algo_chooser.cpp 36.4 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/algo_chooser.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/algo_chooser.h"
14
#include <limits>
15 16
#include <unordered_set>
#include "megbrain/opr/dnn/convolution.h"
17
#include "megbrain/opr/internal/megdnn_opr_wrapper.h"
18
#include "megbrain/opr/search_policy/algo_chooser_helper.h"
19 20 21 22 23 24 25 26
#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
#include "../internal/megdnn_opr_wrapper.inl"
#include "./workspace_need_limit_getter.inl"

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
27
#include "megdnn/opr_param_defs.h"
28
#include "megdnn/oprs.h"
29
#include "megdnn/oprs/base.h"
30 31 32 33 34 35 36 37
#include "midout.h"
MIDOUT_DECL(megbrain_opr_algo_chooser)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

using mgb::opr::intl::WorkspaceLimitGetter;
38 39
using namespace megdnn;
using namespace mgb;
40 41 42 43 44 45 46 47

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

48
#define CACHE_KEY_VERSION "v4"
49 50 51 52 53 54 55 56 57 58

namespace {
template <typename Opr>
std::string profile_name(Opr* opr) {
    std::string ret =
            std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
            CACHE_KEY_VERSION;
    ret.append(opr->get_algorithm_set_name());
    return ret;
}
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

template <typename Opr>
std::string format_fixlayouts(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
        size_t arity_in, size_t arity_out) {
    std::string ret;
    ret.append(": tensor layouts(");
    for (size_t i = 0; i < arity_in; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i].to_string() + " ");
    }
    ret.append(") -> (");
    for (size_t i = 0; i < arity_out; ++i) {
        if (i) {
            ret.append(", ");
        }
        ret.append(layouts[i + arity_in].to_string() + " ");
    }
    return ret;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/**
 * \brief Check if the sub opr list has circular dependence.
 */
class CircularDepsChecker {
    struct SearchItemStorage {
        std::string data_hold;
        size_t hash = 0;

        SearchItemStorage(const Algorithm::SearchItem& item) {
            Algorithm::serialize_write_pod(item.opr_type, data_hold);
            for (auto&& layout : item.layouts) {
                data_hold += layout.serialize();
            }
            data_hold += item.param;
        }

        SearchItemStorage& init_hash() {
            hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
                                    20201225);
            return *this;
        }

        bool operator==(const SearchItemStorage& rhs) const {
            return data_hold == rhs.data_hold;
        }

        struct Hash {
            size_t operator()(const SearchItemStorage& s) const {
                return s.hash;
            }
        };
    };
    std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;

public:
    void put(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        mgb_assert(m_set.find(key_storage) == m_set.end(),
                   "Circular dependency during flatten search space");
        auto ret = m_set.insert(std::move(key_storage));
        mgb_assert(ret.second);
    }
    void remove(const megdnn::Algorithm::SearchItem& key) {
        SearchItemStorage key_storage(key);
        key_storage.init_hash();
        auto&& iter = m_set.find(key_storage);
        mgb_assert(iter != m_set.end());
        m_set.erase(iter);
    }
};

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
///////////////// OprTypeTrait /////////////////////////////
template <megdnn::Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                             \
    template <>                                                         \
    struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                                       \
    };                                                                  \
    template <>                                                         \
    struct OprTypeFromOprTrait<megdnn::_opr> {                          \
        constexpr static megdnn::Algorithm::OprType opr_type =          \
                megdnn::Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt)  \
    cb(MATRIX_MUL_FORWARD, stmt)              \
    cb(BATCHED_MATRIX_MUL_FORWARD, stmt)      \
    cb(CONVOLUTION_FORWARD, stmt)             \
    cb(CONVOLUTION_BACKWARD_DATA, stmt)       \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt)     \
    cb(CONVOLUTION3D_FORWARD, stmt)           \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt)     \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt)   \
    cb(LOCAL_SHARE_FORWARD, stmt)             \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt)       \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt)     \
    cb(DEFORMABLE_CONV_FORWARD, stmt)         \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt)   \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt)              \
    cb(CONVBIAS_FORWARD, stmt)
// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                mgb_throw(MegBrainError, "unknown opr_type");    \
        }                                                        \
    }

template <typename Opr>
TensorLayoutArray to_layout_array(
        const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
    TensorLayoutArray ret;
    for (auto&& layout : layouts) {
        ret.push_back(layout);
    }
    return ret;
218 219
}

220 221 222 223 224 225 226 227 228 229 230 231
template <typename Opr>
typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
        const TensorLayoutArray& layouts) {
    typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
    mgb_assert(ret.size() == layouts.size());
    size_t idx = 0;
    for (auto&& layout : layouts) {
        ret[idx++] = layout;
    }
    return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243
/**
 * flatten search space in postorder traversal
 * The subopr search construct a search tree
 *
 *           A
 *        /    \
 *       B1B2   C
 *      /     \
 *     D1D2D3   E
 * We use postorder traverse the search tree.
 * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
 */
244
template <typename Opr>
245
std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
246
        const typename opr::AlgoChooser<Opr>::AlgoChooserHelper& helper,
247 248
        CircularDepsChecker& checker) {
    auto&& search_item = megdnn::Algorithm::SearchItem{
249 250
            OprTypeFromOprTrait<Opr>::opr_type, helper.param(),
            to_layout_array<Opr>(helper.layouts())};
251
    checker.put(search_item);
252
    std::vector<megdnn::Algorithm::SearchItem> ret;
253 254 255
    for (auto algo_info : helper.get_all_candidates()) {
        megdnn::Algorithm* algo =
                helper.get_algorithm_from_desc(algo_info.desc);
256 257
        mgb_assert(algo, "Unknown algo description");
        std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
258 259
                algo->get_subopr_list(to_layout_array<Opr>(helper.layouts()),
                                      helper.megdnn_opr());
260 261

        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
262
            auto&& megdnn_opr =
263
                    opr::intl::create_megdnn_opr<_Opr>(helper.comp_node());
264 265 266
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
267
            typename opr::AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
268
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
269 270 271 272
                    _item.param, helper.mgb_opr(), helper.comp_node(),
                    helper.execution_policy(),
                    helper.allow_weight_preprocess());
            auto space = flatten_search_space<_Opr>(sub_helper, checker);
273 274
            ret.insert(ret.end(), space.begin(), space.end());
        });
275
    }
276 277
    ret.push_back(search_item);
    checker.remove(search_item);
278 279
    return ret;
}
280

281 282 283 284
}  // namespace

namespace mgb {
namespace opr {
285
///////////////////////////// AlgoChooserHelper //////////////////////////
286
template <typename Opr>
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
AlgoChooser<Opr>::AlgoChooserHelper::AlgoChooserHelper(
        const FixedTensorLayouts& layouts, Opr* megdnn_opr,
        const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
        const CompNode& cn,
        const megdnn::param::ExecutionPolicy& execution_policy,
        bool allow_weight_preprocess)
        : m_layouts{layouts},
          m_megdnn_opr{megdnn_opr},
          m_param{param_str},
          m_base_mgb_opr{mgb_opr},
          m_cn{cn},
          m_execution_policy{execution_policy},
          m_allow_weight_preprocess{allow_weight_preprocess} {
    mgb_assert(m_layouts.size() == layouts.size());
    static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
                          std::tuple_size<FixedTensorLayouts>::value == 5 ||
                          std::tuple_size<FixedTensorLayouts>::value == 8,
                  "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                  "deformable conv)");
}
307

308 309 310 311 312 313
template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy
AlgoChooser<Opr>::AlgoChooserHelper::choose_by_heuristic(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_heuristic")))
    ImplExecutionPolicy policy;
314
    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
315 316 317 318 319 320 321
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    auto attr = extract_algo_attribute(selected_strategy);
    policy.algo =
            APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                          args..., workspace_limit, attr.first, attr.second),
                  m_layouts)
                    .desc;
322

323 324 325 326
    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);
327

328 329 330 331 332 333 334 335 336 337 338 339
    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
        typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back(
                sub_helper.choose_by_heuristic(selected_strategy));
    });
340

341 342
    return policy;
    MIDOUT_E
343 344 345
}

template <typename Opr>
346
typename AlgoChooser<Opr>::ImplExecutionPolicy
347 348 349 350 351 352
AlgoChooser<Opr>::AlgoChooserHelper::choose_by_profile(
        const ExecutionStrategy& selected_strategy, bool enable_update) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_profile")))
    if (owner_graph()->options().no_profiling_on_shape_change) {
        auto policy = m_megdnn_opr->execution_policy();
        if (policy.algo.valid()) {
353
            return policy;
354 355 356 357 358
        }
        if (!algo_usable_on_shape_change<Opr>()) {
            mgb_log_warn(
                    "choose algo by heuristic, which may cause performance "
                    "regression.");
359
            return choose_by_heuristic(selected_strategy);
360
        }
361 362
    }

363
    if (enable_update) {
364 365
        CircularDepsChecker circular_deps_checker;
        auto&& search_items =
366
                flatten_search_space<Opr>(*this, circular_deps_checker);
367
        FOREACH_OPR_TYPE_DISPATCH(search_items, {
368
            auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
369 370 371
            megdnn_opr->param() =
                    Algorithm::deserialize_read_pod<typename _Opr::Param>(
                            _item.param);
372
            typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
373
                    to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
374 375 376
                    _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                    m_allow_weight_preprocess);
            sub_helper.profile(selected_strategy);
377
        });
378
    }
379

380
    typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
381
    construct_execution_policy(selected_strategy, true, policy);
382
    return policy;
383 384 385 386 387
    MIDOUT_E
}

template <typename Opr>
typename AlgoChooser<Opr>::ImplAlgo
388 389 390 391
AlgoChooser<Opr>::AlgoChooserHelper::get_profile_result_from_cache(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_profile_result_from_cache")))
    AlgoChooserProfileCache cache(m_cn, profile_name(m_megdnn_opr).c_str());
392 393 394 395 396 397 398 399 400

    typename Opr::Param origin_param = m_megdnn_opr->param();
    AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
                                           &origin_param, sizeof(origin_param)};
    auto&& rst = cache.get(cache_key);
    if (!rst.valid())
        return {};

    auto&& prof = rst.val();
401 402 403
    if (prof.empty())
        return {};

404 405
    std::unordered_map<std::string, ImplAlgo> algo_map;
    for (auto i : get_all_candidates()) {
406 407
        auto ins = algo_map.emplace(i.desc.name.c_str(), i);
        mgb_assert(ins.second, "duplicated algo name: %s", i.desc.name.c_str());
408 409
    }

410
    auto target_attr = extract_algo_attribute(selected_strategy);
411
    bool skip_by_negative = false;
412
    for (auto&& i : prof) {
413 414 415
        auto attr_of_algo =
                static_cast<megdnn::Algorithm::Attribute>(i.attribute);
        bool contain_attr_all_positive =
416
                (target_attr.first == (attr_of_algo & target_attr.first));
417
        bool contain_attr_any_negative =
418
                static_cast<bool>(attr_of_algo & target_attr.second);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        if (contain_attr_all_positive) {
            if (!contain_attr_any_negative) {
                auto iter = algo_map.find(i.algo);
                mgb_assert(
                        iter != algo_map.end(),
                        "algorithm %s exists in profiling result but not in "
                        "algo_map; please report this bug; opr: %s{%s}, "
                        "layouts: %s ",
                        i.algo.c_str(), m_base_mgb_opr->cname(),
                        m_base_mgb_opr->dyn_typeinfo()->name,
                        format_fixlayouts<Opr>(m_layouts, arity_in, arity_out)
                                .c_str());
                return iter->second;
            } else {
                skip_by_negative = true;
            }
435 436 437
        }
    }

438 439
    if (skip_by_negative) {
        mgb_log_error(
440 441 442
                "No usable algo. There are available algos match positive "
                "strategy(%s), but filtered by negative stategy(%s).",
                Algorithm::attribute_str(target_attr.first).c_str(),
443 444 445 446
                Algorithm::attribute_str(target_attr.second).c_str());
    } else {
        mgb_log_error(
                "No usable algo. algos read from cache could not satisfy "
447
                "positive strategy(%s)",
448 449
                Algorithm::attribute_str(target_attr.first).c_str());
    }
450

451 452 453 454 455
    mgb_trap();
    MIDOUT_E
}

template <typename Opr>
456 457 458 459
void AlgoChooser<Opr>::AlgoChooserHelper::construct_execution_policy(
        const ExecutionStrategy& selected_strategy, bool retrive_from_cache,
        typename AlgoChooser<Opr>::ImplExecutionPolicy& policy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_execution_policy")))
460
    if (!policy.algo.valid()) {
461
        if (retrive_from_cache) {
462 463
            policy.algo = get_profile_result_from_cache(selected_strategy).desc;
            if (!policy.algo.valid()) {
464
                auto target_attr = extract_algo_attribute(selected_strategy);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                std::string layouts_str =
                        format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
                std::string msg = ssprintf(
                        "(mbg_opr : %s, layouts %s, with attribute(%s) and "
                        "without attribute(%s)",
                        m_base_mgb_opr->dyn_typeinfo()->name,
                        layouts_str.c_str(),
                        Algorithm::attribute_str(target_attr.first).c_str(),
                        Algorithm::attribute_str(target_attr.second).c_str());
                mgb_log_warn(
                        "No algo get from cache for %s. This may caused by "
                        "mismatch with model and cache file. ex. profiling "
                        "with version1, but inferencing on version2 or "
                        "profiling modelA but inferencing modelB",
                        msg.c_str());
                return;
            }
482 483 484
        } else {
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    owner_graph(), m_cn, m_execution_policy.workspace_limit);
485

486
            auto attr = extract_algo_attribute(selected_strategy);
487 488 489 490 491
            policy.algo = APPLY(m_megdnn_opr->get_algorithm_info_heuristic(
                                        args..., workspace_limit, attr.first,
                                        attr.second),
                                m_layouts)
                                  .desc;
492 493 494 495 496
            mgb_assert(policy.algo.valid(),
                       "No algo found from heuristic with strategy %u and "
                       "workspace limit %zu",
                       static_cast<uint32_t>(selected_strategy),
                       workspace_limit);
497
        }
498
    }
499 500 501 502 503 504 505 506 507 508 509

    Algorithm* algo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(algo, "Unknown algo description");
    std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
            to_layout_array<Opr>(m_layouts), m_megdnn_opr);

    FOREACH_OPR_TYPE_DISPATCH(sub_items, {
        auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
        megdnn_opr->param() =
                Algorithm::deserialize_read_pod<typename _Opr::Param>(
                        _item.param);
510
        typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
511 512 513 514
                to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
                _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
                m_allow_weight_preprocess);
        policy.sub_policy.push_back({});
515 516 517
        sub_helper.construct_execution_policy(selected_strategy,
                                              retrive_from_cache,
                                              policy.sub_policy.back());
518
        if (!policy.sub_policy.back().algo.valid()) {
519
            // means sub_helper.construct_execution_policy fails. clean up
520 521 522 523
            // policy.algo and return
            policy = {};
            return;
        }
524
    });
525
    MIDOUT_E
526 527 528
}

template <typename Opr>
529
size_t AlgoChooser<Opr>::AlgoChooserHelper::get_workspace_size_bytes(
530
        const ImplExecutionPolicy& policy) const {
531
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_workspace_size_bytes")))
532
    m_megdnn_opr->execution_policy() = policy;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    size_t result;
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(m_megdnn_opr);
                auto prep = this->construct_fake_preprocess_filter();
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            },
            /* else */
            [&](auto _) {
                result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...),
                               m_layouts);
            });
    return result;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    MIDOUT_E
}

template <typename Opr>
std::vector<typename AlgoChooser<Opr>::ImplAlgo>
AlgoChooser<Opr>::AlgoChooserHelper::get_all_candidates() const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_all_candidates")))
    auto heu = choose_by_heuristic(m_execution_policy.strategy);
    auto&& ret =
            APPLY(m_megdnn_opr->get_all_algorithms_info(args...), m_layouts);
    bool found = false;
    for (size_t i = 0; i < ret.size(); ++i) {
        if (ret[i].desc == heu.algo) {
            found = true;
            std::swap(ret[i], ret[0]);
            break;
        }
    }

    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(heu.algo);
    mgb_assert(palgo, "Unknown algo description");
    mgb_assert(found,
               "algo %s got by heuristic not found in "
               "candidate list",
               palgo->name());
    return std::move(ret);
    MIDOUT_E
579 580 581 582
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
583
AlgoChooser<Opr>::AlgoChooserHelper::profile_single_algo(
584
        const ImplExecutionPolicy& policy, double& timeout) const {
585
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile_single_algo")))
586 587
    typename TimedProfiler<Opr>::Param param;
    // force check copy size <= dest len-1 from gcc8 for safe
588 589 590
    param.execution_policy =
            TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
    param.workspace = get_workspace_size_bytes(policy);
591 592 593 594 595 596 597 598 599 600
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
601
    param.comp_node_loc = m_cn.locator();
602 603 604 605 606 607
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
    param.opr_param = m_megdnn_opr->param();
    param.allow_weight_preprocess = m_allow_weight_preprocess;

608 609
    Algorithm* palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
610 611 612 613
    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
614
    if (strncmp(palgo->name(), "MIOpen", 6) == 0)
615 616 617 618
        rst = TimedProfiler<Opr>::profile(param, timeout);
    if (!rst.valid())
        return None;
    return AlgoChooserProfileCache::ResultEntry{
619
            palgo->name(), static_cast<uint32_t>(palgo->attribute()),
620
            rst.val().time, param.workspace};
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    MIDOUT_E
}

template <typename Opr>
void AlgoChooser<Opr>::AlgoChooserHelper::profile(
        const ExecutionStrategy& selected_strategy) const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile")))
    if (get_profile_result_from_cache(selected_strategy).valid())
        return;
    AlgoChooserProfileCache::Result prof_rst;

    auto target_attr = extract_algo_attribute(selected_strategy);
    std::string layouts_str =
            format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
    double cur_timeout = 0;

    auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
            owner_graph(), m_cn, m_execution_policy.workspace_limit);
    RealTimer timer;
    for (auto algo : get_all_candidates()) {
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;

        ImplExecutionPolicy policy;
        policy.algo = algo.desc;

        //! check negative attribute : skip negative attribute
        auto palgo = m_megdnn_opr->get_algorithm_from_desc(policy.algo);
        if (palgo->contain_attribute_any(target_attr.second)) {
            mgb_log_debug(
                    "skip algo %s, which matches the profile strategy required "
                    "'not contain attribute(%s).'",
                    algo.desc.name.c_str(),
                    Algorithm::attribute_str(target_attr.second).c_str());
            continue;
        }

        //! check workspace limit
        construct_execution_policy(selected_strategy, true, policy);
        if (get_workspace_size_bytes(policy) >= workspace_limit) {
            continue;
        }

        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   m_base_mgb_opr->dyn_typeinfo()->name,
                                   algo.desc.name.c_str(), layouts_str.c_str());
        timer.reset();
        MGB_TRY { cur_rst = profile_single_algo(policy, cur_timeout); }
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
        })
        if (!cur_rst.valid()) {
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
    std::string msg = ssprintf(
            "no usable %s algorithm %s without attribute(%s) or could not meet "
            "workspace limite requirement(%zu)",
            m_base_mgb_opr->dyn_typeinfo()->name, layouts_str.c_str(),
            Algorithm::attribute_str(target_attr.second).c_str(),
            workspace_limit);
    mgb_assert(!prof_rst.empty(), "%s", msg.c_str());

    FixedTensorLayouts origin_layouts = m_layouts;
    typename Opr::Param origin_param = m_megdnn_opr->param();
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};

    AlgoChooserProfileCache cache(m_cn, profile_name(m_megdnn_opr).c_str());
    cache.put(cache_key, prof_rst);
    MIDOUT_E
710 711 712 713
}

template <typename Opr>
Maybe<PreprocessFilter<Opr>>
714 715
AlgoChooser<Opr>::AlgoChooserHelper::construct_fake_preprocess_filter() const {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_fake_preprocess_filter")))
716 717 718 719 720
    Maybe<PreprocessFilter<Opr>> result = None;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!m_allow_weight_preprocess)
            return;
        auto opr = _(m_megdnn_opr);
721 722 723 724
        auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
                             m_layouts);
        //! No preprocess layout means no need weight preprocess
        if (layouts.empty()) {
725
            return;
726 727 728 729 730 731 732 733 734 735 736 737
        }
        //! all layouts arm empty means no need weight preprocess
        bool layout_valid = false;
        for (auto&& layout : layouts) {
            if (!layout.is_empty()) {
                layout_valid = true;
            }
        }
        if (!layout_valid) {
            return;
        }

738 739 740
        result = PreprocessFilter<Opr>{};
        auto& res = result.val();
        res.algorithm_id = nullptr;
741 742 743
        res.tensors.resize(layouts.size());
        for (size_t i = 0; i < layouts.size(); i++) {
            res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
744 745 746
        }
    });
    return result;
747
    MIDOUT_E
748 749
}

750 751
template <typename Opr>
std::pair<AlgoAttribute, AlgoAttribute>
752
AlgoChooser<Opr>::AlgoChooserHelper::extract_algo_attribute(
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        const ExecutionStrategy& strategy) const {
    std::pair<AlgoAttribute, AlgoAttribute> ret =
            std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);

    //! from strategy
    if (strategy & ExecutionStrategy::REPRODUCIBLE) {
        ret.first |= AlgoAttribute::REPRODUCIBLE;
    }
    if (strategy & ExecutionStrategy::OPTMIZED) {
        ret.second |= AlgoAttribute::NAIVE;
    }

    return ret;
}

768
#define INST(Opr)                                                              \
769
    template AlgoChooser<megdnn::Opr>::AlgoChooserHelper::AlgoChooserHelper(   \
770 771 772 773 774 775
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,        \
            const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
            const CompNode& cn,                                                \
            const megdnn::param::ExecutionPolicy& execution_policy,            \
            bool allow_weight_preprocess);                                     \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
776 777 778 779 780 781
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_heuristic(          \
            const ExecutionStrategy& select_strategy) const;                   \
    template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy            \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_profile(            \
            const ExecutionStrategy& select_strategy, bool enable_update)      \
            const;                                                             \
782
    template typename AlgoChooser<megdnn::Opr>::ImplAlgo                       \
783 784 785 786 787 788 789 790
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::                              \
            get_profile_result_from_cache(                                     \
                    const ExecutionStrategy& select_strategy) const;           \
    template void                                                              \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::construct_execution_policy(   \
            const ExecutionStrategy& select_strategy, bool retrive_from_cache, \
            typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy)    \
            const;                                                             \
791
    template size_t                                                            \
792
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_workspace_size_bytes(     \
793 794
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy) const;                                             \
795 796
    template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo>          \
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_all_candidates() const;   \
797
    template Maybe<AlgoChooserProfileCache::ResultEntry>                       \
798
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile_single_algo(          \
799 800
            const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy&      \
                    policy,                                                    \
801 802
            double& timeout) const;                                            \
    template std::pair<AlgoAttribute, AlgoAttribute>                           \
803 804 805 806
    AlgoChooser<megdnn::Opr>::AlgoChooserHelper::extract_algo_attribute(       \
            const ExecutionStrategy& strategy) const;                          \
    template void AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile(        \
            const ExecutionStrategy& selected_strategy) const;
807 808

MGB_FOREACH_FASTRUN_OPR(INST)
809
#undef INST
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
//////////////////////////////// AlgoChoose /////////////////////////////
template <typename Opr>
typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
        const AlgoChooserHelper& helper) {
    auto opr_strategy = helper.execution_policy().strategy;
    if (opr_strategy & ExecutionStrategy::HEURISTIC) {
        if (opr_strategy & ExecutionStrategy::PROFILE) {
            //! this strategy will choose from cache first, then choost by
            //! heuristic if fail.
            ImplExecutionPolicy policy =
                    helper.choose_by_profile(opr_strategy, false);
            if (!policy.algo.valid()) {
                policy = helper.choose_by_heuristic(opr_strategy);
            }
            return policy;
        } else {
            return helper.choose_by_heuristic(opr_strategy);
        }
    }
#if MGB_ENABLE_FASTRUN
    else if (opr_strategy & ExecutionStrategy::PROFILE) {
        return helper.choose_by_profile(opr_strategy, true);
    }
#endif
    else {
        mgb_throw(GraphError, "bad ExecutionPolicy strategy");
    }
}

template <typename Opr>
size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
                                    Opr* megdnn_opr, const MGBOpr* mgb_opr,
                                    bool allow_weight_preprocess) {
    if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
        return 0;
    }

    std::string param_str;
    Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
    AlgoChooserHelper helper(layouts, megdnn_opr, param_str, mgb_opr,
                             mgb_opr->comp_node(), mgb_opr->execution_policy(),
                             allow_weight_preprocess);

    ImplExecutionPolicy policy;
    if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
        policy = algo_choose_hook(mgb_opr);
        auto strategy =
                ExecutionStrategy::HEURISTIC | ExecutionStrategy::REPRODUCIBLE;
        helper.construct_execution_policy(strategy, false, policy);
    }
    if (!policy.algo.valid()) {
        policy = get_policy(helper);
    }
    size_t workspace = helper.get_workspace_size_bytes(policy);

    std::string ret;
    ret.append(mgb_opr->dyn_typeinfo()->name);
    ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
    Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
    mgb_assert(palgo, "Unknown algo description");
    ret.append("): algo=" + std::string(palgo->name()));
    ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d",
                        workspace / (1024 * 1024.0),
                        static_cast<uint32_t>(palgo->attribute())));
    mgb_log_debug("%s", ret.c_str());

    megdnn_opr->execution_policy() = policy;
    return workspace;
}

#define INST(Opr)                                                         \
    template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy                \
    AlgoChooser<megdnn::Opr>::get_policy(const AlgoChooserHelper& proxy); \
    template size_t AlgoChooser<megdnn::Opr>::setup_algo(                 \
            const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr,   \
            const MGBOpr* mgb_opr, bool allow_weight_preprocess);

MGB_FOREACH_FASTRUN_OPR(INST)
889
#undef INST
890

891 892 893 894
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}