algo_chooser.cpp 31.8 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v4"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
        ret.append(layouts[i].dtype.name());
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
        ret.append(layouts[i + arity_in].dtype.name());
    }
    return ret;
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

234 235 236 237 238 239 240 241 242 243 244 245
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
246
template <typename Opr>
247 248 249 250 251 252 253
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
        const typename opr::AlgoChooser<Opr>::ExeContext& ctx,
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
            OprTypeFromOprTrait<Opr>::opr_type, ctx.param(),
            to_layout_array<Opr>(ctx.layouts())};
    checker.put(search_item);
254 255 256 257 258 259 260 261 262
    std::vector<megdnn::Algorithm::SearchItem> ret;
    for (auto algo_info : ctx.get_all_candidates()) {
        megdnn::Algorithm* algo = ctx.get_algorithm_from_desc(algo_info.desc);
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
                algo->get_subopr_list(to_layout_array<Opr>(ctx.layouts()),
                                      ctx.megdnn_opr());

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
263 264
            auto&& megdnn_opr =
                    opr::intl::create_megdnn_opr<_Opr>(ctx.comp_node());
265 266 267
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
268
            typename opr::AlgoChooser<_Opr>::ExeContext sub_ctx(
269 270 271
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
272
            auto space = flatten_search_space<_Opr>(sub_ctx, checker);
273 274
            ret.insert(ret.end(), space.begin(), space.end());
        });
275
    }
276 277
    ret.push_back(search_item);
    checker.remove(search_item);
278 279
    return ret;
}
280

281 282 283 284 285
}  // namespace

namespace mgb {
namespace opr {

286 287 288 289
template <typename Opr>
void AlgoChooser<Opr>::profile(ExeContext& ctx, bool require_reproducible) {
    if (ctx.get_profile_result_from_cache(require_reproducible).valid())
        return;
290 291 292 293 294 295
    AlgoChooserProfileCache::Result prof_rst;

    std::string str_on_inp_shape = ssprintf(
            "on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(),
            ctx.layouts()[1].to_string().c_str());
    double cur_timeout = 0;
296 297 298 299

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            ctx.owner_graph(), ctx.comp_node(),
            ctx.execution_policy().workspace_limit);
300
    RealTimer timer;
301
    for (auto algo : ctx.get_all_candidates()) {
302 303 304
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   ctx.mgb_opr()->dyn_typeinfo()->name,
305
                                   algo.name.c_str(), str_on_inp_shape.c_str());
306 307
        ImplExecutionPolicy policy;
        policy.algo = algo.desc;
308
        ctx.construct_execution_policy(require_reproducible, policy);
309 310 311
        if (ctx.get_workspace_size_bytes(policy) >= workspace_limit)
            continue;

312
        timer.reset();
313
        MGB_TRY { cur_rst = ctx.profile_single_algo(policy, cur_timeout); }
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
339 340 341 342
    std::string msg = ssprintf("no usable %s algorithm %s",
                                ctx.mgb_opr()->dyn_typeinfo()->name,
                                str_on_inp_shape.c_str());
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());
343

344 345 346 347 348 349 350 351
    FixedTensorLayouts origin_layouts = ctx.layouts();
    typename Opr::Param origin_param = ctx.megdnn_opr()->param();
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

    AlgoChooserProfileCache cache(ctx.comp_node(),
                                  profile_name(ctx.megdnn_opr()).c_str());
352 353 354 355
    cache.put(cache_key, prof_rst);
}

template <typename Opr>
356 357 358
typename AlgoChooser<Opr>::ImplExecutionPolicy
AlgoChooser<Opr>::choose_by_profile(ExeContext& ctx, bool require_reproducible,
                                    bool enable_update) {
359
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile")))
360 361 362 363
    if (ctx.owner_graph()->options().no_profiling_on_shape_change) {
        auto policy = ctx.megdnn_opr()->execution_policy();
        if (policy.algo.valid())
            return policy;
364 365
    }

366
    if (enable_update) {
367 368 369
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
                flatten_search_space<Opr>(ctx, circular_deps_checker);
370 371 372 373 374 375 376 377 378 379 380
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(ctx.comp_node());
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
            typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
            AlgoChooser<_Opr>::profile(sub_ctx, require_reproducible);
        });
381
    }
382
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
383
    ctx.construct_execution_policy(require_reproducible, policy);
384
    return policy;
385 386 387 388
    MIDOUT_E
}

template <typename Opr>
389
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
390 391 392 393 394 395
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

396 397 398 399 400
    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    ExeContext ctx(layouts, megdnn_opr, param_str, mgb_opr,
                   mgb_opr->comp_node(), mgb_opr->execution_policy(),
                   allow_weight_preprocess);
401

402
    ImplExecutionPolicy policy;
403
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
404
        policy = algo_choose_hook(mgb_opr);
405 406 407 408 409
        ctx.construct_execution_policy(
                mgb_opr->execution_policy().strategy ==
                        mixin::AlgoChooserHelper::ExecutionPolicy::Strategy::
                                HEURISTIC_REPRODUCIBLE,
                policy, false);
410
    }
411 412
    if (!policy.algo.valid()) {
        policy = get_policy(ctx);
413
    }
414
    size_t workspace = ctx.get_workspace_size_bytes(policy);
M
Megvii Engine Team 已提交
415 416 417

    std::string ret;
    ret.append(mgb_opr->dyn_typeinfo()->name);
418 419 420 421
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
M
Megvii Engine Team 已提交
422
    ret.append(ssprintf(" workspace=%.2fMiB reproducible=%d",
423
                        workspace / (1024 * 1024.0), palgo->is_reproducible()));
M
Megvii Engine Team 已提交
424 425
    mgb_log_debug("%s", ret.c_str());

426
    megdnn_opr->execution_policy() = policy;
427 428 429 430
    return workspace;
}

template <typename Opr>
431
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
432
        ExeContext& ctx) {
433
    using S = mixin::AlgoChooserHelper::ExecutionPolicy::Strategy;
434
    MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
435
    switch (ctx.execution_policy().strategy) {
436 437 438 439 440
        case S::HEURISTIC:
            return ctx.choose_by_heuristic();
        case S::HEURISTIC_REPRODUCIBLE:
            return ctx.choose_by_heuristic(true);
        case S::PROFILE_HEURISTIC: {
441 442 443 444
            ImplExecutionPolicy policy = choose_by_profile(ctx, false, false);
            if (!policy.algo.valid())
                policy = ctx.choose_by_heuristic();
            return policy;
445 446 447 448 449 450 451 452 453 454 455 456 457
        }
#if MGB_ENABLE_FASTRUN
        case S::PROFILE:
            return choose_by_profile(ctx, false);
        case S::PROFILE_REPRODUCIBLE:
            return choose_by_profile(ctx, true);
#endif
        default:
            mgb_throw(GraphError, "bad convolution ExecutionPolicy strategy");
    }
}

#define INST(Opr)                                                            \
458 459 460 461 462
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy                   \
    AlgoChooser<megdnn::Opr>::get_policy(ExeContext& ctx);                   \
    template void AlgoChooser<megdnn::Opr>::profile(                         \
            ExeContext& ctx, bool require_reproducible);                     \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy                   \
463 464 465
    AlgoChooser<megdnn::Opr>::choose_by_profile(                             \
            ExeContext& ctx, bool require_reproducible, bool enable_update); \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(                    \
466
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,      \
467
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);            \
468 469 470 471 472 473

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST

//////////////////////////////// ExeContext /////////////////////////////
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
template <typename Opr>
AlgoChooser<Opr>::ExeContext::ExeContext(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
          m_megdnn_opr{megdnn_opr},
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
495 496 497

template <typename Opr>
typename AlgoChooser<Opr>::ImplAlgo
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
AlgoChooser<Opr>::ExeContext::get_profile_result_from_cache(
        bool require_reproducible) const {
    MIDOUT_B(Opr,
             midout_iv(MGB_HASH_STR(
                     "AlgoChooser::ExeContext::get_profile_result_from_cache")))
    AlgoChooserProfileCache cache(m_cn,
                                  profile_name(m_megdnn_opr).c_str());

    typename Opr::Param origin_param = m_megdnn_opr->param();
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
    std::unordered_map<std::string, ImplAlgo> algo_map;
    for (auto i : get_all_candidates()) {
        auto ins = algo_map.emplace(i.name.c_str(), i);
        mgb_assert(ins.second, "duplicated algo name: %s", i.name.c_str());
    }

    if (prof.empty())
        return {};
    for (auto&& i : prof) {
        if ((!require_reproducible || i.reproducible)) {
            auto iter = algo_map.find(i.algo);
            mgb_assert(iter != algo_map.end(),
                       "algorithm %s exists in "
                       "profiling result but not in algo_map; please "
                       "report this "
                       "bug; opr: %s{%s}, layouts: %s ",
                       i.algo.c_str(), m_base_mgb_opr->cname(),
                       m_base_mgb_opr->dyn_typeinfo()->name,
                       format_fixlayouts<Opr>(m_layouts, arity_in, arity_out)
                               .c_str());
            return iter->second;
        }
    }

    mgb_log_error(
            "Workspace requirement (%zu) could not be satisfied. Abort now "
            "to "
            "avoid further problems",
            WorkspaceLimitGetter::get_workspace_limit(
                    m_base_mgb_opr->owner_graph(), m_cn,
                    m_execution_policy.workspace_limit));
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
551
AlgoChooser<Opr>::ExeContext::choose_by_heuristic(bool reproducible) const {
552 553 554 555 556 557 558
    if (m_execution_policy.workspace_limit !=
        std::numeric_limits<decltype(
                m_execution_policy.workspace_limit)>::max()) {
        mgb_log_warn(
                "workspace_limit should not be setted if choose algo by "
                "heuristic");
    }
559
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    ImplExecutionPolicy policy;
    policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                args..., workspace_limit, reproducible),
                        m_layouts).desc;

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back(sub_ctx.choose_by_heuristic(reproducible));
    });

    return policy;
584 585 586 587 588 589
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::ExeContext::get_all_candidates() const {
    auto heu = choose_by_heuristic();
590 591
    auto&& ret =
            APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts);
592 593
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
594
        if (ret[i].desc == heu.algo) {
595 596 597 598 599
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }
600 601 602

    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo);
    mgb_assert(palgo, "Unknown algo description");
603 604
    mgb_assert(found,
               "algo %s got by heuristic not found in "
605
               "candidate list",
606
               palgo->name());
607 608 609 610
    return std::move(ret);
}

template <typename Opr>
611
void AlgoChooser<Opr>::ExeContext::construct_execution_policy(
612
        bool require_reproducible,
613 614
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
        bool retrive_from_cache) const {
615
    if (!policy.algo.valid()) {
616 617 618 619 620 621 622 623 624 625 626 627
        if (retrive_from_cache) {
            policy.algo =
                    get_profile_result_from_cache(require_reproducible).desc;
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
            policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                        args..., workspace_limit,
                                        require_reproducible),
                                m_layouts)
                                  .desc;
        }
628
        mgb_assert(policy.algo.valid(),
629 630
                   "No algo found from cache or heuristic, maybe some error "
                   "occured");
631
    }
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
648 649 650
        sub_ctx.construct_execution_policy(require_reproducible,
                                           policy.sub_policy.back(),
                                           retrive_from_cache);
651 652 653
    });

    return;
654 655 656 657
}

template <typename Opr>
size_t AlgoChooser<Opr>::ExeContext::get_workspace_size_bytes(
658 659
        const ImplExecutionPolicy& policy) const {
    m_megdnn_opr->execution_policy() = policy;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(m_megdnn_opr);
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
                result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...),
                               m_layouts);
            });
    return result;
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
683 684
AlgoChooser<Opr>::ExeContext::profile_single_algo(
        const ImplExecutionPolicy& policy, double& timeout) const {
685 686
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
687 688 689
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
690 691 692 693 694 695 696 697 698 699
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
700
    param.comp_node_loc = m_cn.locator();
701 702 703 704 705 706
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
    param.opr_param = m_megdnn_opr->param();
    param.allow_weight_preprocess = m_allow_weight_preprocess;

707 708
    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
709 710 711 712
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
713
    if (strncmp(palgo->name(), "MIOpen", 6) == 0)
714 715 716 717
        rst = TimedProfiler<Opr>::profile(param, timeout);
    if (!rst.valid())
        return None;
    return AlgoChooserProfileCache::ResultEntry{
718
            palgo->name(), palgo->is_reproducible(), rst.val().time,
719 720 721 722 723 724 725 726 727 728 729
            param.workspace};
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
AlgoChooser<Opr>::ExeContext::construct_fake_preprocess_filter() const {
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
        auto opr = _(m_megdnn_opr);
730 731 732 733
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
734
            return;
735 736 737 738 739 740 741 742 743 744 745 746
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

747 748 749
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
750 751 752
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
753 754 755 756 757 758
        }
    });
    return result;
}

#define INST(Opr)                                                              \
759 760 761 762 763 764 765
    template AlgoChooser<megdnn::Opr>::ExeContext::ExeContext(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
766 767
    AlgoChooser<megdnn::Opr>::ExeContext::choose_by_heuristic(                 \
            bool reproducible) const;                                          \
768 769 770
    template typename AlgoChooser<megdnn::Opr>::ImplAlgo                       \
    AlgoChooser<megdnn::Opr>::ExeContext::get_profile_result_from_cache(       \
            bool require_reproducible) const;                                  \
771 772 773 774
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::ExeContext::get_all_candidates() const;          \
    template size_t                                                            \
    AlgoChooser<megdnn::Opr>::ExeContext::get_workspace_size_bytes(            \
775 776
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
777 778 779 780 781
    template void                                                              \
    AlgoChooser<megdnn::Opr>::ExeContext::construct_execution_policy(          \
            bool require_reproducible,                                         \
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy,    \
            bool retrive_from_cache) const;                                    \
782 783
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
    AlgoChooser<megdnn::Opr>::ExeContext::profile_single_algo(                 \
784 785 786
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
            double& timeout) const;
787 788 789 790 791 792 793 794

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}