algo_chooser.cpp 38.3 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v5"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
    }
    return ret;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
244
template <typename Opr>
245
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
246
        const typename opr::AlgoChooser<Opr>::AlgoChooserHelper& helper,
247 248
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
249 250
            OprTypeFromOprTrait<Opr>::opr_type, helper.param(),
            to_layout_array<Opr>(helper.layouts())};
251
    checker.put(search_item);
252
    std::vector<megdnn::Algorithm::SearchItem> ret;
253 254 255
    for (auto algo_info : helper.get_all_candidates()) {
        megdnn::Algorithm* algo =
                helper.get_algorithm_from_desc(algo_info.desc);
256 257
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
258 259
                algo->get_subopr_list(to_layout_array<Opr>(helper.layouts()),
                                      helper.megdnn_opr());
260 261

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
262
            auto&& megdnn_opr =
263
                    opr::intl::create_megdnn_opr<_Opr>(helper.comp_node());
264 265 266
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
267
            typename opr::AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
268
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
269 270 271 272
                    _item.param, helper.mgb_opr(), helper.comp_node(),
                    helper.execution_policy(),
                    helper.allow_weight_preprocess());
            auto space = flatten_search_space<_Opr>(sub_helper, checker);
273 274
            ret.insert(ret.end(), space.begin(), space.end());
        });
275
    }
276 277
    ret.push_back(search_item);
    checker.remove(search_item);
278 279
    return ret;
}
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//! serialize a algo's desc to string. format is
//! handle_type|algo_type|size_of_param|size_of_name|string_of_param|string_of_name
static void serialize_write_pod(const Algorithm::Info::Desc& val,
                                std::string& result) {
    megdnn::Algorithm::serialize_write_pod(val.handle_type, result);
    megdnn::Algorithm::serialize_write_pod(val.type, result);
    uint32_t param_size = val.param.size();
    uint32_t name_size = val.name.size();
    megdnn::Algorithm::serialize_write_pod<uint32_t>(param_size, result);
    megdnn::Algorithm::serialize_write_pod<uint32_t>(name_size, result);
    result += val.param;
    result += val.name;
}

static Algorithm::Info::Desc deserialize_read_pod(const std::string& data,
                                                  size_t offset = 0) {
    Algorithm::Info::Desc ret;
#define cb(_val, _type)                                                \
    _val = megdnn::Algorithm::deserialize_read_pod<_type>(data.data(), \
                                                          offset);     \
    offset += sizeof(_val)

    cb(ret.handle_type, megdnn::Handle::HandleType);
    cb(ret.type, uint32_t);

    uint32_t param_size = 0;
    uint32_t name_size = 0;
    cb(param_size, uint32_t);
    cb(name_size, uint32_t);

    if (param_size > 0) {
        ret.param = std::string(data.data() + offset, param_size);
        offset += param_size;
    }
    if (name_size > 0) {
        ret.name = std::string(data.data() + offset, name_size);
        offset += name_size;
    }
    return ret;
}

322 323 324 325
}  // namespace

namespace mgb {
namespace opr {
326
///////////////////////////// AlgoChooserHelper //////////////////////////
327
template <typename Opr>
328 329 330 331 332 333 334
AlgoChooser<Opr>::AlgoChooserHelper::AlgoChooserHelper(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
335
          m_dnn_opr{megdnn_opr},
336 337 338 339 340 341 342 343 344 345 346 347
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
348

349 350 351 352 353 354
template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
AlgoChooser<Opr>::AlgoChooserHelper::choose_by_heuristic(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_heuristic")))
    ImplExecutionPolicy policy;
355
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
356 357 358
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    auto attr = extract_algo_attribute(selected_strategy);
    policy.algo =
359
            APPLY(m_dnn_opr->get_algorithm_info_heuristic(
360 361 362
                          args..., workspace_limit, attr.first, attr.second),
                  m_layouts)
                    .desc;
363

364
    Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
365 366
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
367
            to_layout_array<Opr>(m_layouts), m_dnn_opr);
368

369 370 371 372 373 374 375 376 377 378 379 380
    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back(
                sub_helper.choose_by_heuristic(selected_strategy));
    });
381

382 383
    return policy;
    MIDOUT_E
384 385 386
}

template <typename Opr>
387
typename AlgoChooser<Opr>::ImplExecutionPolicy
388 389 390 391
AlgoChooser<Opr>::AlgoChooserHelper::choose_by_profile(
        const ExecutionStrategy& selected_strategy, bool enable_update) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_profile")))
    if (owner_graph()->options().no_profiling_on_shape_change) {
392
        auto policy = m_dnn_opr->execution_policy();
393
        if (policy.algo.valid()) {
394
            return policy;
395 396 397 398 399
        }
        if (!algo_usable_on_shape_change<Opr>()) {
            mgb_log_warn(
                    "choose algo by heuristic, which may cause performance "
                    "regression.");
400
            return choose_by_heuristic(selected_strategy);
401
        }
402 403
    }

404 405 406 407 408 409 410 411 412 413
    typename AlgoChooser<Opr>::ImplExecutionPolicy tmp_policy;
    bool retrive_from_cache = true;
    bool allow_log = false;
    construct_execution_policy(selected_strategy, tmp_policy,
                               retrive_from_cache, allow_log);
    if (tmp_policy.algo.valid()) {
        // return policy when contruct successed
        return tmp_policy;
    }

414
    if (enable_update) {
415 416
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
417
                flatten_search_space<Opr>(*this, circular_deps_checker);
418
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
419
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
420 421 422
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
423
            typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
424
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
425 426 427
                    _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                    m_allow_weight_preprocess);
            sub_helper.profile(selected_strategy);
428
        });
429
    }
430

431
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
432
    construct_execution_policy(selected_strategy, policy);
433
    return policy;
434 435 436 437
    MIDOUT_E
}

template <typename Opr>
438
typename AlgoChooser<Opr>::ImplAlgoDesc
439 440 441
AlgoChooser<Opr>::AlgoChooserHelper::get_profile_result_from_cache(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_profile_result_from_cache")))
442
    AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str());
443

444
    typename Opr::Param origin_param = m_dnn_opr->param();
445 446 447 448 449 450 451
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
452 453 454
    if (prof.empty())
        return {};

455
    auto target_attr = extract_algo_attribute(selected_strategy);
456
    bool skip_by_negative = false;
457
    for (auto&& i : prof) {
458 459 460
        auto attr_of_algo =
                static_cast<megdnn::Algorithm::Attribute>(i.attribute);
        bool contain_attr_all_positive =
461
                (target_attr.first == (attr_of_algo & target_attr.first));
462
        bool contain_attr_any_negative =
463
                static_cast<bool>(attr_of_algo & target_attr.second);
464 465
        if (contain_attr_all_positive) {
            if (!contain_attr_any_negative) {
466 467
                Algorithm::Info::Desc algo_desc = deserialize_read_pod(i.algo);
                return algo_desc;
468 469 470
            } else {
                skip_by_negative = true;
            }
471 472 473
        }
    }

474 475
    std::string layouts_str =
            format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
476 477
    if (skip_by_negative) {
        mgb_log_error(
478 479 480 481
                "opr: %s, layouts: %s, No usable algo. There are available algos match "
                "positive strategy(%s), but filtered by negative stategy(%s).",
                m_base_mgb_opr->dyn_typeinfo()->name,
                layouts_str.c_str(),
482
                Algorithm::attribute_str(target_attr.first).c_str(),
483 484 485
                Algorithm::attribute_str(target_attr.second).c_str());
    } else {
        mgb_log_error(
486 487 488 489
                "opr: %s, layouts: %s, No usable algo. algos read from cache could not "
                "satisfy positive strategy(%s)",
                m_base_mgb_opr->dyn_typeinfo()->name,
                layouts_str.c_str(),
490 491
                Algorithm::attribute_str(target_attr.first).c_str());
    }
492

493 494 495 496 497
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
498
void AlgoChooser<Opr>::AlgoChooserHelper::construct_execution_policy(
499 500 501
        const ExecutionStrategy& selected_strategy,
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
        bool retrive_from_cache, bool allow_log) const {
502
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_execution_policy")))
503
    if (!policy.algo.valid()) {
504
        if (retrive_from_cache) {
505
            policy.algo = get_profile_result_from_cache(selected_strategy);
506
            if (!policy.algo.valid()) {
507 508 509 510 511 512
                if (allow_log) {
                    auto target_attr =
                            extract_algo_attribute(selected_strategy);
                    std::string layouts_str = format_fixlayouts<Opr>(
                            m_layouts, arity_in, arity_out);
                    std::string msg = ssprintf(
513
                            "(opr : %s, layouts %s, with attribute(%s) and "
514 515 516 517 518 519 520 521 522 523 524 525 526 527
                            "without attribute(%s)",
                            m_base_mgb_opr->dyn_typeinfo()->name,
                            layouts_str.c_str(),
                            Algorithm::attribute_str(target_attr.first).c_str(),
                            Algorithm::attribute_str(target_attr.second)
                                    .c_str());
                    mgb_log_warn(
                            "No algo get from cache for %s. This may caused by "
                            "mismatch with model and cache file or imcomplete "
                            "cache file. ex. profiling with version1, but "
                            "inferencing on version2 or profiling modelA but "
                            "inferencing modelB",
                            msg.c_str());
                }
528 529
                return;
            }
530 531 532
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
533

534
            auto attr = extract_algo_attribute(selected_strategy);
535
            policy.algo = APPLY(m_dnn_opr->get_algorithm_info_heuristic(
536 537 538 539
                                        args..., workspace_limit, attr.first,
                                        attr.second),
                                m_layouts)
                                  .desc;
540 541 542 543 544
            mgb_assert(policy.algo.valid(),
                       "No algo found from heuristic with strategy %u and "
                       "workspace limit %zu",
                       static_cast<uint32_t>(selected_strategy),
                       workspace_limit);
545
        }
546
    }
547

548
    Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
549 550
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
551
            to_layout_array<Opr>(m_layouts), m_dnn_opr);
552 553 554 555 556 557

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
558
        typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
559 560 561 562
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
563
        sub_helper.construct_execution_policy(selected_strategy,
564 565
                                              policy.sub_policy.back(),
                                              retrive_from_cache, allow_log);
566
        if (!policy.sub_policy.back().algo.valid()) {
567
            // means sub_helper.construct_execution_policy fails. clean up
568 569 570 571
            // policy.algo and return
            policy = {};
            return;
        }
572
    });
573
    MIDOUT_E
574 575 576
}

template <typename Opr>
577
size_t AlgoChooser<Opr>::AlgoChooserHelper::get_workspace_size_bytes(
578
        const ImplExecutionPolicy& policy) const {
579
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_workspace_size_bytes")))
580
    m_dnn_opr->execution_policy() = policy;
581 582 583
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
584
                auto&& opr = _(m_dnn_opr);
585 586 587 588 589 590 591 592 593 594 595
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
596
                result = APPLY(_(m_dnn_opr)->get_workspace_in_bytes(args...),
597 598 599
                               m_layouts);
            });
    return result;
600 601 602 603 604 605 606 607 608
    MIDOUT_E
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::AlgoChooserHelper::get_all_candidates() const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_all_candidates")))
    auto heu = choose_by_heuristic(m_execution_policy.strategy);
    auto&& ret =
609
            APPLY(m_dnn_opr->get_all_algorithms_info(args...), m_layouts);
610 611 612 613 614 615 616 617 618
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
        if (ret[i].desc == heu.algo) {
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }

619
    Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(heu.algo);
620 621 622 623 624 625 626
    mgb_assert(palgo, "Unknown algo description");
    mgb_assert(found,
               "algo %s got by heuristic not found in "
               "candidate list",
               palgo->name());
    return std::move(ret);
    MIDOUT_E
627 628 629 630
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
631
AlgoChooser<Opr>::AlgoChooserHelper::profile_single_algo(
632
        const ImplExecutionPolicy& policy, double& timeout) const {
633
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile_single_algo")))
634 635
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
636 637 638
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
639 640 641 642 643 644 645 646 647 648
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
649
    param.comp_node_loc = m_cn.locator();
650 651 652
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
653
    param.opr_param = m_dnn_opr->param();
654 655
    param.allow_weight_preprocess = m_allow_weight_preprocess;

656
    Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
657 658
    mgb_assert(palgo, "can not find algo when profile single algo");

659 660 661 662
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
663
    if (strncmp(palgo->name(), "MIOpen", 6) == 0) {
664
        rst = TimedProfiler<Opr>::profile(param, timeout);
665
    }
666 667
    if (!rst.valid())
        return None;
668 669 670

    std::string algo_desc;
    serialize_write_pod(policy.algo, algo_desc);
671
    return AlgoChooserProfileCache::ResultEntry{
672
            algo_desc, static_cast<uint32_t>(palgo->attribute()),
673
            rst.val().time, param.workspace};
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    MIDOUT_E
}

template <typename Opr>
void AlgoChooser<Opr>::AlgoChooserHelper::profile(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile")))
    if (get_profile_result_from_cache(selected_strategy).valid())
        return;
    AlgoChooserProfileCache::Result prof_rst;

    auto target_attr = extract_algo_attribute(selected_strategy);
    std::string layouts_str =
            format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
    double cur_timeout = 0;

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    RealTimer timer;
    for (auto algo : get_all_candidates()) {
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;

        ImplExecutionPolicy policy;
        policy.algo = algo.desc;

        //! check negative attribute : skip negative attribute
700
        auto palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
701 702 703 704 705 706 707 708 709 710
        if (palgo->contain_attribute_any(target_attr.second)) {
            mgb_log_debug(
                    "skip algo %s, which matches the profile strategy required "
                    "'not contain attribute(%s).'",
                    algo.desc.name.c_str(),
                    Algorithm::attribute_str(target_attr.second).c_str());
            continue;
        }

        //! check workspace limit
711 712 713
        construct_execution_policy(selected_strategy, policy);
        mgb_assert(policy.algo.valid(),
                   "construct execution policy must success when profiling");
714
        if (get_workspace_size_bytes(policy) > workspace_limit) {
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
            continue;
        }

        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   m_base_mgb_opr->dyn_typeinfo()->name,
                                   algo.desc.name.c_str(), layouts_str.c_str());
        timer.reset();
        MGB_TRY { cur_rst = profile_single_algo(policy, cur_timeout); }
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
    std::string msg = ssprintf(
            "no usable %s algorithm %s without attribute(%s) or could not meet "
            "workspace limite requirement(%zu)",
            m_base_mgb_opr->dyn_typeinfo()->name, layouts_str.c_str(),
            Algorithm::attribute_str(target_attr.second).c_str(),
            workspace_limit);
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());

    FixedTensorLayouts origin_layouts = m_layouts;
757
    typename Opr::Param origin_param = m_dnn_opr->param();
758 759 760 761
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

762
    AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str());
763 764
    cache.put(cache_key, prof_rst);
    MIDOUT_E
765 766 767 768
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
769 770
AlgoChooser<Opr>::AlgoChooserHelper::construct_fake_preprocess_filter() const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_fake_preprocess_filter")))
771 772 773 774
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
775
        auto opr = _(m_dnn_opr);
776 777 778 779
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
780
            return;
781 782 783 784 785 786 787 788 789 790 791 792
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

793 794 795
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
796 797 798
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
799 800 801
        }
    });
    return result;
802
    MIDOUT_E
803 804
}

805 806
template <typename Opr>
std::pair<AlgoAttribute, AlgoAttribute>
807
AlgoChooser<Opr>::AlgoChooserHelper::extract_algo_attribute(
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        const ExecutionStrategy& strategy) const {
    std::pair<AlgoAttribute, AlgoAttribute> ret =
            std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);

    //! from strategy
    if (strategy & ExecutionStrategy::REPRODUCIBLE) {
        ret.first |= AlgoAttribute::REPRODUCIBLE;
    }
    if (strategy & ExecutionStrategy::OPTMIZED) {
        ret.second |= AlgoAttribute::NAIVE;
    }

    return ret;
}

823
#define INST(Opr)                                                              \
824
    template AlgoChooser<megdnn::Opr>::AlgoChooserHelper::AlgoChooserHelper(   \
825 826 827 828 829 830
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
831 832 833 834 835 836
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_heuristic(          \
            const ExecutionStrategy& select_strategy) const;                   \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_profile(            \
            const ExecutionStrategy& select_strategy, bool enable_update)      \
            const;                                                             \
837
    template typename AlgoChooser<megdnn::Opr>::ImplAlgoDesc                   \
838 839 840 841 842
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::                              \
            get_profile_result_from_cache(                                     \
                    const ExecutionStrategy& select_strategy) const;           \
    template void                                                              \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::construct_execution_policy(   \
843 844 845
            const ExecutionStrategy& select_strategy,                          \
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy,    \
            bool retrive_from_cache, bool allow_log) const;                    \
846
    template size_t                                                            \
847
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_workspace_size_bytes(     \
848 849
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
850 851
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_all_candidates() const;   \
852
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
853
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile_single_algo(          \
854 855
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
856 857
            double& timeout) const;                                            \
    template std::pair<AlgoAttribute, AlgoAttribute>                           \
858 859 860 861
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::extract_algo_attribute(       \
            const ExecutionStrategy& strategy) const;                          \
    template void AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile(        \
            const ExecutionStrategy& selected_strategy) const;
862 863

MGB_FOREACH_FASTRUN_OPR(INST)
864
#undef INST
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
//////////////////////////////// AlgoChoose /////////////////////////////
template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
        const AlgoChooserHelper& helper) {
    auto opr_strategy = helper.execution_policy().strategy;
    if (opr_strategy & ExecutionStrategy::HEURISTIC) {
        if (opr_strategy & ExecutionStrategy::PROFILE) {
            //! this strategy will choose from cache first, then choost by
            //! heuristic if fail.
            ImplExecutionPolicy policy =
                    helper.choose_by_profile(opr_strategy, false);
            if (!policy.algo.valid()) {
                policy = helper.choose_by_heuristic(opr_strategy);
            }
            return policy;
        } else {
            return helper.choose_by_heuristic(opr_strategy);
        }
    }
#if MGB_ENABLE_FASTRUN
    else if (opr_strategy & ExecutionStrategy::PROFILE) {
        return helper.choose_by_profile(opr_strategy, true);
    }
#endif
    else {
        mgb_throw(GraphError, "bad ExecutionPolicy strategy");
    }
}

template <typename Opr>
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    AlgoChooserHelper helper(layouts, megdnn_opr, param_str, mgb_opr,
                             mgb_opr->comp_node(), mgb_opr->execution_policy(),
                             allow_weight_preprocess);

    ImplExecutionPolicy policy;
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
        policy = algo_choose_hook(mgb_opr);
        auto strategy =
                ExecutionStrategy::HEURISTIC | ExecutionStrategy::REPRODUCIBLE;
914 915
        bool retrive_from_cache = false;
        helper.construct_execution_policy(strategy, policy, retrive_from_cache);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    }
    if (!policy.algo.valid()) {
        policy = get_policy(helper);
    }
    size_t workspace = helper.get_workspace_size_bytes(policy);

    std::string ret;
    ret.append(mgb_opr->dyn_typeinfo()->name);
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
    ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d",
                        workspace / (1024 * 1024.0),
                        static_cast<uint32_t>(palgo->attribute())));
    mgb_log_debug("%s", ret.c_str());

    megdnn_opr->execution_policy() = policy;
    return workspace;
}

#define INST(Opr)                                                         \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy                \
    AlgoChooser<megdnn::Opr>::get_policy(const AlgoChooserHelper& proxy); \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,   \
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);

MGB_FOREACH_FASTRUN_OPR(INST)
945
#undef INST
946

947 948 949 950
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}