algo_chooser.cpp 35.6 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v4"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
    }
    return ret;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
244
template <typename Opr>
245 246 247 248 249 250 251
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
        const typename opr::AlgoChooser<Opr>::ExeContext& ctx,
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
            OprTypeFromOprTrait<Opr>::opr_type, ctx.param(),
            to_layout_array<Opr>(ctx.layouts())};
    checker.put(search_item);
252 253 254 255 256 257 258 259 260
    std::vector<megdnn::Algorithm::SearchItem> ret;
    for (auto algo_info : ctx.get_all_candidates()) {
        megdnn::Algorithm* algo = ctx.get_algorithm_from_desc(algo_info.desc);
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
                algo->get_subopr_list(to_layout_array<Opr>(ctx.layouts()),
                                      ctx.megdnn_opr());

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
261 262
            auto&& megdnn_opr =
                    opr::intl::create_megdnn_opr<_Opr>(ctx.comp_node());
263 264 265
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
266
            typename opr::AlgoChooser<_Opr>::ExeContext sub_ctx(
267 268 269
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
270
            auto space = flatten_search_space<_Opr>(sub_ctx, checker);
271 272
            ret.insert(ret.end(), space.begin(), space.end());
        });
273
    }
274 275
    ret.push_back(search_item);
    checker.remove(search_item);
276 277
    return ret;
}
278

279 280 281
//! return pair<positive_attr, negative_attr>
std::pair<AlgoAttribute, AlgoAttribute>
extract_algo_attribute_from_execution_strategy(
282
        const ExecutionStrategy& strategy) {
283 284
    std::pair<AlgoAttribute, AlgoAttribute> ret =
            std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);
285
    if (strategy & ExecutionStrategy::REPRODUCIBLE) {
286
        ret.first |= AlgoAttribute::REPRODUCIBLE;
287
    }
M
Megvii Engine Team 已提交
288
    if (strategy & ExecutionStrategy::OPTIMIZED) {
289
        ret.second |= AlgoAttribute::NAIVE;
290 291 292
    }
    return ret;
}
293

294 295 296 297 298
}  // namespace

namespace mgb {
namespace opr {

299
template <typename Opr>
300
void AlgoChooser<Opr>::profile(ExeContext& ctx,
301 302
                               ExecutionStrategy selected_strategy) {
    if (ctx.get_profile_result_from_cache(selected_strategy).valid())
303
        return;
304 305
    AlgoChooserProfileCache::Result prof_rst;

306
    auto target_attr =
307 308
            extract_algo_attribute_from_execution_strategy(selected_strategy);
    std::string layouts_str = format_fixlayouts<Opr>(ctx.layouts(), arity_in, arity_out);
309
    double cur_timeout = 0;
310 311 312 313

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            ctx.owner_graph(), ctx.comp_node(),
            ctx.execution_policy().workspace_limit);
314
    RealTimer timer;
315
    for (auto algo : ctx.get_all_candidates()) {
316 317 318
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   ctx.mgb_opr()->dyn_typeinfo()->name,
319
                                   algo.desc.name.c_str(), layouts_str.c_str());
320 321
        ImplExecutionPolicy policy;
        policy.algo = algo.desc;
322 323
        ctx.construct_execution_policy(selected_strategy, policy);
        if (ctx.get_workspace_size_bytes(policy) >= workspace_limit) {
324
            continue;
325
        }
326
        auto palgo = ctx.megdnn_opr()->get_algorithm_from_desc(policy.algo);
327
        if (!(palgo->contain_attribute_all(target_attr.first) &&
328
              !palgo->contain_attribute_any(target_attr.second))) {
329
            mgb_log_debug(
330 331 332
                    "skip algo %s with attribute(%s), which is not match the "
                    "profile strategy required contain attribute(%s) and not "
                    "contain attribute(%s).",
333
                    algo.desc.name.c_str(),
334
                    Algorithm::attribute_str(palgo->attribute()).c_str(),
335 336
                    Algorithm::attribute_str(target_attr.first).c_str(),
                    Algorithm::attribute_str(target_attr.second).c_str());
337 338
            continue;
        }
339

340
        timer.reset();
341
        MGB_TRY { cur_rst = ctx.profile_single_algo(policy, cur_timeout); }
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
367 368 369 370 371 372
    std::string msg = ssprintf(
            "no usable %s algorithm %s with attribute(%s) and without "
            "attribute(%s)",
            ctx.mgb_opr()->dyn_typeinfo()->name, layouts_str.c_str(),
            Algorithm::attribute_str(target_attr.first).c_str(),
            Algorithm::attribute_str(target_attr.second).c_str());
373
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());
374

375 376 377 378 379 380 381 382
    FixedTensorLayouts origin_layouts = ctx.layouts();
    typename Opr::Param origin_param = ctx.megdnn_opr()->param();
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

    AlgoChooserProfileCache cache(ctx.comp_node(),
                                  profile_name(ctx.megdnn_opr()).c_str());
383 384 385 386
    cache.put(cache_key, prof_rst);
}

template <typename Opr>
387
typename AlgoChooser<Opr>::ImplExecutionPolicy
388
AlgoChooser<Opr>::choose_by_profile(ExeContext& ctx,
389
                                    ExecutionStrategy selected_strategy,
390
                                    bool enable_update) {
391
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile")))
392 393
    if (ctx.owner_graph()->options().no_profiling_on_shape_change) {
        auto policy = ctx.megdnn_opr()->execution_policy();
394
        if (policy.algo.valid()){
395
            return policy;
396 397 398 399 400 401 402
        }
        if (!algo_usable_on_shape_change<Opr>()) {
            mgb_log_warn(
                    "choose algo by heuristic, which may cause performance "
                    "regression.");
            return ctx.choose_by_heuristic(selected_strategy);
        }
403 404
    }

405
    if (enable_update) {
406 407 408
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
                flatten_search_space<Opr>(ctx, circular_deps_checker);
409 410 411 412 413 414 415 416 417
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(ctx.comp_node());
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
            typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                    _item.param, ctx.mgb_opr(), ctx.comp_node(),
                    ctx.execution_policy(), ctx.allow_weight_preprocess());
418
            AlgoChooser<_Opr>::profile(sub_ctx, selected_strategy);
419
        });
420
    }
421

422
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
423
    ctx.construct_execution_policy(selected_strategy, policy);
424
    return policy;
425 426 427 428
    MIDOUT_E
}

template <typename Opr>
429
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
430 431 432 433 434 435
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

436 437 438 439 440
    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    ExeContext ctx(layouts, megdnn_opr, param_str, mgb_opr,
                   mgb_opr->comp_node(), mgb_opr->execution_policy(),
                   allow_weight_preprocess);
441

442
    ImplExecutionPolicy policy;
443
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
444
        policy = algo_choose_hook(mgb_opr);
445 446 447
        ctx.construct_execution_policy((ExecutionStrategy::HEURISTIC |
                                        ExecutionStrategy::REPRODUCIBLE),
                                       policy, false);
448
    }
449 450
    if (!policy.algo.valid()) {
        policy = get_policy(ctx);
451
    }
452
    size_t workspace = ctx.get_workspace_size_bytes(policy);
M
Megvii Engine Team 已提交
453 454

    std::string ret;
455
    ret.append(mgb_opr->dyn_typeinfo()->name);
456 457 458 459
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
460
    ret.append(ssprintf(" workspace=%.2fMiB attirbute(%s)",
461
                        workspace / (1024 * 1024.0),
462
                        Algorithm::attribute_str(palgo->attribute()).c_str()));
M
Megvii Engine Team 已提交
463 464
    mgb_log_debug("%s", ret.c_str());

465
    megdnn_opr->execution_policy() = policy;
466 467 468 469
    return workspace;
}

template <typename Opr>
470
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
471 472
        ExeContext& ctx) {
    MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
473 474 475 476 477 478 479 480
    auto opr_strategy = ctx.execution_policy().strategy;
    if ((opr_strategy & ExecutionStrategy::HEURISTIC) &&
               (opr_strategy & ExecutionStrategy::PROFILE)) {
        ImplExecutionPolicy policy =
                choose_by_profile(ctx, opr_strategy, false);
        if (!policy.algo.valid())
            policy = ctx.choose_by_heuristic(opr_strategy);
        return policy;
481 482
    } else if (!static_cast<int>(opr_strategy) ||
               (opr_strategy & ExecutionStrategy::HEURISTIC)) {
483 484
        return ctx.choose_by_heuristic(opr_strategy);
    }
485
#if MGB_ENABLE_FASTRUN
486 487 488
    else if (opr_strategy & ExecutionStrategy::PROFILE) {
        return choose_by_profile(ctx, opr_strategy);
    }
489
#endif
490
    else {
491
        mgb_throw(GraphError, "bad ExecutionPolicy strategy");
492 493 494
    }
}

495 496 497 498 499 500 501 502 503 504 505
#define INST(Opr)                                                       \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy              \
    AlgoChooser<megdnn::Opr>::get_policy(ExeContext& ctx);              \
    template void AlgoChooser<megdnn::Opr>::profile(ExeContext& ctx,    \
                                                    ExecutionStrategy); \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy              \
    AlgoChooser<megdnn::Opr>::choose_by_profile(                        \
            ExeContext& ctx, ExecutionStrategy, bool enable_update);    \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(               \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);
506 507 508 509 510 511

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST

//////////////////////////////// ExeContext /////////////////////////////
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
template <typename Opr>
AlgoChooser<Opr>::ExeContext::ExeContext(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
          m_megdnn_opr{megdnn_opr},
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
533 534 535

template <typename Opr>
typename AlgoChooser<Opr>::ImplAlgo
536
AlgoChooser<Opr>::ExeContext::get_profile_result_from_cache(
537
        ExecutionStrategy selected_strategy) const {
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    MIDOUT_B(Opr,
             midout_iv(MGB_HASH_STR(
                     "AlgoChooser::ExeContext::get_profile_result_from_cache")))
    AlgoChooserProfileCache cache(m_cn,
                                  profile_name(m_megdnn_opr).c_str());

    typename Opr::Param origin_param = m_megdnn_opr->param();
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
    std::unordered_map<std::string, ImplAlgo> algo_map;
    for (auto i : get_all_candidates()) {
554 555
        auto ins = algo_map.emplace(i.desc.name.c_str(), i);
        mgb_assert(ins.second, "duplicated algo name: %s", i.desc.name.c_str());
556 557 558 559
    }

    if (prof.empty())
        return {};
560 561 562

    auto attr_from_strategy =
            extract_algo_attribute_from_execution_strategy(selected_strategy);
563
    for (auto&& i : prof) {
564 565 566 567 568 569 570 571
        auto attr_of_algo =
                static_cast<megdnn::Algorithm::Attribute>(i.attribute);
        bool contain_attr_all_positive =
                (attr_from_strategy.first ==
                 (attr_of_algo & attr_from_strategy.first));
        bool contain_attr_any_negative =
                static_cast<bool>(attr_of_algo & attr_from_strategy.second);
        if (contain_attr_all_positive && !contain_attr_any_negative) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
            auto iter = algo_map.find(i.algo);
            mgb_assert(iter != algo_map.end(),
                       "algorithm %s exists in "
                       "profiling result but not in algo_map; please "
                       "report this "
                       "bug; opr: %s{%s}, layouts: %s ",
                       i.algo.c_str(), m_base_mgb_opr->cname(),
                       m_base_mgb_opr->dyn_typeinfo()->name,
                       format_fixlayouts<Opr>(m_layouts, arity_in, arity_out)
                               .c_str());
            return iter->second;
        }
    }

    mgb_log_error(
587 588 589 590 591
            "algos read from cache could not satisfy attribute with %s and "
            "without %s",
            Algorithm::attribute_str(attr_from_strategy.first).c_str(),
            Algorithm::attribute_str(attr_from_strategy.second).c_str());

592 593 594 595 596 597
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
598
AlgoChooser<Opr>::ExeContext::choose_by_heuristic(
599
        ExecutionStrategy selected_strategy) const {
600 601 602 603 604 605 606
    if (m_execution_policy.workspace_limit !=
        std::numeric_limits<decltype(
                m_execution_policy.workspace_limit)>::max()) {
        mgb_log_warn(
                "workspace_limit should not be setted if choose algo by "
                "heuristic");
    }
607
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
608
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
609 610
    auto attr =
            extract_algo_attribute_from_execution_strategy(selected_strategy);
611
    ImplExecutionPolicy policy;
612 613 614 615 616
    policy.algo =
            APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                          args..., workspace_limit, attr.first, attr.second),
                  m_layouts)
                    .desc;
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
632
        policy.sub_policy.push_back(
633
                sub_ctx.choose_by_heuristic(selected_strategy));
634 635 636
    });

    return policy;
637 638 639 640 641
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::ExeContext::get_all_candidates() const {
642 643
    auto heu = choose_by_heuristic(ExecutionStrategy::HEURISTIC);
    auto&& ret = APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts);
644 645
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
646
        if (ret[i].desc == heu.algo) {
647 648 649 650 651
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }
652 653 654

    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo);
    mgb_assert(palgo, "Unknown algo description");
655 656
    mgb_assert(found,
               "algo %s got by heuristic not found in "
657
               "candidate list",
658
               palgo->name());
659 660 661 662
    return std::move(ret);
}

template <typename Opr>
663
void AlgoChooser<Opr>::ExeContext::construct_execution_policy(
664
        ExecutionStrategy selected_strategy,
665 666
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
        bool retrive_from_cache) const {
667
    if (!policy.algo.valid()) {
668
        if (retrive_from_cache) {
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
            policy.algo = get_profile_result_from_cache(selected_strategy).desc;
            if (!policy.algo.valid()) {
                auto target_attr =
                        extract_algo_attribute_from_execution_strategy(
                                selected_strategy);
                std::string layouts_str =
                        format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
                std::string msg = ssprintf(
                        "(mbg_opr : %s, layouts %s, with attribute(%s) and "
                        "without attribute(%s)",
                        m_base_mgb_opr->dyn_typeinfo()->name,
                        layouts_str.c_str(),
                        Algorithm::attribute_str(target_attr.first).c_str(),
                        Algorithm::attribute_str(target_attr.second).c_str());
                mgb_log_warn(
                        "No algo get from cache for %s. This may caused by "
                        "mismatch with model and cache file. ex. profiling "
                        "with version1, but inferencing on version2 or "
                        "profiling modelA but inferencing modelB",
                        msg.c_str());
                return;
            }
691 692 693
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
694 695 696 697 698 699 700 701

            auto attr = extract_algo_attribute_from_execution_strategy(
                    selected_strategy);
            policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                        args..., workspace_limit, attr.first,
                                        attr.second),
                                m_layouts)
                                  .desc;
702 703 704 705 706
            mgb_assert(policy.algo.valid(),
                       "No algo found from heuristic with strategy %u and "
                       "workspace limit %zu",
                       static_cast<uint32_t>(selected_strategy),
                       workspace_limit);
707
        }
708
    }
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::ExeContext sub_ctx(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
725
        sub_ctx.construct_execution_policy(selected_strategy,
726 727
                                           policy.sub_policy.back(),
                                           retrive_from_cache);
728 729 730 731 732 733
        if (!policy.sub_policy.back().algo.valid()) {
            // means sub_ctx.construct_execution_policy fails. clean up
            // policy.algo and return
            policy = {};
            return;
        }
734
    });
735 736 737 738
}

template <typename Opr>
size_t AlgoChooser<Opr>::ExeContext::get_workspace_size_bytes(
739 740
        const ImplExecutionPolicy& policy) const {
    m_megdnn_opr->execution_policy() = policy;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(m_megdnn_opr);
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
                result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...),
                               m_layouts);
            });
    return result;
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
764 765
AlgoChooser<Opr>::ExeContext::profile_single_algo(
        const ImplExecutionPolicy& policy, double& timeout) const {
766 767
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
768 769 770
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
771 772 773 774 775 776 777 778 779 780
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
781
    param.comp_node_loc = m_cn.locator();
782 783 784 785 786 787
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
    param.opr_param = m_megdnn_opr->param();
    param.allow_weight_preprocess = m_allow_weight_preprocess;

788 789
    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
790 791 792 793
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
794
    if (strncmp(palgo->name(), "MIOpen", 6) == 0)
795 796 797 798
        rst = TimedProfiler<Opr>::profile(param, timeout);
    if (!rst.valid())
        return None;
    return AlgoChooserProfileCache::ResultEntry{
799
            palgo->name(),
800
            static_cast<uint32_t>(palgo->attribute()),
801
            rst.val().time, param.workspace};
802 803 804 805 806 807 808 809 810 811
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
AlgoChooser<Opr>::ExeContext::construct_fake_preprocess_filter() const {
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
        auto opr = _(m_megdnn_opr);
812 813 814 815
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
816
            return;
817 818 819 820 821 822 823 824 825 826 827 828
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

829 830 831
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
832 833 834
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
835 836 837 838 839 840
        }
    });
    return result;
}

#define INST(Opr)                                                              \
841 842 843 844 845 846 847
    template AlgoChooser<megdnn::Opr>::ExeContext::ExeContext(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
848
    AlgoChooser<megdnn::Opr>::ExeContext::choose_by_heuristic(                 \
849
            ExecutionStrategy select_strategy) const;                          \
850 851
    template typename AlgoChooser<megdnn::Opr>::ImplAlgo                       \
    AlgoChooser<megdnn::Opr>::ExeContext::get_profile_result_from_cache(       \
852
            ExecutionStrategy select_strategy) const;                          \
853 854 855 856
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::ExeContext::get_all_candidates() const;          \
    template size_t                                                            \
    AlgoChooser<megdnn::Opr>::ExeContext::get_workspace_size_bytes(            \
857 858
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
859 860
    template void                                                              \
    AlgoChooser<megdnn::Opr>::ExeContext::construct_execution_policy(          \
861
            ExecutionStrategy select_strategy,                                 \
862 863
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy,    \
            bool retrive_from_cache) const;                                    \
864 865
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
    AlgoChooser<megdnn::Opr>::ExeContext::profile_single_algo(                 \
866 867 868
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
            double& timeout) const;
869 870 871 872 873 874 875 876

MGB_FOREACH_FASTRUN_OPR(INST)

#undef INST
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}