tensor.cpp 35.1 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/tensor.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#include "megbrain/dtype.h"
#include "megbrain/common.h"
14
#include "megbrain/imperative/ops/utility.h"
15
#include "megbrain/imperative/ops/backward_graph.h"
16

17 18
#include "./tensor.h"
#include "./grad.h"
19
#include "./trace.h"
20 21
#include "./common.h"
#include "./numpy_dtypes.h"
22
#include "./graph_rt.h"
23
#include "./helper.h"
24 25 26

#include <pybind11/numpy.h>
#include <pybind11/operators.h>
27
#include <range/v3/all.hpp>
28
#include <string>
29 30 31

#include <unordered_map>

32
namespace py = pybind11;
33
namespace views = ranges::views;
34 35 36

namespace mgb::imperative::python {

37
interpreter::Interpreter::Channel* interpreter_for_py;
38

39 40
PyObject *cpp_apply_with_tracing, *cpp_apply_const_with_tracing,
           *cpp_apply_compiled_mode, *cpp_apply_const_compiled_mode;
41

42
PyObject *cpp_apply_backward_varnode;
43

44

45 46
#define REGISTE_APPLY_FUNC(mode)                                    \
        void set_##mode(py::object pyf) {                           \
47
            mode = pyf.ptr();                                       \
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        }

REGISTE_APPLY_FUNC(cpp_apply_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_const_with_tracing)
REGISTE_APPLY_FUNC(cpp_apply_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_const_compiled_mode)
REGISTE_APPLY_FUNC(cpp_apply_backward_varnode)

#undef REGISTE_APPLY_FUNC

bool is_tracing = false;
bool is_compiled = false;

#define SET_UNSET_PROP(mode)    \
    void set_##mode() {         \
        is_##mode = true;       \
    }                           \
    void unset_##mode() {       \
        is_##mode = false;      \
    }                           \

SET_UNSET_PROP(tracing)
SET_UNSET_PROP(compiled)

#undef SET_UNSET_PROP

bool skip_tracing = false;

76 77
Tensor::flags_t ApplyContext::global_disable = 0;

78 79 80 81
apply_result_t apply(ApplyContext& ctx) {
    // emulating scalar should be put to specific op's apply, e.g.,
    // elementwise, reduce, typecvt. Currently it's still handled at python
    // side. It could be move to C++ side if it has an impact on performance
82 83 84
    auto flags = ctx.flags & ~ApplyContext::global_disable;

    if (flags & Tensor::Flags::SCALAR) {
85 86 87
        // TODO: emulate scalar
    }

88
    if (flags & Tensor::Flags::GRAD) {
89 90 91
        return apply_grad(ctx);
    }

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    if (auto* op = ctx.op->try_cast_final<GenericPyOp>()) {
        py::tuple pyin(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
        }
        auto f = py::getattr(op->obj, "_default_rule");
        auto pyout = py::reinterpret_steal<py::object>(PyObject_Call(f.ptr(), pyin.ptr(), nullptr));
        if (!pyout) throw py::error_already_set();
        if (auto* tw = TensorWrapper::try_cast(pyout.ptr())) {
            return {tw->m_tensor};
        }
        apply_result_t ret;
        ret.reserve(py::len(pyout));
        for (auto&& i : pyout) {
            auto* tw = TensorWrapper::try_cast(i.ptr());
            mgb_assert(tw);
            ret.push_back(tw->m_tensor);
        }
        return ret;
    }

113
    if (flags & Tensor::Flags::TRACE) {
114
        return apply_trace(ctx);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    } else {
        SmallVector<interpreter::Interpreter::Handle> handles(ctx.nargs);
        for (size_t i = 0; i < ctx.nargs; ++i) {
            handles[i] = ctx.args[i]->m_handle.get();
        }

        auto output_handles = interpreter_for_py->apply_op(ctx.op, handles);

        apply_result_t outputs;
        outputs.reserve(output_handles.size());
        for (auto h : output_handles) {
            outputs.emplace_back(std::make_shared<Tensor>(h));
        }
        return outputs;
    }

    mgb_assert(0);
}

PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */) {
    try {
        // if (kwnames && PyTuple_GET_SIZE(kwnames)) {
        //     PyErr_SetString(PyExc_TypeError, "keyword argument not allowed");
        //     return nullptr;
        // }
140 141 142 143
        if (nargs < 2) {
            PyErr_SetString(PyExc_TypeError,
                            "py_apply expects one Op and at least one tensor "
                            "as argument");
144 145
            return nullptr;
        }
146

147 148 149 150 151 152 153 154 155 156 157 158
        auto* op = args[0];

        PyTypeObject* pytype = args[1]->ob_type;
        ++args;
        --nargs;

        ApplyContext ctx;
        ctx.flags = 0;
        ctx.op = py::handle(op).cast<std::shared_ptr<OpDef>>();
        SmallVector<Tensor*, 64> tensors(nargs);
        ctx.args = &tensors[0];
        ctx.nargs = nargs;
159
        ctx.pytype = pytype;
160
        if (ctx.op->same_type<BackwardGraph>()) {
161 162
            ctx.backward = true;
        }
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

        if (py::isinstance<PySymbolVar>(py::handle(args[0]))){
            SmallVector<cg::VarNode*> vinputs(nargs);
            for (size_t i = 0; i < nargs; ++i) {
                    vinputs[i] = py::handle(args[i]).cast<PySymbolVar*>()->m_node;   
            }
            auto op = ctx.op.get();
            auto rst = OpDef::apply_on_var_node(*op, vinputs);
            auto ret = pybind11::tuple(rst.size());
            auto typeobj = py::handle(args[0]).get_type();
            for (size_t i = 0; i<rst.size(); ++i) {
                ret[i] = typeobj(pybind11::cast(rst[i], pybind11::return_value_policy::automatic));
            }
            return ret.release().ptr();
        }
178 179

        for (size_t i = 0; i < nargs; ++i) {
180
            if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) {
181 182 183
                auto* t = tensors[i] = tw->m_tensor.get();
                ctx.flags |= t->m_flags;
            } else {
184 185 186
                PyErr_SetString(PyExc_TypeError,
                    ssprintf("op %s expect type Tensor as inputs, got %s actually",
                        ctx.op->make_name().c_str(), Py_TYPE(args[i])->tp_name).c_str());
187 188 189 190
                return nullptr;
            }
        }

191 192 193
        if (is_tracing) {
            ctx.flags |= Tensor::Flags::TRACE;
        }
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

        auto outputs = apply(ctx);
        size_t nout = outputs.size();
        auto ret = py::tuple(nout);
        for (size_t i = 0; i < nout; ++i) {
            ret[i] = TensorWrapper::make(pytype, std::move(outputs[i]));
        }
        return ret.release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}


TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) {
    if (kwargs && PyDict_Size(kwargs)) {
        throw py::type_error("keyword argument not allowed");
    }
    auto nargs = PyTuple_Size(args);
    auto tup = py::reinterpret_borrow<py::tuple>(args);
    if (nargs == 0) {
        throw py::type_error("too few arguments");
    }
218
    if (auto* t = try_cast(tup[0].ptr())) {
219 220 221 222 223
        if (nargs > 1) {
            throw py::type_error("expect 1 argument");
        }
        m_tensor = t->m_tensor;
    } else {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        if (nargs == 1) {
            auto arg0 = PyTuple_GetItem(args, 0);
            // for lazy_eval_tensor
            if (strstr(arg0->ob_type->tp_name, "VarNode")) {
                if (PyObject_HasAttrString(arg0, "_node")) {
                    arg0 = PyObject_GetAttrString(arg0, "_node");
                }
                m_tensor = std::make_shared<Tensor>(py::handle(arg0).cast<cg::VarNode *>());
            } else {
                // for DeviceTensorND
                if (strstr(arg0->ob_type->tp_name, "DeviceTensorND")) {
                    auto dv = py::handle(arg0).cast<DeviceTensorND>();
                    interpreter::Interpreter::Handle handle = interpreter_for_py->put(dv);
                    m_tensor = std::make_shared<Tensor>(handle);
                } else {
                    throw py::type_error("single argument is not tensor, varnode or devicetensor");
                }
            }
242
        } else {
243
            py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType
244 245
            if (nargs != 5 && nargs != 6) {
                throw py::type_error("expect 5 or 6 arguments");
246
            }
247 248 249 250
            auto data = tup[0].cast<py::array>();
            DType dtype = tup[1].cast<DType>();
            CompNode cn = tup[2].cast<CompNode>();
            bool is_const = tup[3].cast<bool>();
251
            bool no_cache = nargs == 6 ? tup[4].cast<bool>() : false;
252 253
            std::string name;
            if (tup[nargs - 1].ptr() != Py_None) name = tup[nargs - 1].cast<std::string>();
254 255 256

            // const op
            if (is_const && is_tracing) {
257
                PyObject *pyf;
258 259 260 261 262 263
                if (is_compiled) {
                    pyf = cpp_apply_const_compiled_mode;
                } else {
                    pyf = cpp_apply_const_with_tracing;
                }

264 265 266 267
                auto py_ret = PyObject_Call(pyf, tup.ptr(), nullptr);
                if (!py_ret) throw py::error_already_set();
                auto py_list = py::reinterpret_steal<py::list>(py_ret);
                if (auto* t = try_cast(py_list[0].ptr())) {
268 269 270 271 272 273
                    m_tensor = t->m_tensor;
                }
                return;
            }

            interpreter::Interpreter::Handle handle;
274
            {
275
                HostTensorND ret(cn);
276
                handle = interpreter_for_py->put(npy::np2tensor(data.ptr(), npy::Meth::copy_into(&ret), dtype), no_cache);
277 278 279
            }

            m_tensor = std::make_shared<Tensor>(handle);
280
            m_tensor->user_custom_name = name;
281

282 283 284
            if (data.ndim() == 0) {
                m_tensor->m_flags |= Tensor::Flags::SCALAR;
            }
285 286 287 288 289
        }
    }
}


290 291 292 293 294 295 296 297 298 299 300
#define REGISTE_TENSORWRAPPER_FUNC(type, member)                                    \
        PyObject* TensorWrapper::member() {                                         \
            return py::cast(m_tensor->m_trace_info.member).release().ptr();         \
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
            auto py_dest = py::reinterpret_borrow<py::object>(dest);                \
            type real_dest = py_dest.cast<type>();                                  \
            m_tensor->m_trace_info.member = real_dest;                              \
        }

REGISTE_TENSORWRAPPER_FUNC(int64_t, mixin_handle)
301
REGISTE_TENSORWRAPPER_FUNC(bool, recording)
302 303 304 305

#undef REGISTE_TENSORWRAPPER_FUNC


306 307 308 309 310
PyObject* TensorWrapper::copied() {
    return py::cast(m_tensor->m_trace_info.copied).release().ptr();
}


311 312
#define REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(member)                                 \
        PyObject* TensorWrapper::member() {                                         \
313 314 315 316 317
            if (m_tensor->m_trace_info.member) {                                    \
                return m_tensor->m_trace_info.member;                               \
            } else {                                                                \
                Py_RETURN_NONE;                                                     \
            }                                                                       \
318 319
        }                                                                           \
        void TensorWrapper::set_##member(PyObject* dest) {                          \
320 321 322 323 324 325 326
            if (dest == Py_None) {                                                  \
                Py_XDECREF(m_tensor->m_trace_info.member);                          \
                m_tensor->m_trace_info.member = nullptr;                            \
            } else {                                                                \
                Py_INCREF(dest);                                                    \
                m_tensor->m_trace_info.member = dest;                               \
            }                                                                       \
327 328 329 330 331 332 333 334
        }

REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(compiled_info)
REGISTE_TENSORWRAPPER_PYOBJECT_FUNC(trace_mixin_info)

#undef REGISTE_TENSORWRAPPER_PYOBJECT_FUNC


335 336 337 338 339 340 341 342 343 344 345 346 347
#define SET_GET_NAME(member)                                     \
    PyObject* TensorWrapper::member() {                          \
        return py::cast(m_tensor->member).release().ptr();       \
    }                                                            \
    void TensorWrapper::set_##member(PyObject* dest) {           \
        auto py_dest = py::reinterpret_borrow<py::object>(dest); \
        m_tensor->member = py_dest.cast<std::string>();          \
    }
SET_GET_NAME(user_custom_name)
SET_GET_NAME(automatic_name)
#undef SET_GET_NAME


348 349 350 351 352 353 354 355 356 357 358 359
PyObject* TensorWrapper::handle() {
    return py::cast(m_tensor->m_handle).release().ptr();
}


void TensorWrapper::set_handle(PyObject* dest) {
    auto py_dest = py::reinterpret_borrow<py::object>(dest);
    SharedHandle real_dest = py_dest.cast<SharedHandle>();
    m_tensor->m_handle = std::move(real_dest);
}


360
PyObject* TensorWrapper::shape() {
361
    // if it's tracing compiled mode, get value from compiled_info 
362 363 364 365
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyTuple_New(0);
        }
366 367 368 369 370
        PyObject *shp = PyObject_GetAttrString(m_tensor->m_trace_info.compiled_info, "shape");
        if (shp == Py_None) {
            throw TraceReadError("shape of this tensor is not read in trace");
        }
        return shp;
371
    }
372 373

    // inside trace, if tensor shape is useful for other operations, set shape_read = true
374 375
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "shape_read", py::cast(true).release().ptr());
376
    }
377

378 379 380
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        return PyTuple_New(0);
    }
381 382

    TensorShape shape;
383
    if (m_tensor->m_var) {      // get shape from m_var
384 385 386 387 388 389
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto *tshp = mgr.infer_shape_fallible(m_tensor->m_var);
        if (!tshp) {
            Py_RETURN_NONE;
        }
        shape = *tshp;
390 391 392 393
    } else {
        shape = m_tensor->shape();
    }

394 395 396 397 398 399 400 401 402 403 404 405
    if (!shape.ndim) {
        Py_RETURN_NONE;
    }
    py::tuple ret(shape.ndim);
    for (size_t i = 0; i < shape.ndim; ++i) {
        ret[i] = shape[i];
    }
    return ret.release().ptr();
}


PyObject* TensorWrapper::dtype() {
406 407 408
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->dtype()).release().ptr();
    }
409 410 411 412 413
    return py::cast(m_tensor->dtype()).release().ptr();
}


PyObject* TensorWrapper::device() {
414 415 416
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var->comp_node()).release().ptr();
    }
417 418 419 420 421
    return py::cast(m_tensor->comp_node()).release().ptr();
}


PyObject* TensorWrapper::numpy() {
422 423
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        PyObject* np_val = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "numpy", nullptr);
424
        if (!np_val) throw py::error_already_set();
425 426 427
        if (np_val == Py_None) {
            throw TraceReadError("value of this tensor is not read in trace");
        }
428
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
429 430 431
            PyObject *np_scalar = PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val));
            Py_DECREF(np_val);
            return np_scalar;
432 433 434
        }
        return np_val;
    }
435

436 437
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "value_read", py::cast(true).release().ptr());
438
    }
439

440 441 442 443 444
    if (m_tensor->m_handle.get() == nullptr && m_tensor->m_var != nullptr) {
        auto&& mgr = m_tensor->m_var->owner_graph()->static_infer_manager();
        auto&& type = mgr.get_infer_type(m_tensor->m_var);
        using InferType = cg::static_infer::InferType;
        if (!(type.value & (InferType::CONST | InferType::RT_STATIC))) {
445
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
446 447 448 449
            return nullptr;
        }
        auto* val = mgr.infer_value_fallible(m_tensor->m_var);
        if (!val) {
450
            PyErr_SetString(PyExc_ValueError, "tensor invalid");
451 452
            return nullptr;
        }
453 454 455 456 457
        auto np_val = py::cast(*val).attr("numpy")();
        if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
            return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(np_val.release().ptr()));
        }
        return np_val.release().ptr();
458
    }
459 460 461 462
    auto&& hv = [&]() {
        py::gil_scoped_release _;
        return interpreter_for_py->get_value(m_tensor->m_handle.get());
    }();
463
    auto arr = py::reinterpret_steal<py::array>(npy::ndarray_from_tensor(hv, npy::ShareType::TRY_SHARE));
464 465 466 467
    if (!arr) {
        PyErr_SetString(PyExc_ValueError, "tensor invalid");
        return nullptr;
    }
468

469 470 471 472 473 474 475
    if (m_tensor->m_flags & Tensor::Flags::SCALAR) {
        mgb_assert(PyArray_Check(arr.ptr()));
        return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr()));
    }
    return arr.release().ptr();
}

476 477 478 479
PyObject* TensorWrapper::varnode() {
    if (m_tensor->m_var) {
        return py::cast(m_tensor->m_var).release().ptr();
    }
480
    Py_RETURN_NONE;
481 482
}

483
void TensorWrapper::reset(PyObject* tensor) {
484
    TensorWrapper* t = TensorWrapper::try_cast(tensor);
485 486 487
    if (!t) {
        throw py::type_error("expect Tensor");
    }
488 489
    std::string user_custom_name = m_tensor->user_custom_name;
    std::string automatic_name = m_tensor->automatic_name;
490
    m_tensor = t->m_tensor;
491 492
    m_tensor->user_custom_name = user_custom_name;
    m_tensor->automatic_name = automatic_name;
493 494
}

495 496 497 498
void TensorWrapper::reset_varnode() {
    m_tensor->m_var = nullptr;
}

499 500 501
PyObject* TensorWrapper::detach() {
    PyObject* self = wrap_t::pycast(this);
    PyTypeObject* pytype = self->ob_type;
502 503 504 505 506 507 508

    std::shared_ptr<Tensor> new_tensor;
    if (m_tensor->m_handle.get()) {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_handle);
    } else {
        new_tensor = std::make_shared<Tensor>(m_tensor->m_var);
    }
509
    new_tensor->m_trace_info = m_tensor->m_trace_info;
510 511

    new_tensor->m_flags = m_tensor->m_flags;
512 513 514 515
    auto ret = TensorWrapper::make(pytype, std::move(new_tensor));
    return ret.release().ptr();
}

516
PyObject* TensorWrapper::_dev_tensor(){
517 518
    if (m_tensor->m_trace_info.compiled_info != nullptr) {
        auto *dev_tensor = PyObject_CallMethod(m_tensor->m_trace_info.compiled_info, "_dev_tensor", nullptr);
519
        if (!dev_tensor) throw py::error_already_set();
520 521 522
        if (dev_tensor == Py_None) {
            throw TraceReadError("raw data of this tensor is not read in trace");
        }
523 524

        // set m_handle to make it a real tensor
525 526 527
        auto py_dev_tensor = py::reinterpret_borrow<py::object>(dev_tensor);
        auto sh = interpreter_for_py->put(py_dev_tensor.cast<DeviceTensorND>());
        m_tensor->m_handle = std::move(SharedHandle(sh));
528 529

        // compiled info is useless after m_handle is set
530 531
        Py_DECREF(m_tensor->m_trace_info.compiled_info);
        m_tensor->m_trace_info.compiled_info = nullptr;
532 533

        return dev_tensor;
534 535 536
    }
    if (m_tensor->m_trace_info.recording && !skip_tracing) {
        PyObject_SetAttrString(m_tensor->m_trace_info.trace_mixin_info, "data_read", py::cast(true).release().ptr());
537
    }
538 539 540 541
    auto dev_tensor = [&](){
        py::gil_scoped_release _;
        return interpreter_for_py->get_dev_tensor(m_tensor->m_handle.get());
    }();
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    return py::cast(dev_tensor).release().ptr();
}

void TensorWrapper::_swap_out() {
    interpreter_for_py->swap_out(m_tensor->m_handle.get());
}

void TensorWrapper::_swap_in() {
    interpreter_for_py->swap_in(m_tensor->m_handle.get());
}

void TensorWrapper::_drop() {
    interpreter_for_py->drop(m_tensor->m_handle.get());
}


558 559 560 561 562 563 564 565
PyObject* TensorWrapper::isscalar() {
    if(m_tensor->m_flags & Tensor::Flags::SCALAR) {
        Py_RETURN_TRUE;
    } else {
        Py_RETURN_FALSE;
    }
}

566

567 568 569 570 571
void TensorWrapper::setscalar() {
    m_tensor->m_flags |= Tensor::Flags::SCALAR;
}


572 573 574 575 576
void TensorWrapper::unsetscalar() {
    m_tensor->m_flags &= ~Tensor::Flags::SCALAR;
}


577 578 579 580 581 582 583 584 585 586 587
struct TensorWeakRef {
    std::weak_ptr<Tensor> wptr;

    TensorWeakRef(const TensorWrapper& tw) : wptr(tw.m_tensor) {}

    py::object operator()() {
        if (auto p = wptr.lock()) {
            return TensorWrapper::make(p);
        }
        return py::none();
    }
588
    int _use_cnt() { return wptr.use_count(); }
589 590
};

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/* ============== convert inputs ============== */

// map numpy.dtype.kind to priority
inline uint8_t category_priority(char c) {
    switch (c) {
        case 'f': return 3; // floating-point
        case 'i': return 2; // signed integer
        case 'u': return 2; // unsigned integer
        case 'b': return 1; // boolean
        default: return 0;
    }
}

// Returns the maximum value of the priority of each type in the list `types`.
uint8_t max_priority(SmallVector<PyArray_Descr*> types) {
    if (types.size() == 0) {
        return 0;
    } else {
        uint8_t max_p = 0;
        for (auto&& desc: types) {
            max_p = std::max(max_p, category_priority(desc->kind));
        }
        return max_p;
    }
}

617
// Returns the data type with sufficient size to hold all types of
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
// category `cat` in the list `types`.
PyArray_Descr* promote_types(SmallVector<PyArray_Descr*> types, uint8_t cat) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> used_types;
    for (auto&& desc: types) {
        auto&& v = category_priority(desc->kind);
        if (v == cat) {
            used_types.emplace_back(desc);
        }
    }
    mgb_assert(used_types.size() > 0, "size of used_types is 0");
    PyArray_Descr* res = used_types[0];
    Py_INCREF(res);

    for (size_t i = 1; i < used_types.size(); ++i) {
        PyArray_Descr* tmp = PyArray_PromoteTypes(used_types[i], res);
        Py_DECREF(res);
        res = tmp;
    }
    return res;
}

PyArray_Descr* scalar2dtype(PyObject* arg) {
    // Return value: New reference
    if (PyBool_Check(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_BOOL);
        return descr;
    }
    if (PyLong_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_INT32);
        return descr;
    }
    if (PyFloat_CheckExact(arg)) {
        auto&& descr = PyArray_DescrFromType(NPY_FLOAT32);
        return descr;
    }
    return nullptr;
}

PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) {
    // Return value: New reference
    SmallVector<PyArray_Descr*> tensors;
    SmallVector<PyArray_Descr*> scalars;

    bool is_tuple = false;
663
    PyObject* tuple = nullptr;
664 665 666 667 668 669 670 671 672 673 674 675 676 677
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }

    for (size_t i = 0; i < nargs; ++i) {
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i];
        if (handle == Py_None) continue;
678
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
679 680 681 682 683 684 685 686 687 688 689
        if (tw) {
            mgb::DType type = tw->m_tensor->dtype();
            auto&& descr = npy::dtype_mgb2np_descr(type);
            Py_INCREF(descr.get());
            tensors.emplace_back(descr.get());
        }else{
            if (PyArray_Check(handle) || PyArray_CheckScalar(handle)) {
                auto&& descr = PyArray_DescrFromObject(handle, nullptr);
                tensors.emplace_back(descr);
                continue;
            }
690

691 692 693
            if (py::isinstance<PySymbolVar>(py::handle(handle))){
                auto var = py::handle(handle).cast<PySymbolVar*>();
                mgb::DType type = var->m_node->dtype();
694 695 696 697 698 699
                auto && descr = npy::dtype_mgb2np_descr(type);
                Py_INCREF(descr.get());
                tensors.emplace_back(descr.get());
                continue;
            }

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
            PyArray_Descr* descr = scalar2dtype(handle);
            if (descr) {
                scalars.emplace_back(descr);
                continue;
            }
        }
    }

    auto max_pri_scalars = max_priority(scalars);
    auto max_pri_tensors = max_priority(tensors);

    if (max_pri_scalars <= 0 && max_pri_tensors <= 0) {
        throw py::value_error("invalid input, no dtype avaliable");
    }
    PyArray_Descr* res;
    if (max_pri_scalars > max_pri_tensors) {
        res = promote_types(scalars, max_pri_scalars);
    }else{
        res = promote_types(tensors, max_pri_tensors);
    }
    for (auto *p: tensors) { Py_DECREF(p); }
    for (auto *p: scalars) { Py_DECREF(p); }
722
    Py_XDECREF(tuple);
723 724 725 726 727
    return res;
}

CompNode _get_device(PyObject*const* args, size_t nargs) {
    bool is_tuple = false;
728
    PyObject* tuple = nullptr;
729 730 731 732 733 734 735 736 737 738 739 740 741
    if (nargs == 1 && (PyTuple_Check(args[0]) || PyList_Check(args[0]))) {
        if (PyList_Check(args[0])) {
            tuple = PyList_AsTuple(args[0]);
        } else {
            tuple = args[0];
            Py_INCREF(tuple);
        }
        nargs = PyTuple_Size(tuple);
        is_tuple = true;
    }
    bool valid = false;
    CompNode cn;
    for (size_t i = 0; i < nargs; ++i) {
742
        PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i];
743
        TensorWrapper* tw = TensorWrapper::try_cast(handle);
744

745 746
        bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle));
        if (tw || is_symvar) {
747
            if (!valid) {
748 749 750 751
                cn = tw ? tw->m_tensor->comp_node()
                        : py::handle(handle)
                                     .cast<PySymbolVar*>()
                                     ->m_node->comp_node();
752 753
                valid = true;
            } else {
754 755 756 757
                CompNode cn1 = tw ? tw->m_tensor->comp_node()
                                  : py::handle(handle)
                                               .cast<PySymbolVar*>()
                                               ->m_node->comp_node();
758 759
                if (cn1 != cn) {
                    throw py::value_error(ssprintf("ambiguous device: %s vs %s",
760 761
                                                   cn.to_string().c_str(),
                                                   cn1.to_string().c_str()));
762 763 764 765 766
                }
            }
        }
    }
    if (!valid) {
767
        mgb_assert(0, "expect at least 1 device");
768
    }
769
    Py_XDECREF(tuple);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    return cn;
}

// Returns the dtype that would result from performing an arithmetic
// operation on the provided input tensors and scalars.
PyObject* dtype_promotion(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        PyArray_Descr* res = _dtype_promotion(args, nargs);
        return py::cast(npy::dtype_np2mgb_descr(res)).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}

PyObject* get_device(PyObject* self, PyObject*const* args, size_t nargs) {
    if (!nargs) {
        PyErr_SetString(PyExc_TypeError, "empty input is not allowed");
        return nullptr;
    }
    try {
        CompNode cn = _get_device(args, nargs);
        return py::cast(cn).release().ptr();
    } catch (std::exception& e) {
        PyErr_SetString(PyExc_RuntimeError, e.what());
        return nullptr;
    }
}
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
#ifdef METH_FASTCALL
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)FUNC, METH_FASTCALL, nullptr }
#else
#define WRAP_FUNC_PY35(FUNC)                                \
    PyObject* py35_##FUNC(PyObject* self, PyObject* args) { \
        auto* arr = &PyTuple_GET_ITEM(args, 0);             \
        auto size = PyTuple_GET_SIZE(args);                 \
        return FUNC(self, arr, size);                       \
    }
WRAP_FUNC_PY35(py_apply);
WRAP_FUNC_PY35(dtype_promotion);
WRAP_FUNC_PY35(get_device);
#undef WRAP_FUNC_PY35
#define MGE_PY_INTERFACE(NAME, FUNC) \
    { #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr }
#endif

821

822
void init_tensor(py::module m) {
823 824 825
    imperative::Tensor::static_initialize();
    static auto sl_interpreter_for_py = interpreter::Interpreter::inst().create_channel();
    interpreter_for_py = sl_interpreter_for_py.get();
826 827 828 829 830 831 832

    auto* tensor_type = TensorWrapper::wrap_t::type()
        .def<&TensorWrapper::numpy>("numpy")
        .def_getset<&TensorWrapper::shape>("shape")
        .def_getset<&TensorWrapper::dtype>("dtype")
        .def_getset<&TensorWrapper::device>("device")
        .def<&TensorWrapper::reset>("_reset")
833 834 835
        .def<&TensorWrapper::isscalar>("_isscalar")
        .def<&TensorWrapper::setscalar>("_setscalar")
        .def<&TensorWrapper::unsetscalar>("_unsetscalar")
836
        .def<&TensorWrapper::detach>("detach")
837 838 839 840
        .def<&TensorWrapper::_dev_tensor>("_dev_tensor")
        .def<&TensorWrapper::_swap_out>("_swap_out")
        .def<&TensorWrapper::_swap_in>("_swap_in")
        .def<&TensorWrapper::_drop>("_drop")
841
        .def<&TensorWrapper::reset_varnode>("_reset_varnode")
842
        .def<&TensorWrapper::_use_cnt>("_use_cnt")
843
        .def_getset<&TensorWrapper::varnode>("_varnode")
844
        .def_getset<&TensorWrapper::copied>("_copied")
845 846
        .def_getset<&TensorWrapper::mixin_handle, &TensorWrapper::set_mixin_handle>("_mixin_handle")
        .def_getset<&TensorWrapper::recording, &TensorWrapper::set_recording>("_recording")
847
        .def_getset<&TensorWrapper::handle, &TensorWrapper::set_handle>("_handle")
848 849
        .def_getset<&TensorWrapper::compiled_info, &TensorWrapper::set_compiled_info>("_compiled_info")
        .def_getset<&TensorWrapper::trace_mixin_info, &TensorWrapper::set_trace_mixin_info>("_trace_mixin_info")
850 851
        .def_getset<&TensorWrapper::user_custom_name, &TensorWrapper::set_user_custom_name>("c_name")
        .def_getset<&TensorWrapper::automatic_name, &TensorWrapper::set_automatic_name>("_name")
852 853 854 855 856 857
        .finalize();
    if (!tensor_type) throw py::error_already_set();
    py::setattr(m, "Tensor", tensor_type);

    py::class_<TensorWeakRef>(m, "TensorWeakRef")
        .def(py::init<const TensorWrapper&>())
858 859
        .def("__call__", &TensorWeakRef::operator())
        .def("_use_cnt", &TensorWeakRef::_use_cnt);
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
    py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar")
            .def_property_readonly(
                    "dtype", [](PySymbolVar* v) { return v->m_node->dtype(); })
            .def_property("var", [](PySymbolVar* v) { return v->m_node; },
                          [](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; })
            .def_property_readonly(
                    "device",
                    [](PySymbolVar* v) { return v->m_node->comp_node(); })
            .def_property_readonly(
                    "graph",
                    [](PySymbolVar* v) { return v->m_node->owner_graph(); })
            .def_property_readonly(
                    "shape",
                    [](PySymbolVar* v) -> const TensorShape* {
                        auto&& mgr = v->m_node->owner_graph()
                                             ->static_infer_manager();
                        return mgr.infer_shape_fallible(v->m_node);
                    })
            .def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; })
            .def("_setscalar",
                 [](PySymbolVar* v) { return v->is_scalar = true; })
            .def(py::init([](cg::VarNode* node) {
                     return std::make_shared<PySymbolVar>(node);
                 }),
                 py::arg() = nullptr);

887
    static PyMethodDef method_defs[] = {
888 889 890 891
            MGE_PY_INTERFACE(apply, py_apply),
            MGE_PY_INTERFACE(dtype_promotion, dtype_promotion),
            MGE_PY_INTERFACE(get_device, get_device),
            {nullptr, nullptr, 0, nullptr}};
892 893 894 895 896 897 898
    for (auto&& def: method_defs) {
        if (def.ml_meth != nullptr) {
            auto* func = PyCFunction_NewEx(&def, nullptr, nullptr);
            if (!func) throw py::error_already_set();
            py::setattr(m, def.ml_name, func);
        }
    }
899

900 901 902 903 904
    static constexpr auto sync_py_task_q = []{
        py::gil_scoped_release _;
        py_task_q.wait_all_task_finish();
    };

905
    m.def("set_option",
906
          [](std::string name, size_t value){ interpreter_for_py->set_option(name, value); });
907 908
    m.def("get_option",
          [](std::string name){ return interpreter_for_py->get_option(name); });
909
    m.def("_set_swap_flag",
910
          [](bool flag) { interpreter_for_py->set_option("enable_swap", flag); });
911
    m.def("_set_drop_flag",
912
          [](bool flag) { interpreter_for_py->set_option("enable_drop", flag); });
913
    m.def("config_async_level",
914 915 916 917
          [](int level) {
              mgb_assert(level >= 0 and level <= 2, "async_level should be 0, 1 or 2");
              interpreter_for_py->set_option("async_level", level);
          });
918
    m.def("get_async_level",
919
          []() { return interpreter_for_py->get_option("async_level"); });
920
    m.def("set_buffer_length",
921 922 923 924 925 926 927 928 929 930 931 932
          [](int length) {
              mgb_assert(length >= 0 and length < 100, "buffer_length should be in [0, 100)");
              interpreter_for_py->set_option("buffer_length", length);
          });
    m.def("push_scope",
          [](std::string name) { interpreter_for_py->push_scope(name); });
    m.def("pop_scope",
          [](std::string name) { interpreter_for_py->pop_scope(name); });
    m.def("start_profile",
          [](std::unordered_map<std::string, int> option) { return interpreter_for_py->start_profile(option); });
    m.def("stop_profile",
          [](std::string basename, std::string format) { interpreter_for_py->stop_profile(basename, format); });
933 934 935
    m.def("sync",
          []() {
              interpreter_for_py->sync();
936 937
              sync_py_task_q();
          });
938 939 940 941
    m.def("full_sync",
          []() {
              interpreter_for_py->sync();
              CompNode::sync_all();
942 943 944 945 946 947 948
              sync_py_task_q();
          });
    m.def("close",
          []() {
              interpreter_for_py->close();
              sync_py_task_q();
          });
949

950 951
    py::handle grad_key_type = GradKeyWrapper::wrap_t::type()
        .def<&GradKeyWrapper::attach>("attach")
952 953
        .def<&GradKeyWrapper::is_attached_to>("is_attached_to")
        .def_getset<&GradKeyWrapper::get_name, &GradKeyWrapper::set_name>("name")
954 955 956
        .finalize();
    if (!grad_key_type) throw py::error_already_set();
    py::setattr(m, "GradKey", grad_key_type);
957 958
    m.def("backward", &GradKeyWrapper::backward);

959 960 961 962 963 964 965 966 967
    m.def("set_cpp_apply_with_tracing", &set_cpp_apply_with_tracing);
    m.def("set_cpp_apply_const_with_tracing", &set_cpp_apply_const_with_tracing);
    m.def("set_cpp_apply_compiled_mode", &set_cpp_apply_compiled_mode);
    m.def("set_cpp_apply_const_compiled_mode", &set_cpp_apply_const_compiled_mode);
    m.def("set_cpp_apply_backward_varnode", &set_cpp_apply_backward_varnode);

    m.attr("skip_tracing") = &skip_tracing;

    py::class_<SharedHandle>(m, "SharedHandle")
968 969 970 971 972 973 974 975
        .def(py::init<const SharedHandle&>())
        .def("__eq__", [](SharedHandle &thish, SharedHandle &thath) {
            return (thish.get() == thath.get());
        })
        .def("__hash__", [](SharedHandle &sh) {
            return reinterpret_cast<int64_t>(sh.get());
        })
        ;
976 977 978 979 980

    m.def("set_tracing", &set_tracing);
    m.def("unset_tracing", &unset_tracing);
    m.def("set_compiled", &set_compiled);
    m.def("unset_compiled", &unset_compiled);
981 982
}

983 984
#undef MGE_PY_INTERFACE

985
} // namespace mgb::imperative::python