONFUSED"))
            return 0.3;
        return 1e-3;
    };
698 699 700 701 702 703
    convolution::test_conv_config_combinations(2, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(3, handle_cuda(), false, true,
                                               true, eps_getter, true);
    convolution::test_conv_config_combinations(5, handle_cuda(), false, true,
                                               true, eps_getter, true);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) {
    if (cuda::is_compute_capability_required(7, 0))
        return;
    using namespace convolution;
    Checker<ConvolutionBackwardData> checker(handle_cuda());
    checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
            "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1" CUDNN_VERSION_STRING));
    NormalRNG default_rng;
    TensorShape s_filter = TensorShape{8, 8, 2, 2},
                s_src = TensorShape{2, 8, 18, 18};
    float scale = 1.0f / sqrt(s_filter[0] * s_filter[2] * s_filter[3]);
    UniformFloatRNG rng(scale, 2 * scale);
    auto src = TensorLayout(s_src, dtype::Float16());
    auto filter = TensorLayout(s_filter, dtype::Float16());
    TensorLayout dst;
    param::Convolution param;
    param.pad_h = param.pad_w = 2;
    param.stride_h = param.stride_w = 2;
    {
        auto opr = handle_cuda()->create_operator<Convolution>();
        opr->param() = param;
        opr->deduce_layout(src, filter, dst);
    }
    src.dtype = dst.dtype = filter.dtype = dtype::Float16();
    param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
    checker.set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_epsilon(0.2)
            .set_param(param)
            .exec(TensorLayoutArray{filter, dst, src});
}

#if MEGDNN_WITH_BENCHMARK
TEST_F(CUDA, CONV_FWD_BENCHMARK) {
740 741 742
    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t SH = 1, size_t SW = 1, size_t FH = 1, size_t FW = 1,
                   size_t PH = 0, size_t PW = 0, bool fp16io_c32 = false) {
743 744
        auto benchmarker = Benchmarker<ConvolutionForward>(handle_cuda());
        benchmarker.set_dtype(0, dtype::Float16())
745 746
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
747 748 749 750 751 752
        ConvolutionForward::Param param;
        param.stride_h = SH;
        param.stride_w = SW;
        param.pad_h = PH;
        param.pad_w = PW;
        if (fp16io_c32) {
753 754
            param.compute_mode =
                    ConvolutionForward::Param::ComputeMode::FLOAT32;
755 756
        }
        benchmarker.set_param(param);
757 758
        std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
                new OprProxy<ConvolutionForward>{true}};
759 760 761
        benchmarker.set_proxy(proxy);
        size_t OH = (IH - FH + 2 * PH) / SH + 1;
        size_t OW = (IW - FW + 2 * PW) / SW + 1;
762 763
        auto time = benchmarker.execs(
                {{N, IC, IH, IW}, {OC, IC, FH, FW}, {N, OC, OH, OW}});
764
        time /= 1000.0 * 10.0;
765
        auto flo = (double)N * OC * IC * OH * OW * FH * FW * 2;
766 767
        auto flops = flo / time / 1e12;
        printf("comp_type %s: ", fp16io_c32 ? "32" : "16");
768
        printf("%.3fG FLO, flops %.3fTFLOPS\n", flo / 1e9, flops);
769 770 771 772 773 774 775
    };
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, false);
    run(32, 512, 256, 56, 56, 1, 1, 1, 1, 0, 0, true);
}

TEST_F(CUDA, CONVOLUTION_FWD_BENCHMARK) {
    CUBenchmarker<ConvolutionForward> bench{handle_cuda()};
776 777
    std::unique_ptr<OprProxy<ConvolutionForward>> proxy{
            new OprProxy<ConvolutionForward>{true}};
778 779 780 781 782 783 784 785 786 787 788 789 790
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
791
        bench.proxy()->target_execution_policy.algo.reset();
792 793 794 795 796 797 798 799 800 801
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, filter, dst}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
802
        bench.proxy()->target_execution_policy.algo.reset();
803 804 805 806 807
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, filter, dst}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
808
        bench.proxy()->target_execution_policy.algo.reset();
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, filter, dst}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
862
        bench.proxy()->target_execution_policy.algo.reset();
863 864 865 866 867 868 869 870 871 872
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({filter, dst, src}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
873
        bench.proxy()->target_execution_policy.algo.reset();
874 875 876 877 878
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({filter, dst, src}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
879
        bench.proxy()->target_execution_policy.algo.reset();
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::BFloat16())
                .set_dtype(1, dtype::BFloat16())
                .set_dtype(2, dtype::BFloat16());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC, IH, IW}, dtype::BFloat16()},
                filter{{OC, IC, FH, FH}, dtype::BFloat16()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_INT8_DP4A) {
    CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{
            new OprProxy<ConvolutionBackwardData>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::QuantizedS8{1.0f})
                .set_dtype(1, dtype::QuantizedS8{1.0f})
                .set_dtype(2, dtype::QuantizedS8{1.0f});
        param::Convolution param;
        param.format = param::Convolution::Format::NCHW4;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
        bench.proxy()->target_execution_policy = {};
        TensorLayout src{{N, IC / 4, IH, IW, 4}, dtype::QuantizedS8{1.0f}},
                filter{{OC, IC / 4, FH, FH, 4}, dtype::QuantizedS8{1.0f}};
        TensorLayout dst;
        dst.dtype = dtype::QuantizedS8{1.0f};
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto used = bench.execl({filter, dst, src}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", used,
               (flo / (used * 1e9)));
    };
    run(64, 32, 32, 92, 180, 4, 2, 2);
    run(64, 32, 32, 46, 80, 4, 2, 2);
    run(16, 16, 16, 92, 180, 4, 2, 2);
    run(16, 16, 16, 46, 80, 4, 2, 2);
}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) {
    CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()};
    std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{
            new OprProxy<ConvolutionBackwardFilter>{true}};
    size_t RUNS = 10;
    bench.set_proxy(proxy).set_times(RUNS);

    auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW,
                   size_t FH, size_t SH, size_t PH) {
        bench.set_dtype(0, dtype::Float32())
                .set_dtype(1, dtype::Float32())
                .set_dtype(2, dtype::Float32());
        param::Convolution param;
        param.stride_h = param.stride_w = SH;
        param.pad_h = param.pad_w = PH;
        param.compute_mode = param::Convolution::ComputeMode::DEFAULT;
        bench.set_param(param);
1029
        bench.proxy()->target_execution_policy.algo.reset();
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        TensorLayout src{{N, IC, IH, IW}, dtype::Float32()},
                filter{{OC, IC, FH, FH}, dtype::Float32()};
        TensorLayout dst;
        {
            auto&& opr = handle_cuda()->create_operator<Convolution>();
            opr->param() = param;
            opr->deduce_layout(src, filter, dst);
        }
        auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS;
        src.dtype = filter.dtype = dst.dtype = dtype::Float16();
1040
        bench.proxy()->target_execution_policy.algo.reset();
1041 1042 1043 1044 1045
        bench.set_dtype(0, dtype::Float16())
                .set_dtype(1, dtype::Float16())
                .set_dtype(2, dtype::Float16());
        auto time_ms_true_fp16 = bench.execl({src, dst, filter}) / RUNS;
        param.compute_mode = param::Convolution::ComputeMode::FLOAT32;
1046
        bench.proxy()->target_execution_policy.algo.reset();
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        bench.set_param(param);
        auto time_ms_pseudo_fp16 = bench.execl({src, dst, filter}) / RUNS;
        float flo = 2.0 * N * OC * IC * dst[2] * dst[3] * FH * FH;
        printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(),
               filter.to_string().c_str(), dst.to_string().c_str());
        printf("time_fp32=%.2fms, flops=%.3fTFLOPS\ntime_true_fp16=%.2fms, "
               "flops=%.3fTFLOPS\ntime_pseudo_fp16=%.2fms, flops=%.3fFLOPS\n",
               time_ms_fp32, (flo / (time_ms_fp32 * 1e9)), time_ms_true_fp16,
               (flo / (time_ms_true_fp16 * 1e9)), time_ms_pseudo_fp16,
               (flo / (time_ms_pseudo_fp16 * 1e9)));
        printf("speedup (true_fp16/fp32)=%.2f, (true_fp16/pseudo_fp16)=%.2f\n",
               time_ms_fp32 / time_ms_true_fp16,
               time_ms_pseudo_fp16 / time_ms_true_fp16);
    };
    run(32, 64, 3, 224, 224, 7, 2, 3);
    run(32, 128, 128, 28, 28, 3, 1, 1);
    run(32, 256, 256, 14, 14, 3, 1, 1);
    run(32, 512, 512, 7, 7, 3, 1, 1);
    run(32, 64, 64, 56, 56, 3, 1, 1);
    run(32, 512, 256, 56, 56, 1, 2, 0);
    run(32, 1024, 512, 28, 28, 1, 2, 0);
    run(32, 2048, 1024, 14, 14, 1, 2, 0);
    run(32, 512, 128, 28, 28, 1, 1, 0);
    run(32, 128, 512, 28, 28, 1, 1, 0);
    run(32, 1024, 256, 14, 14, 1, 1, 0);
    run(32, 256, 1024, 14, 14, 1, 1, 0);
    run(32, 2048, 512, 7, 7, 1, 1, 0);
    run(32, 512, 2048, 7, 7, 1, 1, 0);
    run(32, 256, 64, 56, 56, 1, 1, 0);
    run(32, 64, 256, 56, 56, 1, 1, 0);
    run(32, 128, 256, 56, 56, 1, 2, 0);
    run(32, 256, 512, 28, 28, 1, 2, 0);
    run(32, 512, 1024, 14, 14, 1, 2, 0);
    run(32, 64, 64, 56, 56, 1, 1, 0);
}
#endif

#undef CUDNN_VERSION_STRING
#undef V
#undef V1

1088 1089
}  // namespace test
}  // namespace megdnn
1090 1091

// vim: syntax=cpp.doxygen