test_tensor.py 24.7 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import os
10 11
import platform

12 13
import numpy as np
import pytest
14
from utils import get_var_value, make_tensor, opr_test
15 16

import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import tensor
18
from megengine.core._trace_option import use_symbolic_shape
19
from megengine.core.tensor import megbrain_graph as G
20
from megengine.core.tensor.utils import astensor1d
21
from megengine.jit import trace
22
from megengine.utils.network import Network, set_symbolic_shape
23
from megengine.utils.network_node import VarNode
24 25 26


def test_eye():
27
    dtypes = [np.float32, np.bool]
28
    cases = [{"input": [10, 20]}, {"input": [30]}]
29 30 31 32 33 34 35 36 37 38 39 40 41 42
    for dtype in dtypes:
        for case in cases:
            np.testing.assert_allclose(
                F.eye(case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(*case["input"], dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
            np.testing.assert_allclose(
                F.eye(tensor(case["input"]), dtype=dtype).numpy(),
                np.eye(*case["input"]).astype(dtype),
            )
43 44


45 46 47 48 49 50 51 52
def test_full():
    shape = (2, 3)
    values = [True, 4, 5.0]
    for value in values:
        np.testing.assert_allclose(F.full(shape, value).numpy(), np.full(shape, value))
        assert F.full(shape, value).dtype == tensor(value).dtype


53 54 55 56 57 58 59
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

60 61 62 63 64 65 66 67 68 69 70
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
71
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
72 73


74 75 76 77 78 79 80 81 82 83 84 85
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
86 87 88 89 90 91
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
92 93


94 95 96 97 98 99 100 101 102
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat_device(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
103 104 105 106 107

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


108 109 110 111 112 113 114
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

115 116 117 118 119 120 121 122 123 124
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

125 126 127 128
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

129

130
@pytest.mark.parametrize("is_varnode", [True, False])
131
def test_split_basic(is_varnode):
132 133
    if is_varnode:
        network = Network()
134
        saved_symbolic_shape = set_symbolic_shape(False)
135 136
    else:
        network = None
137 138

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
139
    inp = make_tensor(data, network)
140 141 142

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
143 144 145

    np_out = np.split(data, [3, 5], axis=3)

146 147 148 149
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
150 151
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

152 153 154 155 156 157 158 159 160 161
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
162
        F.split(inp, [3, 2, 5], axis=3)
163 164
        assert False
    except ValueError as e:
165
        assert str(e) == "Invalid nsplits_or_secions: [3, 2, 5]"
166

167 168 169
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
@pytest.mark.parametrize("symbolic", [None, False, True])
def test_split(symbolic):
    inp1 = np.random.random((3, 4, 5, 6)).astype(np.float32)
    inp2 = np.random.random((0, 4, 5, 6)).astype(np.float32)

    def ref(inp, nsplits_or_sections, axis):
        return np.split(inp, nsplits_or_sections, axis)

    def func(inp, nsplits_or_sections, axis):
        return F.split(inp, nsplits_or_sections, axis)

    cases = [
        (inp1, 2, 3),
        (inp1, [3], 3),
        (inp1, [3, 3, 5], 3),
        (inp2, 2, 3),
        (inp2, [3], 3),
        (inp2, [3, 3, 5], 3),
    ]

    for case in cases:
        if symbolic is None:
            fn = func
        else:
            fn = trace(symbolic=symbolic)(func)
        for i in range(3 if symbolic is not None else 1):
            ref_out = ref(*case)
            out = fn(tensor(case[0]), case[1], case[2])
            assert len(ref_out) == len(out)
            for idx in range(len(ref_out)):
                np.testing.assert_equal(ref_out[idx], out[idx].numpy())


204 205 206 207 208 209 210
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

211
    x = np.arange(6, dtype="float32")
212
    xx = make_tensor(x, network)
213 214 215 216 217
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
218
        (1, make_tensor(-1, network), 3),
219
        np.array([1, -1, 3], dtype="int32"),
220
        make_tensor([1, -1, 3], network),
221 222 223 224 225
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast_auto_infer(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.random.random((1, 2, 3)).astype(np.float32)
    xx = make_tensor(x, network)

    for shape in [
        (1, 2, 3),
        (1, None, 3),
    ]:
        yy = F.broadcast_to(xx, shape)
        np.testing.assert_equal(yy.numpy(), x)

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (1, -1, 3))

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (None, 1, 2, 3))

    F.broadcast_to(xx, (1, None, 2, 3))
    t = tensor(2, dtype=np.int32)
    F.broadcast_to(xx, (t, None, 2, 3))


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (0,)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


296 297 298 299
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
300
        saved_symbolic_shape = set_symbolic_shape(False)
301 302 303 304 305 306 307 308 309 310
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
        if isinstance(source, tensor):
            source = source.numpy()
        np.testing.assert_equal(source, target)

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
        {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
    ]
331
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
332 333
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
334

335

336 337 338 339
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
340
        saved_symbolic_shape = set_symbolic_shape(False)
341 342
    else:
        network = None
343

344
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
345
    xx = make_tensor(x, network)
346 347 348

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
349
        yy = F.squeeze(xx, axis)
350 351
        np.testing.assert_equal(y, yy.numpy())

352 353 354
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

355

356 357 358 359 360 361 362
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

363
    x = np.arange(6, dtype="float32").reshape(2, 3)
364
    xx = make_tensor(x, network)
365 366 367

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
368
        yy = F.expand_dims(xx, axis)
369 370 371
        np.testing.assert_equal(y, yy.numpy())


372 373 374 375 376 377 378 379 380 381
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
382
        np.testing.assert_raises(RuntimeError, F.expand_dims, xx, axis)
383 384


385 386 387 388 389 390 391
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

392 393
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
394 395
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
396 397 398 399 400 401 402 403 404 405
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


406 407 408 409 410 411 412
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

413 414 415 416 417 418 419 420
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
421
        network=network,
422 423 424 425 426 427 428 429 430 431
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
432
        network=network,
433 434 435
    )

    cases = [
436 437
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
438 439 440 441 442
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
443
        network=network,
444 445 446
    )


447 448 449 450 451 452 453
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

454 455 456 457 458 459 460 461
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
462
        network=network,
463 464 465 466 467 468 469 470 471 472
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
473
        network=network,
474 475 476 477 478 479 480 481 482 483
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
484
        network=network,
485 486 487
    )


488 489 490 491 492 493 494
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

495 496 497 498 499 500
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
501
    opr_test(cases, F.round, ref_fn=np.round, network=network)
502 503


504 505 506 507 508 509 510
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

511 512 513 514 515 516
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    def compare_fn(x, y):
517
        assert x._tuple_shape[0] == y
518 519 520 521

    output0 = (2 * 3 * 4 * 5,)
    output1 = (4 * 5 * 6 * 7,)
    cases = [
522 523
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
524
    ]
525
    opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
526 527 528 529

    output0 = (2, 3 * 4 * 5)
    output1 = (4, 5 * 6 * 7)
    cases = [
530 531
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
532
    ]
533
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
534 535 536 537

    output0 = (2, 3, 4 * 5)
    output1 = (4, 5, 6 * 7)
    cases = [
538 539
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
540
    ]
541
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
542 543 544 545

    output0 = (2, 3 * 4, 5)
    output1 = (4, 5 * 6, 7)
    cases = [
546 547
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
548
    ]
549 550 551 552 553 554 555 556 557
    opr_test(
        cases,
        F.flatten,
        compare_fn=compare_fn,
        start_axis=1,
        end_axis=2,
        network=network,
    )

558

559 560 561 562 563 564
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
565

566 567 568 569
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

570
    input2_shape = (10, 1)
571 572 573
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

574 575 576 577
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

578
    def compare_fn(x, y):
579
        assert x._tuple_shape[0] == y
580 581 582 583

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
584
        {"input": [data3, output3_shape], "output": output3_shape},
585
    ]
586
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
587

588
    x = F.ones((2, 1, 3))
589
    with pytest.raises(RuntimeError):
590
        F.broadcast_to(x, (2, 3, 4))
591

592
    with pytest.raises(RuntimeError):
593
        F.broadcast_to(x, (4, 1, 3))
594

595
    with pytest.raises(RuntimeError):
596
        F.broadcast_to(x, (1, 3))
597

598

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


641 642 643 644 645 646 647 648
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
649 650 651 652 653

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
654
        assert isinstance(xx, type(reference))
655 656 657 658 659 660
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
661
        assert isinstance(xx, type(reference))
662 663 664
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
665
    x = make_tensor([1, 2, 3], network)
666 667
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
668
        assert isinstance(xx, type(reference))
669 670 671
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
672
    x = [1, make_tensor(2, network), 3]
673 674
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
675
        assert isinstance(xx, type(reference))
676 677 678 679 680 681 682 683 684 685 686
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
687
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
688 689 690 691 692
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
693 694


695 696 697 698 699 700 701 702
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
703
    y = F.copy(x)
704 705 706
    np.testing.assert_equal(y.numpy(), x)


707
def copy_test(dst, src, network):
708
    data = np.random.random((2, 3)).astype(np.float32)
709
    x = make_tensor(data, device=src, network=network)
710 711
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
712 713 714
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
715 716


717
@pytest.mark.require_ngpu(1)
718 719 720 721 722 723 724 725
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
726 727


728
@pytest.mark.require_ngpu(1)
729 730 731 732 733 734 735 736
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
737 738


739
@pytest.mark.require_ngpu(2)
740 741 742 743 744 745 746 747 748
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
749 750


751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
    "shape, device_src, device_dst",
    [
        ((0,), "cpu0", "cpu0"),
        ((10, 0), "cpu0", "cpu1"),
        ((2, 0, 3), "cpu0", "gpu0"),
        ((1, 0, 1, 0), "gpu0", "cpu0"),
        ((2, 3, 4, 5, 0), "gpu0", "gpu1"),
    ],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_copy_empty(shape, device_src, device_dst, is_symbolic):
    inp = tensor(np.random.randn(*shape).astype("float32"), device=device_src)

    def func(inp):
        return F.copy(inp, device_dst)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    for _ in range(3):
        out = func(inp)
        assert out.numpy().shape == shape
        assert out.device == device_dst
        if is_symbolic is None:
            break


780 781 782 783 784 785 786 787 788 789 790 791
@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
792 793 794 795 796 797 798
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

799 800 801 802 803 804 805 806 807 808 809
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
810 811 812 813
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
814 815 816 817 818 819 820 821 822 823 824 825
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
        ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
    ],
)
826 827 828 829 830 831 832
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

833 834 835
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

836
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
837

838
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
839 840 841 842 843 844 845


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
846 847
        ((2, 3), 100, 0),
        ((2, 3), -100, 0),
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891


@pytest.mark.parametrize(
    "shape, shifts, axis", [((10, 0), 5, 1), ((10, 0), -10, 1),],
)
@pytest.mark.parametrize("is_symbolic", [None, True, False])
def test_roll_empty_tensor(shape, shifts, axis, is_symbolic):
    inp = tensor(np.random.randn(*shape).astype("float32"))

    def func(inp):
        return F.roll(inp, shifts, axis)

    if is_symbolic is not None:
        func = trace(symbolic=is_symbolic)(func)

    out_ref = np.roll(inp.numpy(), shifts, axis)
    for _ in range(3):
        out = F.roll(inp, shifts, axis)
        np.testing.assert_equal(out.numpy(), out_ref)
        if is_symbolic is None:
            break