algo_chooser.cpp 38.0 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v5"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
    }
    return ret;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
244
template <typename Opr>
245
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
246
        const typename opr::AlgoChooser<Opr>::AlgoChooserHelper& helper,
247 248
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
249 250
            OprTypeFromOprTrait<Opr>::opr_type, helper.param(),
            to_layout_array<Opr>(helper.layouts())};
251
    checker.put(search_item);
252
    std::vector<megdnn::Algorithm::SearchItem> ret;
253 254 255
    for (auto algo_info : helper.get_all_candidates()) {
        megdnn::Algorithm* algo =
                helper.get_algorithm_from_desc(algo_info.desc);
256 257
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
258 259
                algo->get_subopr_list(to_layout_array<Opr>(helper.layouts()),
                                      helper.megdnn_opr());
260 261

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
262
            auto&& megdnn_opr =
263
                    opr::intl::create_megdnn_opr<_Opr>(helper.comp_node());
264 265 266
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
267
            typename opr::AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
268
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
269 270 271 272
                    _item.param, helper.mgb_opr(), helper.comp_node(),
                    helper.execution_policy(),
                    helper.allow_weight_preprocess());
            auto space = flatten_search_space<_Opr>(sub_helper, checker);
273 274
            ret.insert(ret.end(), space.begin(), space.end());
        });
275
    }
276 277
    ret.push_back(search_item);
    checker.remove(search_item);
278 279
    return ret;
}
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//! serialize a algo's desc to string. format is
//! handle_type|algo_type|size_of_param|size_of_name|string_of_param|string_of_name
static void serialize_write_pod(const Algorithm::Info::Desc& val,
                                std::string& result) {
    megdnn::Algorithm::serialize_write_pod(val.handle_type, result);
    megdnn::Algorithm::serialize_write_pod(val.type, result);
    uint32_t param_size = val.param.size();
    uint32_t name_size = val.name.size();
    megdnn::Algorithm::serialize_write_pod<uint32_t>(param_size, result);
    megdnn::Algorithm::serialize_write_pod<uint32_t>(name_size, result);
    result += val.param;
    result += val.name;
}

static Algorithm::Info::Desc deserialize_read_pod(const std::string& data,
                                                  size_t offset = 0) {
    Algorithm::Info::Desc ret;
#define cb(_val, _type)                                                \
    _val = megdnn::Algorithm::deserialize_read_pod<_type>(data.data(), \
                                                          offset);     \
    offset += sizeof(_val)

    cb(ret.handle_type, megdnn::Handle::HandleType);
    cb(ret.type, uint32_t);

    uint32_t param_size = 0;
    uint32_t name_size = 0;
    cb(param_size, uint32_t);
    cb(name_size, uint32_t);

    if (param_size > 0) {
        ret.param = std::string(data.data() + offset, param_size);
        offset += param_size;
    }
    if (name_size > 0) {
        ret.name = std::string(data.data() + offset, name_size);
        offset += name_size;
    }
    return ret;
}

322 323 324 325
}  // namespace

namespace mgb {
namespace opr {
326
///////////////////////////// AlgoChooserHelper //////////////////////////
327
template <typename Opr>
328 329 330 331 332 333 334
AlgoChooser<Opr>::AlgoChooserHelper::AlgoChooserHelper(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
335
          m_dnn_opr{megdnn_opr},
336 337 338 339 340 341 342 343 344 345 346 347
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
348

349 350 351 352 353 354
template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
AlgoChooser<Opr>::AlgoChooserHelper::choose_by_heuristic(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_heuristic")))
    ImplExecutionPolicy policy;
355
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
356 357 358
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    auto attr = extract_algo_attribute(selected_strategy);
    policy.algo =
359
            APPLY(m_dnn_opr->get_algorithm_info_heuristic(
360 361 362
                          args..., workspace_limit, attr.first, attr.second),
                  m_layouts)
                    .desc;
363

364
    Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
365 366
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
367
            to_layout_array<Opr>(m_layouts), m_dnn_opr);
368

369 370 371 372 373 374 375 376 377 378 379 380
    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back(
                sub_helper.choose_by_heuristic(selected_strategy));
    });
381

382 383
    return policy;
    MIDOUT_E
384 385 386
}

template <typename Opr>
387
typename AlgoChooser<Opr>::ImplExecutionPolicy
388 389 390 391
AlgoChooser<Opr>::AlgoChooserHelper::choose_by_profile(
        const ExecutionStrategy& selected_strategy, bool enable_update) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_profile")))
    if (owner_graph()->options().no_profiling_on_shape_change) {
392
        auto policy = m_dnn_opr->execution_policy();
393
        if (policy.algo.valid()) {
394
            return policy;
395 396 397 398 399
        }
        if (!algo_usable_on_shape_change<Opr>()) {
            mgb_log_warn(
                    "choose algo by heuristic, which may cause performance "
                    "regression.");
400
            return choose_by_heuristic(selected_strategy);
401
        }
402 403
    }

404 405 406 407 408 409 410 411 412 413
    typename AlgoChooser<Opr>::ImplExecutionPolicy tmp_policy;
    bool retrive_from_cache = true;
    bool allow_log = false;
    construct_execution_policy(selected_strategy, tmp_policy,
                               retrive_from_cache, allow_log);
    if (tmp_policy.algo.valid()) {
        // return policy when contruct successed
        return tmp_policy;
    }

414
    if (enable_update) {
415 416
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
417
                flatten_search_space<Opr>(*this, circular_deps_checker);
418
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
419
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
420 421 422
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
423
            typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
424
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
425 426 427
                    _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                    m_allow_weight_preprocess);
            sub_helper.profile(selected_strategy);
428
        });
429
    }
430

431
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
432
    construct_execution_policy(selected_strategy, policy);
433
    return policy;
434 435 436 437
    MIDOUT_E
}

template <typename Opr>
438
typename AlgoChooser<Opr>::ImplAlgoDesc
439 440 441
AlgoChooser<Opr>::AlgoChooserHelper::get_profile_result_from_cache(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_profile_result_from_cache")))
442
    AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str());
443

444
    typename Opr::Param origin_param = m_dnn_opr->param();
445 446 447 448 449 450 451
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
452 453 454
    if (prof.empty())
        return {};

455
    auto target_attr = extract_algo_attribute(selected_strategy);
456
    bool skip_by_negative = false;
457
    for (auto&& i : prof) {
458 459 460
        auto attr_of_algo =
                static_cast<megdnn::Algorithm::Attribute>(i.attribute);
        bool contain_attr_all_positive =
461
                (target_attr.first == (attr_of_algo & target_attr.first));
462
        bool contain_attr_any_negative =
463
                static_cast<bool>(attr_of_algo & target_attr.second);
464 465
        if (contain_attr_all_positive) {
            if (!contain_attr_any_negative) {
466 467
                Algorithm::Info::Desc algo_desc = deserialize_read_pod(i.algo);
                return algo_desc;
468 469 470
            } else {
                skip_by_negative = true;
            }
471 472 473
        }
    }

474 475
    if (skip_by_negative) {
        mgb_log_error(
476 477 478
                "No usable algo. There are available algos match positive "
                "strategy(%s), but filtered by negative stategy(%s).",
                Algorithm::attribute_str(target_attr.first).c_str(),
479 480 481 482
                Algorithm::attribute_str(target_attr.second).c_str());
    } else {
        mgb_log_error(
                "No usable algo. algos read from cache could not satisfy "
483
                "positive strategy(%s)",
484 485
                Algorithm::attribute_str(target_attr.first).c_str());
    }
486

487 488 489 490 491
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
492
void AlgoChooser<Opr>::AlgoChooserHelper::construct_execution_policy(
493 494 495
        const ExecutionStrategy& selected_strategy,
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
        bool retrive_from_cache, bool allow_log) const {
496
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_execution_policy")))
497
    if (!policy.algo.valid()) {
498
        if (retrive_from_cache) {
499
            policy.algo = get_profile_result_from_cache(selected_strategy);
500
            if (!policy.algo.valid()) {
501 502 503 504 505 506
                if (allow_log) {
                    auto target_attr =
                            extract_algo_attribute(selected_strategy);
                    std::string layouts_str = format_fixlayouts<Opr>(
                            m_layouts, arity_in, arity_out);
                    std::string msg = ssprintf(
507
                            "(opr : %s, layouts %s, with attribute(%s) and "
508 509 510 511 512 513 514 515 516 517 518 519 520 521
                            "without attribute(%s)",
                            m_base_mgb_opr->dyn_typeinfo()->name,
                            layouts_str.c_str(),
                            Algorithm::attribute_str(target_attr.first).c_str(),
                            Algorithm::attribute_str(target_attr.second)
                                    .c_str());
                    mgb_log_warn(
                            "No algo get from cache for %s. This may caused by "
                            "mismatch with model and cache file or imcomplete "
                            "cache file. ex. profiling with version1, but "
                            "inferencing on version2 or profiling modelA but "
                            "inferencing modelB",
                            msg.c_str());
                }
522 523
                return;
            }
524 525 526
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
527

528
            auto attr = extract_algo_attribute(selected_strategy);
529
            policy.algo = APPLY(m_dnn_opr->get_algorithm_info_heuristic(
530 531 532 533
                                        args..., workspace_limit, attr.first,
                                        attr.second),
                                m_layouts)
                                  .desc;
534 535 536 537 538
            mgb_assert(policy.algo.valid(),
                       "No algo found from heuristic with strategy %u and "
                       "workspace limit %zu",
                       static_cast<uint32_t>(selected_strategy),
                       workspace_limit);
539
        }
540
    }
541

542
    Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
543 544
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
545
            to_layout_array<Opr>(m_layouts), m_dnn_opr);
546 547 548 549 550 551

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
552
        typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
553 554 555 556
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
557
        sub_helper.construct_execution_policy(selected_strategy,
558 559
                                              policy.sub_policy.back(),
                                              retrive_from_cache, allow_log);
560
        if (!policy.sub_policy.back().algo.valid()) {
561
            // means sub_helper.construct_execution_policy fails. clean up
562 563 564 565
            // policy.algo and return
            policy = {};
            return;
        }
566
    });
567
    MIDOUT_E
568 569 570
}

template <typename Opr>
571
size_t AlgoChooser<Opr>::AlgoChooserHelper::get_workspace_size_bytes(
572
        const ImplExecutionPolicy& policy) const {
573
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_workspace_size_bytes")))
574
    m_dnn_opr->execution_policy() = policy;
575 576 577
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
578
                auto&& opr = _(m_dnn_opr);
579 580 581 582 583 584 585 586 587 588 589
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
590
                result = APPLY(_(m_dnn_opr)->get_workspace_in_bytes(args...),
591 592 593
                               m_layouts);
            });
    return result;
594 595 596 597 598 599 600 601 602
    MIDOUT_E
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::AlgoChooserHelper::get_all_candidates() const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_all_candidates")))
    auto heu = choose_by_heuristic(m_execution_policy.strategy);
    auto&& ret =
603
            APPLY(m_dnn_opr->get_all_algorithms_info(args...), m_layouts);
604 605 606 607 608 609 610 611 612
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
        if (ret[i].desc == heu.algo) {
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }

613
    Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(heu.algo);
614 615 616 617 618 619 620
    mgb_assert(palgo, "Unknown algo description");
    mgb_assert(found,
               "algo %s got by heuristic not found in "
               "candidate list",
               palgo->name());
    return std::move(ret);
    MIDOUT_E
621 622 623 624
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
625
AlgoChooser<Opr>::AlgoChooserHelper::profile_single_algo(
626
        const ImplExecutionPolicy& policy, double& timeout) const {
627
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile_single_algo")))
628 629
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
630 631 632
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
633 634 635 636 637 638 639 640 641 642
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
643
    param.comp_node_loc = m_cn.locator();
644 645 646
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
647
    param.opr_param = m_dnn_opr->param();
648 649
    param.allow_weight_preprocess = m_allow_weight_preprocess;

650
    Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
651 652
    mgb_assert(palgo, "can not find algo when profile single algo");

653 654 655 656
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
657
    if (strncmp(palgo->name(), "MIOpen", 6) == 0) {
658
        rst = TimedProfiler<Opr>::profile(param, timeout);
659
    }
660 661
    if (!rst.valid())
        return None;
662 663 664

    std::string algo_desc;
    serialize_write_pod(policy.algo, algo_desc);
665
    return AlgoChooserProfileCache::ResultEntry{
666
            algo_desc, static_cast<uint32_t>(palgo->attribute()),
667
            rst.val().time, param.workspace};
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    MIDOUT_E
}

template <typename Opr>
void AlgoChooser<Opr>::AlgoChooserHelper::profile(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile")))
    if (get_profile_result_from_cache(selected_strategy).valid())
        return;
    AlgoChooserProfileCache::Result prof_rst;

    auto target_attr = extract_algo_attribute(selected_strategy);
    std::string layouts_str =
            format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
    double cur_timeout = 0;

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    RealTimer timer;
    for (auto algo : get_all_candidates()) {
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;

        ImplExecutionPolicy policy;
        policy.algo = algo.desc;

        //! check negative attribute : skip negative attribute
694
        auto palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
695 696 697 698 699 700 701 702 703 704
        if (palgo->contain_attribute_any(target_attr.second)) {
            mgb_log_debug(
                    "skip algo %s, which matches the profile strategy required "
                    "'not contain attribute(%s).'",
                    algo.desc.name.c_str(),
                    Algorithm::attribute_str(target_attr.second).c_str());
            continue;
        }

        //! check workspace limit
705 706 707
        construct_execution_policy(selected_strategy, policy);
        mgb_assert(policy.algo.valid(),
                   "construct execution policy must success when profiling");
708
        if (get_workspace_size_bytes(policy) > workspace_limit) {
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
            continue;
        }

        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   m_base_mgb_opr->dyn_typeinfo()->name,
                                   algo.desc.name.c_str(), layouts_str.c_str());
        timer.reset();
        MGB_TRY { cur_rst = profile_single_algo(policy, cur_timeout); }
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
    std::string msg = ssprintf(
            "no usable %s algorithm %s without attribute(%s) or could not meet "
            "workspace limite requirement(%zu)",
            m_base_mgb_opr->dyn_typeinfo()->name, layouts_str.c_str(),
            Algorithm::attribute_str(target_attr.second).c_str(),
            workspace_limit);
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());

    FixedTensorLayouts origin_layouts = m_layouts;
751
    typename Opr::Param origin_param = m_dnn_opr->param();
752 753 754 755
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

756
    AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str());
757 758
    cache.put(cache_key, prof_rst);
    MIDOUT_E
759 760 761 762
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
763 764
AlgoChooser<Opr>::AlgoChooserHelper::construct_fake_preprocess_filter() const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_fake_preprocess_filter")))
765 766 767 768
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
769
        auto opr = _(m_dnn_opr);
770 771 772 773
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
774
            return;
775 776 777 778 779 780 781 782 783 784 785 786
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

787 788 789
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
790 791 792
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
793 794 795
        }
    });
    return result;
796
    MIDOUT_E
797 798
}

799 800
template <typename Opr>
std::pair<AlgoAttribute, AlgoAttribute>
801
AlgoChooser<Opr>::AlgoChooserHelper::extract_algo_attribute(
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        const ExecutionStrategy& strategy) const {
    std::pair<AlgoAttribute, AlgoAttribute> ret =
            std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);

    //! from strategy
    if (strategy & ExecutionStrategy::REPRODUCIBLE) {
        ret.first |= AlgoAttribute::REPRODUCIBLE;
    }
    if (strategy & ExecutionStrategy::OPTMIZED) {
        ret.second |= AlgoAttribute::NAIVE;
    }

    return ret;
}

817
#define INST(Opr)                                                              \
818
    template AlgoChooser<megdnn::Opr>::AlgoChooserHelper::AlgoChooserHelper(   \
819 820 821 822 823 824
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
825 826 827 828 829 830
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_heuristic(          \
            const ExecutionStrategy& select_strategy) const;                   \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_profile(            \
            const ExecutionStrategy& select_strategy, bool enable_update)      \
            const;                                                             \
831
    template typename AlgoChooser<megdnn::Opr>::ImplAlgoDesc                   \
832 833 834 835 836
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::                              \
            get_profile_result_from_cache(                                     \
                    const ExecutionStrategy& select_strategy) const;           \
    template void                                                              \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::construct_execution_policy(   \
837 838 839
            const ExecutionStrategy& select_strategy,                          \
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy,    \
            bool retrive_from_cache, bool allow_log) const;                    \
840
    template size_t                                                            \
841
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_workspace_size_bytes(     \
842 843
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
844 845
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_all_candidates() const;   \
846
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
847
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile_single_algo(          \
848 849
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
850 851
            double& timeout) const;                                            \
    template std::pair<AlgoAttribute, AlgoAttribute>                           \
852 853 854 855
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::extract_algo_attribute(       \
            const ExecutionStrategy& strategy) const;                          \
    template void AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile(        \
            const ExecutionStrategy& selected_strategy) const;
856 857

MGB_FOREACH_FASTRUN_OPR(INST)
858
#undef INST
859

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
//////////////////////////////// AlgoChoose /////////////////////////////
template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
        const AlgoChooserHelper& helper) {
    auto opr_strategy = helper.execution_policy().strategy;
    if (opr_strategy & ExecutionStrategy::HEURISTIC) {
        if (opr_strategy & ExecutionStrategy::PROFILE) {
            //! this strategy will choose from cache first, then choost by
            //! heuristic if fail.
            ImplExecutionPolicy policy =
                    helper.choose_by_profile(opr_strategy, false);
            if (!policy.algo.valid()) {
                policy = helper.choose_by_heuristic(opr_strategy);
            }
            return policy;
        } else {
            return helper.choose_by_heuristic(opr_strategy);
        }
    }
#if MGB_ENABLE_FASTRUN
    else if (opr_strategy & ExecutionStrategy::PROFILE) {
        return helper.choose_by_profile(opr_strategy, true);
    }
#endif
    else {
        mgb_throw(GraphError, "bad ExecutionPolicy strategy");
    }
}

template <typename Opr>
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    AlgoChooserHelper helper(layouts, megdnn_opr, param_str, mgb_opr,
                             mgb_opr->comp_node(), mgb_opr->execution_policy(),
                             allow_weight_preprocess);

    ImplExecutionPolicy policy;
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
        policy = algo_choose_hook(mgb_opr);
        auto strategy =
                ExecutionStrategy::HEURISTIC | ExecutionStrategy::REPRODUCIBLE;
908 909
        bool retrive_from_cache = false;
        helper.construct_execution_policy(strategy, policy, retrive_from_cache);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
    }
    if (!policy.algo.valid()) {
        policy = get_policy(helper);
    }
    size_t workspace = helper.get_workspace_size_bytes(policy);

    std::string ret;
    ret.append(mgb_opr->dyn_typeinfo()->name);
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
    ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d",
                        workspace / (1024 * 1024.0),
                        static_cast<uint32_t>(palgo->attribute())));
    mgb_log_debug("%s", ret.c_str());

    megdnn_opr->execution_policy() = policy;
    return workspace;
}

#define INST(Opr)                                                         \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy                \
    AlgoChooser<megdnn::Opr>::get_policy(const AlgoChooserHelper& proxy); \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,   \
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);

MGB_FOREACH_FASTRUN_OPR(INST)
939
#undef INST
940

941 942 943 944
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}