mod.rs 103.8 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
39

40
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
41
use std::cell::RefCell;
42
use std::cmp;
43
use std::fmt;
44
use std::hash::{Hash, Hasher};
45
use std::ops::Deref;
46
use rustc_data_structures::sync::Lrc;
47
use std::slice;
48
use std::vec::IntoIter;
49
use std::mem;
J
Jeffrey Seyfried 已提交
50
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
51
use syntax::attr;
52
use syntax::ext::hygiene::Mark;
53
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
54
use syntax_pos::{DUMMY_SP, Span};
55

56
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
57 58
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
59

60
use hir;
61

62
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
63
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
64
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
65
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
66
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
67
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
68
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
69
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
70
pub use self::sty::RegionKind;
71
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
72 73
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind::*;
75 76
pub use self::sty::TypeVariants::*;

77 78 79
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

80
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
81
pub use self::context::{Lift, TypeckTables, InterpretInterner};
82

83 84
pub use self::instance::{Instance, InstanceDef};

85
pub use self::trait_def::TraitDef;
86

87 88
pub use self::maps::queries;

89
pub mod adjustment;
90
pub mod binding;
91
pub mod cast;
92
#[macro_use]
93
pub mod codec;
94
pub mod error;
95
mod erase_regions;
96 97
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
98
pub mod inhabitedness;
99
pub mod item_path;
100
pub mod layout;
101
pub mod _match;
102
pub mod maps;
103 104
pub mod outlives;
pub mod relate;
105
pub mod steal;
106
pub mod subst;
107
pub mod trait_def;
108 109
pub mod walk;
pub mod wf;
110
pub mod util;
111

112 113
mod context;
mod flags;
114
mod instance;
115 116 117
mod structural_impls;
mod sty;

118
// Data types
119

120 121
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
122 123 124
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
125
#[derive(Clone)]
126
pub struct CrateAnalysis {
127
    pub access_levels: Lrc<AccessLevels>,
128
    pub name: String,
129
    pub glob_map: Option<hir::GlobMap>,
130 131
}

132 133 134 135 136
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
137
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
138
    pub export_map: ExportMap,
139 140
}

141
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
142
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
143 144
    TraitContainer(DefId),
    ImplContainer(DefId),
145 146
}

147
impl AssociatedItemContainer {
148 149 150 151 152 153 154 155 156
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
157
    pub fn id(&self) -> DefId {
158 159 160 161 162 163 164
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
165 166 167 168 169 170 171 172 173 174 175
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
176
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
177 178 179 180 181 182 183
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
184

185 186 187 188
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
189

190
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
191 192 193 194 195
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
196

197 198 199 200 201 202
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
203 204
        }
    }
A
Andrew Cann 已提交
205 206 207 208 209 210 211

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
212
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
213 214 215
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
216 217 218 219 220 221 222 223

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
224
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
225 226 227 228 229 230 231
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
232 233
}

234
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
235 236 237 238
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
239
    Restricted(DefId),
240
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
241
    Invisible,
242 243
}

244 245
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
260 261
}

262 263 264
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
265 266 267
    }
}

268
impl Visibility {
269
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
270 271
        match *visibility {
            hir::Public => Visibility::Public,
272
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
273
            hir::Visibility::Restricted { ref path, .. } => match path.def {
274 275
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
276
                Def::Err => Visibility::Public,
277
                def => Visibility::Restricted(def.def_id()),
278
            },
279
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
280
                Visibility::Restricted(tcx.hir.get_module_parent(id))
281
            }
282 283
        }
    }
284 285

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
286
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
287 288 289 290
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
291
            Visibility::Invisible => return false,
292
            // Restricted items are visible in an arbitrary local module.
293
            Visibility::Restricted(other) if other.krate != module.krate => return false,
294 295 296
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
297
        tree.is_descendant_of(module, restriction)
298
    }
299 300

    /// Returns true if this visibility is at least as accessible as the given visibility
301
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
302 303
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
304
            Visibility::Invisible => return true,
305 306 307
            Visibility::Restricted(module) => module,
        };

308
        self.is_accessible_from(vis_restriction, tree)
309
    }
310 311 312 313 314 315 316 317 318

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
319 320
}

321
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
322
pub enum Variance {
323 324 325 326
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
327
}
328

329 330 331 332
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
333
/// `tcx.variances_of()` to get the variance for a *particular*
334 335 336 337 338
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
339
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
340 341

    /// An empty vector, useful for cloning.
342
    pub empty_variance: Lrc<Vec<ty::Variance>>,
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

405 406 407
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
408
pub struct CReaderCacheKey {
409 410 411 412
    pub cnum: CrateNum,
    pub pos: usize,
}

413 414 415 416
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
417
bitflags! {
418 419 420 421 422 423
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
424 425 426 427 428

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
429
        const HAS_RE_EARLY_BOUND = 1 << 5;
430 431 432

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
433
        const HAS_FREE_REGIONS   = 1 << 6;
434 435

        /// Is an error type reachable?
436 437
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
438 439

        // FIXME: Rename this to the actual property since it's used for generators too
440
        const HAS_TY_CLOSURE     = 1 << 9;
441 442 443

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
444
        const HAS_LOCAL_NAMES    = 1 << 10;
445

446 447
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
448
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
449

450 451
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
452
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
453

454 455 456 457
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

458 459
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
460
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
461 462

        // Flags representing the nominal content of a type,
463 464
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
465 466 467 468
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
469
                                  TypeFlags::HAS_RE_SKOL.bits |
470 471
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
472
                                  TypeFlags::HAS_TY_ERR.bits |
473
                                  TypeFlags::HAS_PROJECTION.bits |
474
                                  TypeFlags::HAS_TY_CLOSURE.bits |
475
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
476 477
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_CANONICAL_VARS.bits;
478
    }
479 480
}

481
pub struct TyS<'tcx> {
482
    pub sty: TypeVariants<'tcx>,
483
    pub flags: TypeFlags,
484 485

    // the maximal depth of any bound regions appearing in this type.
486
    region_depth: u32,
487 488
}

489
impl<'tcx> PartialEq for TyS<'tcx> {
490
    #[inline]
491 492 493 494 495
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
496
impl<'tcx> Eq for TyS<'tcx> {}
497

A
Alex Crichton 已提交
498 499
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
500
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
501 502
    }
}
503

G
Guillaume Gomez 已提交
504 505 506 507 508 509 510 511 512 513 514 515
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
516
            TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
517 518 519
            _ => false,
        }
    }
520 521 522 523 524 525 526 527

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
528
            TypeVariants::TyInfer(..) |
529 530 531 532
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
533 534
}

535
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
536
    fn hash_stable<W: StableHasherResult>(&self,
537
                                          hcx: &mut StableHashingContext<'a>,
538 539 540 541 542 543 544 545 546 547 548 549 550 551
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

552
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
553

554 555
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
556

557 558 559 560 561 562 563 564 565 566 567
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

A
Adam Perry 已提交
568
/// A wrapper for slices with the additional invariant
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

607 608 609 610 611 612 613 614
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
615 616 617
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
618
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
619
pub struct UpvarId {
620
    pub var_id: hir::HirId,
621
    pub closure_expr_id: LocalDefId,
622 623
}

J
Jorge Aparicio 已提交
624
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
625 626 627 628 629 630
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
631
    /// implicit closure bindings. It is needed when the closure
632 633
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
634
    ///    let x: &mut isize = ...;
635 636 637 638 639
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
640 641
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
642 643 644 645 646 647 648
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
649 650
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

670 671
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
672
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
673
pub enum UpvarCapture<'tcx> {
674 675 676 677 678 679
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
680
    ByRef(UpvarBorrow<'tcx>),
681 682
}

683
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
684
pub struct UpvarBorrow<'tcx> {
685 686 687
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
688
    pub kind: BorrowKind,
689 690

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
691
    pub region: ty::Region<'tcx>,
692 693
}

694
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
695

696 697
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
698
    pub def: Def,
699 700 701 702
    pub span: Span,
    pub ty: Ty<'tcx>,
}

703
#[derive(Clone, Copy, PartialEq, Eq)]
704
pub enum IntVarValue {
705 706
    IntType(ast::IntTy),
    UintType(ast::UintTy),
707 708
}

709 710 711
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

712 713
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
714
    pub name: InternedString,
N
Niko Matsakis 已提交
715
    pub def_id: DefId,
716
    pub index: u32,
717 718
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
719 720 721 722 723

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
724 725

    pub synthetic: Option<hir::SyntheticTyParamKind>,
726 727
}

728 729
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
730
    pub name: InternedString,
N
Niko Matsakis 已提交
731
    pub def_id: DefId,
732
    pub index: u32,
733 734 735 736 737

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
738 739
}

740
impl RegionParameterDef {
741 742
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
743
            def_id: self.def_id,
744 745
            index: self.index,
            name: self.name,
746
        }
747
    }
748

749 750 751 752 753 754
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
755
    pub fn to_bound_region(&self) -> ty::BoundRegion {
756
        ty::BoundRegion::BrNamed(self.def_id, self.name)
757
    }
758 759
}

V
varkor 已提交
760
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
V
varkor 已提交
761
pub enum GenericParamDef {
V
varkor 已提交
762 763 764 765
    Lifetime(RegionParameterDef),
    Type(TypeParameterDef),
}

V
varkor 已提交
766
impl GenericParamDef {
V
varkor 已提交
767 768
    pub fn index(&self) -> u32 {
        match self {
V
varkor 已提交
769 770
            GenericParamDef::Lifetime(lt) => lt.index,
            GenericParamDef::Type(ty)     => ty.index,
V
varkor 已提交
771 772 773 774
        }
    }
}

775
/// Information about the formal type/lifetime parameters associated
776
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
777 778 779 780 781 782 783
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
784
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
785
pub struct Generics {
786
    pub parent: Option<DefId>,
V
varkor 已提交
787
    pub parent_count: usize,
V
varkor 已提交
788
    pub params: Vec<GenericParamDef>,
789

790 791
    /// Reverse map to each `TypeParameterDef`'s `index` field
    pub type_param_to_index: FxHashMap<DefId, u32>,
792

793
    pub has_self: bool,
794
    pub has_late_bound_regions: Option<Span>,
795 796
}

797
impl<'a, 'gcx, 'tcx> Generics {
798
    pub fn count(&self) -> usize {
V
varkor 已提交
799
        self.parent_count + self.params.len()
800
    }
801

V
varkor 已提交
802
    pub fn lifetimes(&self) -> impl DoubleEndedIterator<Item = &RegionParameterDef> {
803
        self.params.iter().filter_map(|p| {
V
varkor 已提交
804
            if let GenericParamDef::Lifetime(lt) = p {
V
varkor 已提交
805 806 807 808
                Some(lt)
            } else {
                None
            }
V
varkor 已提交
809
        })
V
varkor 已提交
810 811
    }

V
varkor 已提交
812
    pub fn types(&self) -> impl DoubleEndedIterator<Item = &TypeParameterDef> {
813
        self.params.iter().filter_map(|p| {
V
varkor 已提交
814
            if let GenericParamDef::Type(ty) = p {
V
varkor 已提交
815 816 817 818
                Some(ty)
            } else {
                None
            }
V
varkor 已提交
819
        })
V
varkor 已提交
820 821
    }

822 823
    pub fn requires_monomorphization(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        if self.params.iter().any(|p| {
V
varkor 已提交
824
            if let GenericParamDef::Type(_) = p { true } else { false }
825
        }) {
V
varkor 已提交
826 827 828 829
            return true;
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
830
            parent.requires_monomorphization(tcx)
V
varkor 已提交
831 832 833
        } else {
            false
        }
V
varkor 已提交
834 835
    }

836 837 838 839 840
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
V
varkor 已提交
841
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
842
            // We're currently assuming that lifetimes precede other generic parameters.
843
            match self.params[index as usize - self.has_self as usize] {
V
varkor 已提交
844
                ty::GenericParamDef::Lifetime(ref lt) => lt,
V
varkor 已提交
845 846
                _ => bug!("expected region parameter, but found another generic parameter")
            }
847 848 849 850
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
851 852
    }

A
Ariel Ben-Yehuda 已提交
853
    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
854 855
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
856
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
A
Ariel Ben-Yehuda 已提交
857
                      -> &TypeParameterDef {
V
varkor 已提交
858
        if let Some(idx) = param.idx.checked_sub(self.parent_count as u32) {
A
Ariel Ben-Yehuda 已提交
859 860
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
861
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
862 863
            // for the regions:
            //
864 865 866 867 868 869 870 871 872 873 874
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
875 876 877 878 879 880 881
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
882 883 884 885
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
V
varkor 已提交
886
            let type_param_offset = self.lifetimes().count();
887 888 889 890

            let has_self = self.has_self && self.parent.is_none();
            let is_separated_self = type_param_offset != 0 && idx == 0 && has_self;

V
varkor 已提交
891
            if let Some(_) = (idx as usize).checked_sub(type_param_offset) {
892
                assert!(!is_separated_self, "found a Self after type_param_offset");
893
                match self.params[idx as usize] {
V
varkor 已提交
894
                    ty::GenericParamDef::Type(ref ty) => ty,
V
varkor 已提交
895 896
                    _ => bug!("expected type parameter, but found another generic parameter")
                }
A
Ariel Ben-Yehuda 已提交
897
            } else {
898
                assert!(is_separated_self, "non-Self param before type_param_offset");
899
                match self.params[type_param_offset] {
V
varkor 已提交
900
                    ty::GenericParamDef::Type(ref ty) => ty,
V
varkor 已提交
901 902
                    _ => bug!("expected type parameter, but found another generic parameter")
                }
A
Ariel Ben-Yehuda 已提交
903
            }
904 905 906 907
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
908
    }
909 910
}

911
/// Bounds on generics.
912
#[derive(Clone, Default)]
913
pub struct GenericPredicates<'tcx> {
914
    pub parent: Option<DefId>,
915
    pub predicates: Vec<Predicate<'tcx>>,
916 917
}

918 919 920
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

921 922
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
923
                       -> InstantiatedPredicates<'tcx> {
924 925 926 927 928 929
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
930
        InstantiatedPredicates {
931 932 933 934 935 936 937 938
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
939
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
940
        }
941
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
942
    }
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

959
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
960 961 962
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
963
        assert_eq!(self.parent, None);
964
        InstantiatedPredicates {
965
            predicates: self.predicates.iter().map(|pred| {
966
                pred.subst_supertrait(tcx, poly_trait_ref)
967
            }).collect()
968 969
        }
    }
970 971
}

972
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
973
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
974 975
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
976
    /// would be the type parameters.
977
    Trait(PolyTraitPredicate<'tcx>),
978 979

    /// where 'a : 'b
980
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
981 982

    /// where T : 'a
983
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
984

N
Niko Matsakis 已提交
985 986
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
987
    Projection(PolyProjectionPredicate<'tcx>),
988 989 990 991 992

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
993
    ObjectSafe(DefId),
994

995 996 997
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
998
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
999 1000 1001

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1002 1003 1004

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1023 1024 1025 1026 1027 1028
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1029
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1030
    /// Performs a substitution suitable for going from a
1031 1032 1033 1034
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1035
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1099
        let substs = &trait_ref.skip_binder().substs;
1100
        match *self {
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1111 1112 1113 1114
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1115 1116
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1117 1118
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1119 1120 1121 1122
        }
    }
}

1123
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1124
pub struct TraitPredicate<'tcx> {
1125
    pub trait_ref: TraitRef<'tcx>
1126 1127 1128 1129
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1130
    pub fn def_id(&self) -> DefId {
1131 1132 1133
        self.trait_ref.def_id
    }

1134
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1135
        self.trait_ref.input_types()
1136 1137 1138 1139 1140 1141 1142 1143
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1144
    pub fn def_id(&self) -> DefId {
1145
        // ok to skip binder since trait def-id does not care about regions
1146
        self.skip_binder().def_id()
1147
    }
1148 1149
}

1150
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1151 1152
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1153 1154 1155 1156 1157 1158
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1159

1160
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1161 1162 1163 1164 1165 1166 1167
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1168 1169 1170 1171 1172 1173 1174 1175 1176
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1177 1178
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1179
/// instances to normalize the LHS.
1180
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1181 1182 1183 1184 1185 1186 1187
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1188
impl<'tcx> PolyProjectionPredicate<'tcx> {
1189 1190 1191 1192 1193
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1194 1195 1196 1197 1198 1199
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1200
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1201
    }
1202 1203

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1214
    }
1215 1216
}

1217 1218 1219 1220
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1221
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1222
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1223
        ty::Binder::dummy(self.clone())
1224 1225 1226 1227 1228
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1229
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1230 1231 1232
    }
}

1233 1234
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1235 1236
}

1237 1238
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1239
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1240 1241 1242 1243 1244
            trait_ref: self.clone()
        }))
    }
}

1245 1246
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1247
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1248 1249 1250
    }
}

1251
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1252
    fn to_predicate(&self) -> Predicate<'tcx> {
1253 1254 1255 1256
        Predicate::RegionOutlives(self.clone())
    }
}

1257 1258
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1259 1260
        Predicate::TypeOutlives(self.clone())
    }
1261 1262
}

1263 1264
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1265 1266 1267 1268
        Predicate::Projection(self.clone())
    }
}

1269
impl<'tcx> Predicate<'tcx> {
1270 1271 1272 1273 1274 1275
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1276
                data.skip_binder().input_types().collect()
1277
            }
1278 1279
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1280 1281
                vec![a, b]
            }
1282 1283
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1284 1285 1286 1287 1288
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1289 1290
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1291
            }
1292 1293 1294 1295 1296 1297
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1298 1299
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1300
            }
1301 1302 1303
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1314
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1315 1316
        match *self {
            Predicate::Trait(ref t) => {
1317
                Some(t.to_poly_trait_ref())
1318
            }
1319
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1320
            Predicate::Subtype(..) |
1321
            Predicate::RegionOutlives(..) |
1322 1323
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1324
            Predicate::ClosureKind(..) |
1325 1326
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1327 1328
                None
            }
1329 1330
        }
    }
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1349 1350
}

S
Steve Klabnik 已提交
1351 1352
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1353 1354 1355 1356 1357
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1358 1359 1360 1361 1362 1363 1364 1365
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1366
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1367
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1368 1369
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1370
#[derive(Clone)]
1371
pub struct InstantiatedPredicates<'tcx> {
1372
    pub predicates: Vec<Predicate<'tcx>>,
1373 1374
}

1375 1376
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1377
        InstantiatedPredicates { predicates: vec![] }
1378 1379
    }

1380 1381
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1382
    }
1383 1384
}

N
Niko Matsakis 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1421
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1422 1423 1424 1425 1426
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1427
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1456
    }
N
Niko Matsakis 已提交
1457 1458
}

1459
/// When type checking, we use the `ParamEnv` to track
1460 1461 1462
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1463
pub struct ParamEnv<'tcx> {
1464 1465
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1466
    /// into Obligations, and elaborated and normalized.
1467
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1468 1469 1470 1471 1472

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1473
}
1474

1475
impl<'tcx> ParamEnv<'tcx> {
1476 1477 1478 1479 1480
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1481
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like trans or doing optimizations.
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1492
        Self::new(ty::Slice::empty(), Reveal::All)
1493 1494 1495 1496
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1497
               reveal: Reveal)
1498
               -> Self {
S
Sean Griffin 已提交
1499
        ty::ParamEnv { caller_bounds, reveal }
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
    /// the desired behavior during trans and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1517
    /// Creates a suitable environment in which to perform trait
1518 1519 1520 1521 1522
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1523
    ///
1524 1525
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1526
    /// `where Box<u32>: Copy`, which are clearly never
1527 1528
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1529
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1530 1531 1532 1533 1534 1535
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1536
            }
1537 1538

            Reveal::All => {
1539 1540 1541 1542 1543
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1554
            }
1555 1556 1557
        }
    }
}
1558

1559
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1560 1561
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1562
    pub value: T,
1563 1564
}

1565 1566
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1567
        (self.param_env, self.value)
1568
    }
1569 1570
}

1571 1572
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1573 1574
{
    fn hash_stable<W: StableHasherResult>(&self,
1575
                                          hcx: &mut StableHashingContext<'a>,
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1587 1588 1589 1590 1591 1592
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1593
bitflags! {
1594 1595 1596 1597 1598 1599 1600
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1601 1602 1603 1604
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1605
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1606
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1607 1608 1609
    }
}

1610
#[derive(Debug)]
1611
pub struct VariantDef {
1612 1613
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1614 1615
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1616
    pub discr: VariantDiscr,
1617
    pub fields: Vec<FieldDef>,
1618
    pub ctor_kind: CtorKind,
1619 1620
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1634
#[derive(Debug)]
1635
pub struct FieldDef {
1636
    pub did: DefId,
1637
    pub name: Name,
1638
    pub vis: Visibility,
1639 1640
}

A
Ariel Ben-Yehuda 已提交
1641 1642 1643 1644
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1645
pub struct AdtDef {
1646
    pub did: DefId,
1647
    pub variants: Vec<VariantDef>,
1648
    flags: AdtFlags,
1649
    pub repr: ReprOptions,
1650 1651
}

1652 1653
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1654 1655 1656 1657
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1658
impl Eq for AdtDef {}
1659

1660
impl Hash for AdtDef {
1661 1662
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1663
        (self as *const AdtDef).hash(s)
1664 1665 1666
    }
}

1667
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1668
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1669 1670 1671 1672
        self.did.encode(s)
    }
}

1673
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1674

1675

1676
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1677
    fn hash_stable<W: StableHasherResult>(&self,
1678
                                          hcx: &mut StableHashingContext<'a>,
1679
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1680 1681 1682 1683
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1684

W
Wesley Wiser 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1706 1707 1708
    }
}

1709
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1710
pub enum AdtKind { Struct, Union, Enum }
1711

1712 1713
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1714 1715
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1716 1717
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1718
        // Internal only for now. If true, don't reorder fields.
1719
        const IS_LINEAR          = 1 << 3;
1720 1721 1722 1723

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1724
                                   ReprFlags::IS_LINEAR.bits;
1725 1726 1727 1728 1729 1730 1731 1732 1733
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1734 1735 1736 1737
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1738
    pub align: u32,
1739
    pub pack: u32,
1740
    pub flags: ReprFlags,
1741 1742
}

1743
impl_stable_hash_for!(struct ReprOptions {
1744
    align,
1745
    pack,
1746
    int,
1747
    flags
1748 1749
});

1750
impl ReprOptions {
1751
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1752 1753
        let mut flags = ReprFlags::empty();
        let mut size = None;
1754
        let mut max_align = 0;
1755
        let mut min_pack = 0;
1756 1757
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1758
                flags.insert(match r {
1759
                    attr::ReprC => ReprFlags::IS_C,
1760 1761 1762 1763 1764 1765 1766 1767
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1768
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1769 1770 1771 1772 1773
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1774 1775 1776 1777
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1778
                });
1779 1780
            }
        }
1781

1782
        // This is here instead of layout because the choice must make it into metadata.
1783 1784 1785
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1786
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1787
    }
1788

1789 1790 1791 1792 1793
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1794
    pub fn packed(&self) -> bool { self.pack > 0 }
1795
    #[inline]
R
Robin Kruppe 已提交
1796 1797
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1798 1799
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1800
    pub fn discr_type(&self) -> attr::IntType {
1801
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1802
    }
1803 1804 1805 1806 1807

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1808
        self.c() || self.int.is_some()
1809
    }
1810 1811 1812 1813 1814 1815

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1816 1817
}

1818
impl<'a, 'gcx, 'tcx> AdtDef {
1819
    fn new(tcx: TyCtxt,
1820
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1821
           kind: AdtKind,
1822 1823
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1824
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1825
        let attrs = tcx.get_attrs(did);
1826
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1827
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1828
        }
1829
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1830
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1831
        }
1832
        if Some(did) == tcx.lang_items().owned_box() {
1833 1834
            flags = flags | AdtFlags::IS_BOX;
        }
1835 1836 1837
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1838 1839 1840 1841
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1842
        }
1843
        AdtDef {
1844 1845 1846 1847
            did,
            variants,
            flags,
            repr,
1848 1849 1850
        }
    }

1851 1852 1853 1854 1855 1856 1857
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1858
        self.flags.intersects(AdtFlags::IS_UNION)
1859 1860 1861 1862
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1863
        self.flags.intersects(AdtFlags::IS_ENUM)
1864 1865
    }

1866 1867 1868 1869 1870
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1871
    /// Returns the kind of the ADT - Struct or Enum.
1872
    #[inline]
A
Ariel Ben-Yehuda 已提交
1873
    pub fn adt_kind(&self) -> AdtKind {
1874
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1875
            AdtKind::Enum
1876
        } else if self.is_union() {
1877
            AdtKind::Union
1878
        } else {
A
Ariel Ben-Yehuda 已提交
1879
            AdtKind::Struct
1880 1881 1882
        }
    }

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1899 1900
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1901 1902
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1903
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1904 1905
    }

A
Ariel Ben-Yehuda 已提交
1906
    /// Returns true if this is PhantomData<T>.
1907 1908
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1909
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1910 1911
    }

1912 1913 1914
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1915
        self.flags.intersects(AdtFlags::IS_BOX)
1916 1917
    }

A
Ariel Ben-Yehuda 已提交
1918
    /// Returns whether this type has a destructor.
1919 1920
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1921 1922
    }

1923 1924 1925
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1926
        &self.variants[0]
1927 1928 1929
    }

    #[inline]
1930
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1931
        tcx.predicates_of(self.did)
1932
    }
1933

A
Ariel Ben-Yehuda 已提交
1934 1935
    /// Returns an iterator over all fields contained
    /// by this ADT.
1936
    #[inline]
1937 1938
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1939 1940 1941 1942 1943 1944 1945
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1946
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1947 1948 1949 1950 1951 1952
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1953 1954 1955 1956 1957 1958 1959
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1960
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1961
        match def {
1962 1963
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1964
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1965
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1966 1967
        }
    }
1968

O
Oliver Schneider 已提交
1969
    #[inline]
1970
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1971 1972 1973 1974
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1975
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1976 1977 1978 1979 1980 1981 1982 1983
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
                if let Some(b) = val.assert_bits(val.ty) {
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    ::middle::const_val::struct_error(
                        tcx,
                        tcx.def_span(expr_did),
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2001
            }
2002 2003
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2014
    #[inline]
2015 2016 2017 2018
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2019
        let repr_type = self.repr.discr_type();
2020
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2021
        let mut prev_discr = None::<Discr<'tcx>>;
2022
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2023
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2024
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2025 2026
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2027 2028 2029 2030 2031 2032 2033 2034
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2035 2036 2037 2038 2039 2040 2041 2042
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2043
                                    -> Discr<'tcx> {
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2058
        let mut explicit_index = variant_index;
2059
        let expr_did;
2060 2061
        loop {
            match self.variants[explicit_index].discr {
2062 2063 2064 2065
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2066 2067 2068
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2069 2070 2071
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2072 2073 2074
                }
            }
        }
2075
        (expr_did, variant_index - explicit_index)
2076 2077
    }

2078
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2079
        tcx.adt_destructor(self.did)
2080 2081
    }

2082
    /// Returns a list of types such that `Self: Sized` if and only
2083
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2084 2085 2086 2087 2088 2089 2090 2091
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2092
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2093
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2094
            Ok(tys) => tys,
2095
            Err(mut bug) => {
2096 2097 2098 2099
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2100 2101 2102 2103
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2104
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2105
            }
2106 2107
        }
    }
2108

2109 2110 2111 2112
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2113 2114
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2115
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2116
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2117
                vec![]
2118 2119
            }

2120 2121 2122 2123 2124 2125
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2126
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2127
                vec![ty]
2128 2129
            }

A
Andrew Cann 已提交
2130
            TyTuple(ref tys) => {
2131 2132
                match tys.last() {
                    None => vec![],
2133
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2134
                }
2135 2136
            }

2137
            TyAdt(adt, substs) => {
2138
                // recursive case
2139
                let adt_tys = adt.sized_constraint(tcx);
2140
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2141 2142 2143 2144 2145
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2146 2147
            }

2148
            TyProjection(..) | TyAnon(..) => {
2149 2150
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2151
                vec![ty]
2152 2153 2154
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2155 2156 2157 2158
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2159
                let sized_trait = match tcx.lang_items().sized_trait() {
2160
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2161
                    _ => return vec![ty]
2162
                };
2163
                let sized_predicate = Binder::dummy(TraitRef {
2164
                    def_id: sized_trait,
2165
                    substs: tcx.mk_substs_trait(ty, &[])
2166
                }).to_predicate();
2167
                let predicates = tcx.predicates_of(self.did).predicates;
2168
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2169
                    vec![]
2170
                } else {
A
Ariel Ben-Yehuda 已提交
2171
                    vec![ty]
2172 2173 2174
                }
            }

A
Ariel Ben-Yehuda 已提交
2175
            TyInfer(..) => {
2176 2177 2178 2179 2180 2181 2182
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2183 2184
}

2185
impl<'a, 'gcx, 'tcx> FieldDef {
2186
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2187
        tcx.type_of(self.did).subst(tcx, subst)
2188
    }
2189 2190
}

2191 2192 2193 2194 2195 2196
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2197
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2198
pub enum ClosureKind {
2199 2200 2201
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2202 2203 2204
    Fn,
    FnMut,
    FnOnce,
2205 2206
}

2207
impl<'a, 'tcx> ClosureKind {
2208 2209 2210
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2211
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2212 2213
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2214
            ClosureKind::FnMut => {
2215
                tcx.require_lang_item(FnMutTraitLangItem)
2216
            }
2217
            ClosureKind::FnOnce => {
2218
                tcx.require_lang_item(FnOnceTraitLangItem)
2219 2220 2221
            }
        }
    }
2222 2223 2224 2225 2226

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2227 2228 2229 2230 2231 2232
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2233 2234 2235
            _ => false,
        }
    }
2236 2237 2238 2239 2240 2241 2242 2243 2244

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2245
    }
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2261 2262
    }

2263 2264 2265
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2266
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2267
        walk::walk_shallow(self)
2268 2269
    }

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2284
    }
2285
}
2286

2287
impl BorrowKind {
2288
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2289
        match m {
2290 2291
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2292 2293
        }
    }
2294

2295 2296 2297 2298
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2299
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2300
        match self {
2301 2302
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2303 2304 2305 2306

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2307
            UniqueImmBorrow => hir::MutMutable,
2308
        }
2309
    }
2310

2311 2312 2313 2314 2315 2316
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2317 2318 2319
    }
}

2320 2321
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2322
    Owned(Lrc<[ast::Attribute]>),
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2337
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2338
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2339
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2340 2341
    }

N
Niko Matsakis 已提交
2342 2343 2344
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2345 2346 2347
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2348 2349 2350 2351 2352 2353
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2354
    pub fn expr_span(self, id: NodeId) -> Span {
2355
        match self.hir.find(id) {
2356
            Some(hir_map::NodeExpr(e)) => {
2357 2358 2359
                e.span
            }
            Some(f) => {
2360
                bug!("Node id {} is not an expr: {:?}", id, f);
2361 2362
            }
            None => {
2363
                bug!("Node id {} is not present in the node map", id);
2364
            }
2365
        }
2366 2367
    }

2368 2369
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2370
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2371
            .collect()
2372 2373
    }

A
Andrew Cann 已提交
2374 2375 2376 2377 2378 2379
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2380 2381 2382 2383 2384 2385 2386
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2387
            match self.describe_def(def_id).expect("no def for def-id") {
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2400 2401
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2402
                                           parent_vis: &hir::Visibility,
2403
                                           trait_item_ref: &hir::TraitItemRef)
2404
                                           -> AssociatedItem {
2405
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2406 2407 2408 2409
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2410
            }
2411
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2412 2413 2414
        };

        AssociatedItem {
2415
            name: trait_item_ref.name,
2416
            kind,
2417 2418
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2419
            defaultness: trait_item_ref.defaultness,
2420
            def_id,
2421 2422 2423 2424 2425 2426 2427 2428 2429
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2430
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2441
            kind,
2442 2443
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2444
            defaultness: impl_item_ref.defaultness,
2445
            def_id,
2446 2447 2448 2449 2450
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident.modern(), variant.did, DUMMY_NODE_ID).0 == field.name.to_ident()
        })
    }

2462 2463 2464 2465
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2466
        let def_ids = self.associated_item_def_ids(def_id);
2467 2468
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2469 2470
    }

2471 2472 2473
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2474
        if !self.features().overlapping_marker_traits {
2475 2476
            return false;
        }
2477 2478 2479 2480 2481 2482 2483 2484
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2485
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2486 2487
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2488 2489
    }

2490 2491
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2492
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2493
        match def {
2494
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2495
                let enum_did = self.parent_def_id(did).unwrap();
2496
                self.adt_def(enum_did).variant_with_id(did)
2497
            }
2498
            Def::Struct(did) | Def::Union(did) => {
2499
                self.adt_def(did).non_enum_variant()
2500 2501 2502
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2503
                self.adt_def(did).non_enum_variant()
2504 2505 2506 2507 2508
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2523
    pub fn item_name(self, id: DefId) -> InternedString {
2524
        if id.index == CRATE_DEF_INDEX {
2525
            self.original_crate_name(id.krate).as_interned_str()
2526
        } else {
2527
            let def_key = self.def_key(id);
2528
            // The name of a StructCtor is that of its struct parent.
2529
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2530 2531 2532 2533 2534 2535 2536 2537 2538
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2539 2540 2541
        }
    }

2542 2543
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2544
                        -> &'gcx Mir<'gcx>
2545 2546
    {
        match instance {
N
Niko Matsakis 已提交
2547
            ty::InstanceDef::Item(did) => {
2548
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2549 2550 2551 2552 2553
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2554
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2555
            ty::InstanceDef::CloneShim(..) => {
2556
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2557
            }
2558 2559 2560
        }
    }

2561 2562
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2563 2564 2565 2566 2567
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2568 2569 2570
        }
    }

2571
    /// Get the attributes of a definition.
2572
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2573
        if let Some(id) = self.hir.as_local_node_id(did) {
2574
            Attributes::Borrowed(self.hir.attrs(id))
2575
        } else {
A
achernyak 已提交
2576
            Attributes::Owned(self.item_attrs(did))
2577
        }
2578 2579
    }

2580
    /// Determine whether an item is annotated with an attribute
2581
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2582
        attr::contains_name(&self.get_attrs(did), attr)
2583
    }
2584

2585 2586
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2587
        self.trait_def(trait_def_id).has_auto_impl
2588
    }
2589

J
John Kåre Alsaker 已提交
2590 2591 2592 2593
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2594 2595
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2596
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2597
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2598
    }
2599 2600 2601

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2602
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2603
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2604
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2605 2606 2607 2608 2609
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2610
            self.opt_associated_item(def_id)
2611 2612 2613
        };

        match item {
2614
            Some(trait_item) => {
2615
                match trait_item.container {
2616 2617 2618
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2619
            }
2620
            None => None
2621 2622 2623
        }
    }

2624 2625
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2626
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2627
        if impl_did.is_local() {
2628 2629
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2630
        } else {
2631
            Err(self.crate_name(impl_did.krate))
2632 2633
        }
    }
J
Jeffrey Seyfried 已提交
2634

2635 2636 2637 2638 2639 2640 2641
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2651
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2652
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2653
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2654 2655 2656 2657
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2658
}
2659

2660
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2661
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2662
        F: FnOnce(&[hir::Freevar]) -> T,
2663
    {
A
Alex Crichton 已提交
2664 2665
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2666
            None => f(&[]),
2667
            Some(d) => f(&d),
2668 2669
        }
    }
2670
}
2671 2672 2673 2674 2675 2676 2677 2678 2679

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2680
        hir::ItemImpl(.., ref impl_item_refs) => {
2681
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2682 2683
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2684 2685
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2686 2687 2688 2689
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2690
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2691 2692 2693
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2694 2695
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2696 2697 2698
            }
        }

2699
        _ => { }
2700
    }
2701 2702 2703 2704

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2705 2706
}

2707 2708
/// Calculates the Sized-constraint.
///
2709
/// In fact, there are only a few options for the types in the constraint:
2710 2711 2712 2713 2714 2715 2716 2717
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2718
                                  -> &'tcx [Ty<'tcx>] {
2719
    let def = tcx.adt_def(def_id);
2720

2721
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2722 2723
        v.fields.last()
    }).flat_map(|f| {
2724
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2725
    }).collect::<Vec<_>>());
2726

2727
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2728

2729
    result
2730 2731
}

2732 2733
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2734
                                     -> Lrc<Vec<DefId>> {
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2750
        hir::ItemTraitAlias(..) => vec![],
2751 2752
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2753
    Lrc::new(vec)
2754 2755
}

A
achernyak 已提交
2756
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2757
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2758 2759
}

A
achernyak 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2773
/// See `ParamEnv` struct def'n for details.
2774
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2775 2776
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2794
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2795
                                             traits::Reveal::UserFacing);
2796 2797 2798 2799 2800 2801 2802

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2803

2804
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2805
                                 crate_num: CrateNum) -> CrateDisambiguator {
2806 2807 2808 2809
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2810 2811 2812 2813 2814 2815
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2816 2817 2818 2819 2820 2821 2822
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2823 2824 2825 2826
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2827 2828 2829
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2830 2831
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2832
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2833 2834 2835 2836
        _ => 1
    }
}

2837
pub fn provide(providers: &mut ty::maps::Providers) {
2838
    context::provide(providers);
2839
    erase_regions::provide(providers);
2840 2841
    layout::provide(providers);
    util::provide(providers);
2842 2843
    *providers = ty::maps::Providers {
        associated_item,
2844
        associated_item_def_ids,
2845
        adt_sized_constraint,
A
achernyak 已提交
2846
        def_span,
2847
        param_env,
A
achernyak 已提交
2848
        trait_of_item,
2849
        crate_disambiguator,
2850
        original_crate_name,
2851
        crate_hash,
2852
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2853
        instance_def_size_estimate,
2854 2855 2856 2857
        ..*providers
    };
}

2858 2859 2860
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2861 2862
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2863 2864
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2865
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2866
}
A
Ariel Ben-Yehuda 已提交
2867

2868
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2869 2870 2871 2872 2873 2874
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2875 2876 2877 2878
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2879 2880 2881
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2882
            name: Symbol::intern(name).as_interned_str()
2883 2884
        }
    }
2885

2886 2887 2888
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2889 2890 2891 2892 2893 2894 2895
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2896 2897 2898 2899 2900 2901

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}