astconv.rs 89.8 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use middle::astconv_util::{prim_ty_to_ty, check_path_args, NO_TPS, NO_REGIONS};
52
use middle::const_eval;
53
use middle::def;
54
use middle::resolve_lifetime as rl;
55
use middle::privacy::{AllPublic, LastMod};
56
use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
57
use middle::traits;
58
use middle::ty::{self, RegionEscape, Ty};
59
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope, ExplicitRscope,
60
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope};
61
use util::common::{ErrorReported, FN_OUTPUT_NAME};
62
use util::nodemap::FnvHashSet;
63
use util::ppaux::{self, Repr, UserString};
64

65
use std::iter::repeat;
66 67
use std::rc::Rc;
use std::slice;
68
use syntax::{abi, ast, ast_util};
69
use syntax::codemap::Span;
70
use syntax::parse::token;
71
use syntax::print::pprust;
72

73 74
pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
75

76 77 78
    /// Identify the type scheme for an item with a type, like a type
    /// alias, fn, or struct. This allows you to figure out the set of
    /// type parameters defined on the item.
79 80
    fn get_item_type_scheme(&self, span: Span, id: ast::DefId)
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>;
81

82 83
    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
84 85
    fn get_trait_def(&self, span: Span, id: ast::DefId)
                     -> Result<Rc<ty::TraitDef<'tcx>>, ErrorReported>;
N
Nick Cameron 已提交
86

87 88 89 90 91 92 93 94
    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
    fn ensure_super_predicates(&self, span: Span, id: ast::DefId)
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
95 96
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
97

98 99
    /// Returns true if the trait with id `trait_def_id` defines an
    /// associated type with the name `name`.
100 101 102
    fn trait_defines_associated_type_named(&self, trait_def_id: ast::DefId, name: ast::Name)
                                           -> bool;

N
Nick Cameron 已提交
103 104 105 106
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
107 108 109
    fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
        None
    }
110

111
    /// What type should we use when a type is omitted?
112
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>
    {
        if ty::binds_late_bound_regions(self.tcx(), &poly_trait_ref) {
B
Brian Anderson 已提交
128
            span_err!(self.tcx().sess, span, E0212,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
                "cannot extract an associated type from a higher-ranked trait bound \
                 in this context");
            self.tcx().types.err
        } else {
            // no late-bound regions, we can just ignore the binder
            self.projected_ty(span, poly_trait_ref.0.clone(), item_name)
        }
    }

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
                    _trait_ref: Rc<ty::TraitRef<'tcx>>,
                    _item_name: ast::Name)
N
Nick Cameron 已提交
144
                    -> Ty<'tcx>;
145 146
}

E
Eduard Burtescu 已提交
147
pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
148
                            -> ty::Region {
149
    let r = match tcx.named_region_map.get(&lifetime.id) {
150 151 152
        None => {
            // should have been recorded by the `resolve_lifetime` pass
            tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
153
        }
154

155
        Some(&rl::DefStaticRegion) => {
156
            ty::ReStatic
157 158
        }

159 160
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
            ty::ReLateBound(debruijn, ty::BrNamed(ast_util::local_def(id), lifetime.name))
161 162
        }

163
        Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
164 165 166 167 168 169
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                param_id: id,
                space: space,
                index: index,
                name: lifetime.name
            })
170 171
        }

172
        Some(&rl::DefFreeRegion(scope, id)) => {
173
            ty::ReFree(ty::FreeRegion {
174
                    scope: scope,
175
                    bound_region: ty::BrNamed(ast_util::local_def(id),
176
                                              lifetime.name)
177 178 179 180 181
                })
        }
    };

    debug!("ast_region_to_region(lifetime={} id={}) yields {}",
182 183 184
           lifetime.repr(tcx),
           lifetime.id,
           r.repr(tcx));
185 186

    r
187 188
}

189 190 191
pub fn opt_ast_region_to_region<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
192
    default_span: Span,
J
James Miller 已提交
193
    opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
194
{
195 196 197
    let r = match *opt_lifetime {
        Some(ref lifetime) => {
            ast_region_to_region(this.tcx(), lifetime)
198
        }
199 200 201

        None => {
            match rscope.anon_regions(default_span, 1) {
202
                Err(v) => {
203
                    debug!("optional region in illegal location");
J
Jakub Wieczorek 已提交
204 205
                    span_err!(this.tcx().sess, default_span, E0106,
                        "missing lifetime specifier");
206 207 208 209
                    match v {
                        Some(v) => {
                            let mut m = String::new();
                            let len = v.len();
210
                            for (i, (name, n)) in v.into_iter().enumerate() {
211 212 213
                                let help_name = if name.is_empty() {
                                    format!("argument {}", i + 1)
                                } else {
214
                                    format!("`{}`", name)
215 216
                                };

J
Jorge Aparicio 已提交
217
                                m.push_str(&(if n == 1 {
218
                                    help_name
219
                                } else {
220
                                    format!("one of {}'s {} elided lifetimes", help_name, n)
221
                                })[..]);
222 223 224

                                if len == 2 && i == 0 {
                                    m.push_str(" or ");
225
                                } else if i + 2 == len {
226
                                    m.push_str(", or ");
227
                                } else if i + 1 != len {
228 229 230 231
                                    m.push_str(", ");
                                }
                            }
                            if len == 1 {
232
                                fileline_help!(this.tcx().sess, default_span,
233 234 235 236
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say which {} it is borrowed from",
                                    m);
                            } else if len == 0 {
237
                                fileline_help!(this.tcx().sess, default_span,
238 239
                                    "this function's return type contains a borrowed value, but \
                                     there is no value for it to be borrowed from");
240
                                fileline_help!(this.tcx().sess, default_span,
241 242
                                    "consider giving it a 'static lifetime");
                            } else {
243
                                fileline_help!(this.tcx().sess, default_span,
244 245 246 247 248 249 250
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say whether it is borrowed from {}",
                                    m);
                            }
                        }
                        None => {},
                    }
251
                    ty::ReStatic
252 253
                }

254
                Ok(rs) => rs[0],
255
            }
256
        }
257 258
    };

B
Ben Gamari 已提交
259
    debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
260
            opt_lifetime.repr(this.tcx()),
261 262 263
            r.repr(this.tcx()));

    r
264 265
}

S
Steve Klabnik 已提交
266 267
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
268
pub fn ast_path_substs_for_ty<'tcx>(
269 270
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
271
    span: Span,
272
    param_mode: PathParamMode,
273
    decl_generics: &ty::Generics<'tcx>,
274
    item_segment: &ast::PathSegment)
275
    -> Substs<'tcx>
276
{
277
    let tcx = this.tcx();
278

279 280 281 282 283 284 285 286
    // ast_path_substs() is only called to convert paths that are
    // known to refer to traits, types, or structs. In these cases,
    // all type parameters defined for the item being referenced will
    // be in the TypeSpace or SelfSpace.
    //
    // Note: in the case of traits, the self parameter is also
    // defined, but we don't currently create a `type_param_def` for
    // `Self` because it is implicit.
287 288
    assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
    assert!(decl_generics.types.all(|d| d.space != FnSpace));
289

290
    let (regions, types, assoc_bindings) = match item_segment.parameters {
291
        ast::AngleBracketedParameters(ref data) => {
292
            convert_angle_bracketed_parameters(this, rscope, span, decl_generics, data)
293 294
        }
        ast::ParenthesizedParameters(ref data) => {
295
            span_err!(tcx.sess, span, E0214,
296
                "parenthesized parameters may only be used with a trait");
297
            convert_parenthesized_parameters(this, rscope, span, decl_generics, data)
298
        }
299 300
    };

301
    prohibit_projections(this.tcx(), &assoc_bindings);
302

303
    create_substs_for_ast_path(this,
304
                               span,
305
                               param_mode,
306 307 308
                               decl_generics,
                               None,
                               types,
309
                               regions)
310 311
}

312 313 314 315 316 317 318 319
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

320
fn create_region_substs<'tcx>(
321 322
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
323
    span: Span,
324
    decl_generics: &ty::Generics<'tcx>,
325
    regions_provided: Vec<ty::Region>)
326
    -> Substs<'tcx>
327 328 329
{
    let tcx = this.tcx();

330
    // If the type is parameterized by the this region, then replace this
331 332
    // region with the current anon region binding (in other words,
    // whatever & would get replaced with).
333
    let expected_num_region_params = decl_generics.regions.len(TypeSpace);
334
    let supplied_num_region_params = regions_provided.len();
335
    let regions = if expected_num_region_params == supplied_num_region_params {
336
        regions_provided
337 338
    } else {
        let anon_regions =
339
            rscope.anon_regions(span, expected_num_region_params);
340

341
        if supplied_num_region_params != 0 || anon_regions.is_err() {
342 343 344
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
345
        }
346 347

        match anon_regions {
348 349
            Ok(anon_regions) => anon_regions,
            Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
350
        }
351
    };
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    Substs::new_type(vec![], regions)
}

/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// The `region_substs` should be the result of `create_region_substs`
/// -- that is, a substitution with no types but the correct number of
/// regions.
fn create_substs_for_ast_path<'tcx>(
    this: &AstConv<'tcx>,
    span: Span,
367
    param_mode: PathParamMode,
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    decl_generics: &ty::Generics<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    types_provided: Vec<Ty<'tcx>>,
    region_substs: Substs<'tcx>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    debug!("create_substs_for_ast_path(decl_generics={}, self_ty={}, \
           types_provided={}, region_substs={}",
           decl_generics.repr(tcx), self_ty.repr(tcx), types_provided.repr(tcx),
           region_substs.repr(tcx));

    assert_eq!(region_substs.regions().len(TypeSpace), decl_generics.regions.len(TypeSpace));
    assert!(region_substs.types.is_empty());
383 384

    // Convert the type parameters supplied by the user.
385
    let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
386 387 388 389 390
    let formal_ty_param_count = ty_param_defs.len();
    let required_ty_param_count = ty_param_defs.iter()
                                               .take_while(|x| x.default.is_none())
                                               .count();

391 392 393 394 395 396 397 398 399 400
    // Fill with `ty_infer` if no params were specified, as long as
    // they were optional (e.g. paths inside expressions).
    let mut type_substs = if param_mode == PathParamMode::Optional &&
                             types_provided.is_empty() {
        (0..formal_ty_param_count).map(|_| this.ty_infer(span)).collect()
    } else {
        types_provided
    };

    let supplied_ty_param_count = type_substs.len();
401 402 403
    check_type_argument_count(this.tcx(), span, supplied_ty_param_count,
                              required_ty_param_count, formal_ty_param_count);

404
    if supplied_ty_param_count < required_ty_param_count {
405 406 407
        while type_substs.len() < required_ty_param_count {
            type_substs.push(tcx.types.err);
        }
408
    } else if supplied_ty_param_count > formal_ty_param_count {
409
        type_substs.truncate(formal_ty_param_count);
410
    }
411 412
    assert!(type_substs.len() >= required_ty_param_count &&
            type_substs.len() <= formal_ty_param_count);
413

414 415
    let mut substs = region_substs;
    substs.types.extend(TypeSpace, type_substs.into_iter());
416

417 418 419 420 421 422 423 424 425 426
    match self_ty {
        None => {
            // If no self-type is provided, it's still possible that
            // one was declared, because this could be an object type.
        }
        Some(ty) => {
            // If a self-type is provided, one should have been
            // "declared" (in other words, this should be a
            // trait-ref).
            assert!(decl_generics.types.get_self().is_some());
427
            substs.types.push(SelfSpace, ty);
428
        }
429
    }
430

431 432
    let actual_supplied_ty_param_count = substs.types.len(TypeSpace);
    for param in &ty_param_defs[actual_supplied_ty_param_count..] {
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        if let Some(default) = param.default {
            // If we are converting an object type, then the
            // `Self` parameter is unknown. However, some of the
            // other type parameters may reference `Self` in their
            // defaults. This will lead to an ICE if we are not
            // careful!
            if self_ty.is_none() && ty::type_has_self(default) {
                tcx.sess.span_err(
                    span,
                    &format!("the type parameter `{}` must be explicitly specified \
                              in an object type because its default value `{}` references \
                              the type `Self`",
                             param.name.user_string(tcx),
                             default.user_string(tcx)));
                substs.types.push(TypeSpace, tcx.types.err);
            } else {
449 450 451
                // This is a default type parameter.
                let default = default.subst_spanned(tcx,
                                                    &substs,
452
                                                    Some(span));
453 454
                substs.types.push(TypeSpace, default);
            }
455 456
        } else {
            tcx.sess.span_bug(span, "extra parameter without default");
457
        }
458
    }
459

460
    substs
461
}
462

463 464 465 466 467 468
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

469 470
fn convert_angle_bracketed_parameters<'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
471 472
                                            span: Span,
                                            decl_generics: &ty::Generics<'tcx>,
473
                                            data: &ast::AngleBracketedParameterData)
474
                                            -> (Substs<'tcx>,
475 476
                                                Vec<Ty<'tcx>>,
                                                Vec<ConvertedBinding<'tcx>>)
477 478 479
{
    let regions: Vec<_> =
        data.lifetimes.iter()
480 481
                      .map(|l| ast_region_to_region(this.tcx(), l))
                      .collect();
482

483 484
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, regions);
485

486 487
    let types: Vec<_> =
        data.types.iter()
488 489 490 491
                  .enumerate()
                  .map(|(i,t)| ast_ty_arg_to_ty(this, rscope, decl_generics,
                                                i, &region_substs, t))
                  .collect();
492

493 494
    let assoc_bindings: Vec<_> =
        data.bindings.iter()
495 496 497 498
                     .map(|b| ConvertedBinding { item_name: b.ident.name,
                                                 ty: ast_ty_to_ty(this, rscope, &*b.ty),
                                                 span: b.span })
                     .collect();
499

500
    (region_substs, types, assoc_bindings)
501 502
}

503 504 505 506
/// Returns the appropriate lifetime to use for any output lifetimes
/// (if one exists) and a vector of the (pattern, number of lifetimes)
/// corresponding to each input type/pattern.
fn find_implied_output_region(input_tys: &[Ty], input_pats: Vec<String>)
507
                              -> (Option<ty::Region>, Vec<(String, usize)>)
508
{
509
    let mut lifetimes_for_params: Vec<(String, usize)> = Vec::new();
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    let mut possible_implied_output_region = None;

    for (input_type, input_pat) in input_tys.iter().zip(input_pats.into_iter()) {
        let mut accumulator = Vec::new();
        ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type);

        if accumulator.len() == 1 {
            // there's a chance that the unique lifetime of this
            // iteration will be the appropriate lifetime for output
            // parameters, so lets store it.
            possible_implied_output_region = Some(accumulator[0])
        }

        lifetimes_for_params.push((input_pat, accumulator.len()));
    }

526 527 528 529 530 531 532
    let implied_output_region =
        if lifetimes_for_params.iter().map(|&(_, n)| n).sum::<usize>() == 1 {
            assert!(possible_implied_output_region.is_some());
            possible_implied_output_region
        } else {
            None
        };
533 534 535
    (implied_output_region, lifetimes_for_params)
}

536 537
fn convert_ty_with_lifetime_elision<'tcx>(this: &AstConv<'tcx>,
                                          implied_output_region: Option<ty::Region>,
538
                                          param_lifetimes: Vec<(String, usize)>,
539 540
                                          ty: &ast::Ty)
                                          -> Ty<'tcx>
541 542 543
{
    match implied_output_region {
        Some(implied_output_region) => {
544
            let rb = ElidableRscope::new(implied_output_region);
545 546 547 548 549 550 551 552 553 554 555 556
            ast_ty_to_ty(this, &rb, ty)
        }
        None => {
            // All regions must be explicitly specified in the output
            // if the lifetime elision rules do not apply. This saves
            // the user from potentially-confusing errors.
            let rb = UnelidableRscope::new(param_lifetimes);
            ast_ty_to_ty(this, &rb, ty)
        }
    }
}

557
fn convert_parenthesized_parameters<'tcx>(this: &AstConv<'tcx>,
558 559 560
                                          rscope: &RegionScope,
                                          span: Span,
                                          decl_generics: &ty::Generics<'tcx>,
561
                                          data: &ast::ParenthesizedParameterData)
562
                                          -> (Substs<'tcx>,
563 564
                                              Vec<Ty<'tcx>>,
                                              Vec<ConvertedBinding<'tcx>>)
565
{
566 567 568
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, Vec::new());

569
    let binding_rscope = BindingRscope::new();
570 571 572 573 574
    let inputs =
        data.inputs.iter()
                   .map(|a_t| ast_ty_arg_to_ty(this, &binding_rscope, decl_generics,
                                               0, &region_substs, a_t))
                   .collect::<Vec<Ty<'tcx>>>();
575

A
Aaron Turon 已提交
576
    let input_params: Vec<_> = repeat(String::new()).take(inputs.len()).collect();
577 578 579
    let (implied_output_region,
         params_lifetimes) = find_implied_output_region(&*inputs, input_params);

580 581
    let input_ty = ty::mk_tup(this.tcx(), inputs);

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    let (output, output_span) = match data.output {
        Some(ref output_ty) => {
            (convert_ty_with_lifetime_elision(this,
                                              implied_output_region,
                                              params_lifetimes,
                                              &**output_ty),
             output_ty.span)
        }
        None => {
            (ty::mk_nil(this.tcx()), data.span)
        }
    };

    let output_binding = ConvertedBinding {
        item_name: token::intern(FN_OUTPUT_NAME),
        ty: output,
        span: output_span
599 600
    };

601
    (region_substs, vec![input_ty], vec![output_binding])
602
}
603

604 605 606
pub fn instantiate_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
607 608
    ast_trait_ref: &ast::PolyTraitRef,
    self_ty: Option<Ty<'tcx>>,
609 610
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
611
{
612 613 614 615 616 617 618 619 620 621
    let trait_ref = &ast_trait_ref.trait_ref;
    let trait_def_id = trait_def_id(this, trait_ref);
    ast_path_to_poly_trait_ref(this,
                               rscope,
                               trait_ref.path.span,
                               PathParamMode::Explicit,
                               trait_def_id,
                               self_ty,
                               trait_ref.path.segments.last().unwrap(),
                               poly_projections)
622
}
623

624 625 626
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
627 628 629
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
630
pub fn instantiate_mono_trait_ref<'tcx>(
631 632
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
633
    trait_ref: &ast::TraitRef,
634
    self_ty: Option<Ty<'tcx>>)
635
    -> Rc<ty::TraitRef<'tcx>>
N
Niko Matsakis 已提交
636
{
637 638 639 640 641 642 643 644 645 646 647
    let trait_def_id = trait_def_id(this, trait_ref);
    ast_path_to_mono_trait_ref(this,
                               rscope,
                               trait_ref.path.span,
                               PathParamMode::Explicit,
                               trait_def_id,
                               self_ty,
                               trait_ref.path.segments.last().unwrap())
}

fn trait_def_id<'tcx>(this: &AstConv<'tcx>, trait_ref: &ast::TraitRef) -> ast::DefId {
648
    let path = &trait_ref.path;
649
    match ::lookup_full_def(this.tcx(), path.span, trait_ref.ref_id) {
650
        def::DefTrait(trait_def_id) => trait_def_id,
N
Niko Matsakis 已提交
651
        _ => {
652 653
            span_fatal!(this.tcx().sess, path.span, E0245, "`{}` is not a trait",
                        path.user_string(this.tcx()));
N
Niko Matsakis 已提交
654 655 656 657
        }
    }
}

658 659 660
fn object_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
661
    span: Span,
662
    param_mode: PathParamMode,
663
    trait_def_id: ast::DefId,
664
    trait_segment: &ast::PathSegment,
665 666 667
    mut projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
668 669 670 671 672 673 674 675
    ast_path_to_poly_trait_ref(this,
                               rscope,
                               span,
                               param_mode,
                               trait_def_id,
                               None,
                               trait_segment,
                               projections)
676 677
}

678
fn ast_path_to_poly_trait_ref<'a,'tcx>(
679 680
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
681
    span: Span,
682
    param_mode: PathParamMode,
683
    trait_def_id: ast::DefId,
684
    self_ty: Option<Ty<'tcx>>,
685
    trait_segment: &ast::PathSegment,
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    // The trait reference introduces a binding level here, so
    // we need to shift the `rscope`. It'd be nice if we could
    // do away with this rscope stuff and work this knowledge
    // into resolve_lifetimes, as we do with non-omitted
    // lifetimes. Oh well, not there yet.
    let shifted_rscope = &ShiftedRscope::new(rscope);

    let (substs, assoc_bindings) =
        create_substs_for_ast_trait_ref(this,
                                        shifted_rscope,
                                        span,
                                        param_mode,
                                        trait_def_id,
                                        self_ty,
                                        trait_segment);
    let poly_trait_ref = ty::Binder(Rc::new(ty::TraitRef::new(trait_def_id, substs)));

    {
        let converted_bindings =
            assoc_bindings
            .iter()
            .filter_map(|binding| {
                // specify type to assert that error was already reported in Err case:
                let predicate: Result<_, ErrorReported> =
                    ast_type_binding_to_poly_projection_predicate(this,
                                                                  poly_trait_ref.clone(),
                                                                  self_ty,
                                                                  binding);
                predicate.ok() // ok to ignore Err() because ErrorReported (see above)
            });
        poly_projections.extend(converted_bindings);
    }

    poly_trait_ref
}

fn ast_path_to_mono_trait_ref<'a,'tcx>(this: &AstConv<'tcx>,
                                       rscope: &RegionScope,
                                       span: Span,
                                       param_mode: PathParamMode,
                                       trait_def_id: ast::DefId,
                                       self_ty: Option<Ty<'tcx>>,
                                       trait_segment: &ast::PathSegment)
                                       -> Rc<ty::TraitRef<'tcx>>
{
    let (substs, assoc_bindings) =
        create_substs_for_ast_trait_ref(this,
                                        rscope,
                                        span,
                                        param_mode,
                                        trait_def_id,
                                        self_ty,
                                        trait_segment);
    prohibit_projections(this.tcx(), &assoc_bindings);
    Rc::new(ty::TraitRef::new(trait_def_id, substs))
}

fn create_substs_for_ast_trait_ref<'a,'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
                                            span: Span,
                                            param_mode: PathParamMode,
                                            trait_def_id: ast::DefId,
                                            self_ty: Option<Ty<'tcx>>,
                                            trait_segment: &ast::PathSegment)
                                            -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
754
{
755 756 757
    debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
           trait_segment);

758
    let trait_def = match this.get_trait_def(span, trait_def_id) {
759 760 761 762 763 764 765
        Ok(trait_def) => trait_def,
        Err(ErrorReported) => {
            // No convenient way to recover from a cycle here. Just bail. Sorry!
            this.tcx().sess.abort_if_errors();
            this.tcx().sess.bug("ErrorReported returned, but no errors reports?")
        }
    };
766

767
    let (regions, types, assoc_bindings) = match trait_segment.parameters {
768
        ast::AngleBracketedParameters(ref data) => {
769
            // For now, require that parenthetical notation be used
770
            // only with `Fn()` etc.
771
            if !this.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
772
                span_err!(this.tcx().sess, span, E0215,
773 774
                                         "angle-bracket notation is not stable when \
                                         used with the `Fn` family of traits, use parentheses");
775
                fileline_help!(this.tcx().sess, span,
776 777 778 779
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

780
            convert_angle_bracketed_parameters(this, rscope, span, &trait_def.generics, data)
781 782
        }
        ast::ParenthesizedParameters(ref data) => {
783 784
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
785
            if !this.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
786
                span_err!(this.tcx().sess, span, E0216,
787 788
                                         "parenthetical notation is only stable when \
                                         used with the `Fn` family of traits");
789
                fileline_help!(this.tcx().sess, span,
790 791 792 793
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

794
            convert_parenthesized_parameters(this, rscope, span, &trait_def.generics, data)
795 796 797 798
        }
    };

    let substs = create_substs_for_ast_path(this,
799
                                            span,
800
                                            param_mode,
801 802 803
                                            &trait_def.generics,
                                            self_ty,
                                            types,
804 805
                                            regions);

806
    (this.tcx().mk_substs(substs), assoc_bindings)
807
}
808

809
fn ast_type_binding_to_poly_projection_predicate<'tcx>(
810
    this: &AstConv<'tcx>,
811
    mut trait_ref: ty::PolyTraitRef<'tcx>,
812
    self_ty: Option<Ty<'tcx>>,
813
    binding: &ConvertedBinding<'tcx>)
814
    -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
815
{
816 817
    let tcx = this.tcx();

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
    // Given something like `U : SomeTrait<T=X>`, we want to produce a
    // predicate like `<U as SomeTrait>::T = X`. This is somewhat
    // subtle in the event that `T` is defined in a supertrait of
    // `SomeTrait`, because in that case we need to upcast.
    //
    // That is, consider this case:
    //
    // ```
    // trait SubTrait : SuperTrait<int> { }
    // trait SuperTrait<A> { type T; }
    //
    // ... B : SubTrait<T=foo> ...
    // ```
    //
    // We want to produce `<B as SuperTrait<int>>::T == foo`.

834
    // Simple case: X is defined in the current trait.
835 836 837 838
    if this.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
        return Ok(ty::Binder(ty::ProjectionPredicate {      // <-------------------+
            projection_ty: ty::ProjectionTy {               //                     |
                trait_ref: trait_ref.skip_binder().clone(), // Binder moved here --+
839 840 841
                item_name: binding.item_name,
            },
            ty: binding.ty,
842
        }));
843 844
    }

845 846 847 848 849 850 851 852 853 854
    // Otherwise, we have to walk through the supertraits to find
    // those that do.  This is complicated by the fact that, for an
    // object type, the `Self` type is not present in the
    // substitutions (after all, it's being constructed right now),
    // but the `supertraits` iterator really wants one. To handle
    // this, we currently insert a dummy type and then remove it
    // later. Yuck.

    let dummy_self_ty = ty::mk_infer(tcx, ty::FreshTy(0));
    if self_ty.is_none() { // if converting for an object type
855 856 857 858 859
        let mut dummy_substs = trait_ref.skip_binder().substs.clone(); // binder moved here -+
        assert!(dummy_substs.self_ty().is_none());                     //                    |
        dummy_substs.types.push(SelfSpace, dummy_self_ty);             //                    |
        trait_ref = ty::Binder(Rc::new(ty::TraitRef::new(trait_ref.def_id(), // <------------+
                                                         tcx.mk_substs(dummy_substs))));
860 861
    }

862
    try!(this.ensure_super_predicates(binding.span, trait_ref.def_id()));
863

864
    let mut candidates: Vec<ty::PolyTraitRef> =
865
        traits::supertraits(tcx, trait_ref.clone())
866
        .filter(|r| this.trait_defines_associated_type_named(r.def_id(), binding.item_name))
867
        .collect();
868

869 870 871
    // If converting for an object type, then remove the dummy-ty from `Self` now.
    // Yuckety yuck.
    if self_ty.is_none() {
872
        for candidate in &mut candidates {
873 874 875 876 877 878 879 880
            let mut dummy_substs = candidate.0.substs.clone();
            assert!(dummy_substs.self_ty() == Some(dummy_self_ty));
            dummy_substs.types.pop(SelfSpace);
            *candidate = ty::Binder(Rc::new(ty::TraitRef::new(candidate.def_id(),
                                                              tcx.mk_substs(dummy_substs))));
        }
    }

881 882 883 884 885
    let candidate = try!(one_bound_for_assoc_type(tcx,
                                                  candidates,
                                                  &trait_ref.user_string(tcx),
                                                  &token::get_name(binding.item_name),
                                                  binding.span));
886

887 888 889
    Ok(ty::Binder(ty::ProjectionPredicate {             // <-------------------------+
        projection_ty: ty::ProjectionTy {               //                           |
            trait_ref: candidate.skip_binder().clone(), // binder is moved up here --+
890 891 892
            item_name: binding.item_name,
        },
        ty: binding.ty,
893
    }))
894 895
}

896
fn ast_path_to_ty<'tcx>(
897 898
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
899
    span: Span,
900
    param_mode: PathParamMode,
901
    did: ast::DefId,
902 903
    item_segment: &ast::PathSegment)
    -> Ty<'tcx>
904
{
905
    let tcx = this.tcx();
906
    let (generics, decl_ty) = match this.get_item_type_scheme(span, did) {
907
        Ok(ty::TypeScheme { generics,  ty: decl_ty }) => {
908
            (generics, decl_ty)
909 910
        }
        Err(ErrorReported) => {
911
            return tcx.types.err;
912 913
        }
    };
914

N
Nick Cameron 已提交
915 916 917 918 919 920
    let substs = ast_path_substs_for_ty(this,
                                        rscope,
                                        span,
                                        param_mode,
                                        &generics,
                                        item_segment);
921

922 923 924 925
    // FIXME(#12938): This is a hack until we have full support for DST.
    if Some(did) == this.tcx().lang_items.owned_box() {
        assert_eq!(substs.types.len(TypeSpace), 1);
        return ty::mk_uniq(this.tcx(), *substs.types.get(TypeSpace, 0));
926 927
    }

928
    decl_ty.subst(this.tcx(), &substs)
929 930
}

931 932
type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

933 934 935 936 937
fn ast_ty_to_trait_ref<'tcx>(this: &AstConv<'tcx>,
                             rscope: &RegionScope,
                             ty: &ast::Ty,
                             bounds: &[ast::TyParamBound])
                             -> Result<TraitAndProjections<'tcx>, ErrorReported>
938
{
939 940 941 942 943 944 945 946 947 948
    /*!
     * In a type like `Foo + Send`, we want to wait to collect the
     * full set of bounds before we make the object type, because we
     * need them to infer a region bound.  (For example, if we tried
     * made a type from just `Foo`, then it wouldn't be enough to
     * infer a 'static bound, and hence the user would get an error.)
     * So this function is used when we're dealing with a sum type to
     * convert the LHS. It only accepts a type that refers to a trait
     * name, and reports an error otherwise.
     */
949

950
    match ty.node {
951
        ast::TyPath(None, ref path) => {
952 953 954 955
            let def = match this.tcx().def_map.borrow().get(&ty.id) {
                Some(&def::PathResolution { base_def, depth: 0, .. }) => Some(base_def),
                _ => None
            };
956 957
            match def {
                Some(def::DefTrait(trait_def_id)) => {
958
                    let mut projection_bounds = Vec::new();
959 960
                    let trait_ref = object_path_to_poly_trait_ref(this,
                                                                  rscope,
961
                                                                  path.span,
962
                                                                  PathParamMode::Explicit,
963
                                                                  trait_def_id,
964
                                                                  path.segments.last().unwrap(),
965
                                                                  &mut projection_bounds);
966
                    Ok((trait_ref, projection_bounds))
967 968
                }
                _ => {
969
                    span_err!(this.tcx().sess, ty.span, E0172, "expected a reference to a trait");
970 971 972
                    Err(ErrorReported)
                }
            }
973
        }
974
        _ => {
975
            span_err!(this.tcx().sess, ty.span, E0178,
976 977 978 979
                      "expected a path on the left-hand side of `+`, not `{}`",
                      pprust::ty_to_string(ty));
            match ty.node {
                ast::TyRptr(None, ref mut_ty) => {
980
                    fileline_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
981
                               "perhaps you meant `&{}({} +{})`? (per RFC 438)",
982 983 984
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
985
                }
986
               ast::TyRptr(Some(ref lt), ref mut_ty) => {
987
                    fileline_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
988
                               "perhaps you meant `&{} {}({} +{})`? (per RFC 438)",
989 990 991 992 993 994 995
                               pprust::lifetime_to_string(lt),
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }

                _ => {
996
                    fileline_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
997
                               "perhaps you forgot parentheses? (per RFC 438)");
998 999
                }
            }
1000
            Err(ErrorReported)
1001
        }
1002
    }
1003 1004
}

1005 1006 1007 1008 1009 1010 1011
fn trait_ref_to_object_type<'tcx>(this: &AstConv<'tcx>,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_ref: ty::PolyTraitRef<'tcx>,
                                  projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
                                  bounds: &[ast::TyParamBound])
                                  -> Ty<'tcx>
1012 1013 1014 1015
{
    let existential_bounds = conv_existential_bounds(this,
                                                     rscope,
                                                     span,
1016
                                                     trait_ref.clone(),
1017
                                                     projection_bounds,
1018 1019
                                                     bounds);

1020
    let result = make_object_type(this, span, trait_ref, existential_bounds);
1021 1022 1023 1024
    debug!("trait_ref_to_object_type: result={}",
           result.repr(this.tcx()));

    result
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
fn make_object_type<'tcx>(this: &AstConv<'tcx>,
                          span: Span,
                          principal: ty::PolyTraitRef<'tcx>,
                          bounds: ty::ExistentialBounds<'tcx>)
                          -> Ty<'tcx> {
    let tcx = this.tcx();
    let object = ty::TyTrait {
        principal: principal,
        bounds: bounds
    };
    let object_trait_ref =
        object.principal_trait_ref_with_self_ty(tcx, tcx.types.err);

    // ensure the super predicates and stop if we encountered an error
    if this.ensure_super_predicates(span, object.principal_def_id()).is_err() {
        return tcx.types.err;
    }

    let mut associated_types: FnvHashSet<(ast::DefId, ast::Name)> =
        traits::supertraits(tcx, object_trait_ref)
        .flat_map(|tr| {
            let trait_def = ty::lookup_trait_def(tcx, tr.def_id());
            trait_def.associated_type_names
                .clone()
                .into_iter()
                .map(move |associated_type_name| (tr.def_id(), associated_type_name))
        })
        .collect();

    for projection_bound in &object.bounds.projection_bounds {
        let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                    projection_bound.0.projection_ty.item_name);
        associated_types.remove(&pair);
    }

    for (trait_def_id, name) in associated_types {
        span_err!(tcx.sess, span, E0191,
            "the value of the associated type `{}` (from the trait `{}`) must be specified",
                    name.user_string(tcx),
                    ty::item_path_str(tcx, trait_def_id));
    }

    ty::mk_trait(tcx, object.principal, object.bounds)
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
fn report_ambiguous_associated_type(tcx: &ty::ctxt,
                                    span: Span,
                                    type_str: &str,
                                    trait_str: &str,
                                    name: &str) {
    span_err!(tcx.sess, span, E0223,
              "ambiguous associated type; specify the type using the syntax \
               `<{} as {}>::{}`",
              type_str, trait_str, name);
}

1083
// Search for a bound on a type parameter which includes the associated item
1084 1085 1086 1087
// given by assoc_name. ty_param_node_id is the node id for the type parameter
// (which might be `Self`, but only if it is the `Self` of a trait, not an
// impl). This function will fail if there are no suitable bounds or there is
// any ambiguity.
1088
fn find_bound_for_assoc_item<'tcx>(this: &AstConv<'tcx>,
1089
                                   ty_param_node_id: ast::NodeId,
1090 1091 1092
                                   assoc_name: ast::Name,
                                   span: Span)
                                   -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1093 1094
{
    let tcx = this.tcx();
N
Nick Cameron 已提交
1095

1096 1097
    let bounds = match this.get_type_parameter_bounds(span, ty_param_node_id) {
        Ok(v) => v,
N
Nick Cameron 已提交
1098
        Err(ErrorReported) => {
1099
            return Err(ErrorReported);
N
Nick Cameron 已提交
1100
        }
1101 1102
    };

N
Nick Cameron 已提交
1103
    // Ensure the super predicates and stop if we encountered an error.
1104
    if bounds.iter().any(|b| this.ensure_super_predicates(span, b.def_id()).is_err()) {
1105
        return Err(ErrorReported);
1106
    }
1107

N
Nick Cameron 已提交
1108 1109
    // Check that there is exactly one way to find an associated type with the
    // correct name.
1110
    let suitable_bounds: Vec<_> =
1111
        traits::transitive_bounds(tcx, &bounds)
1112
        .filter(|b| this.trait_defines_associated_type_named(b.def_id(), assoc_name))
1113
        .collect();
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    let ty_param_name = tcx.type_parameter_def(ty_param_node_id).name;
    one_bound_for_assoc_type(tcx,
                             suitable_bounds,
                             &token::get_name(ty_param_name),
                             &token::get_name(assoc_name),
                             span)
}


// Checks that bounds contains exactly one element and reports appropriate
// errors otherwise.
fn one_bound_for_assoc_type<'tcx>(tcx: &ty::ctxt<'tcx>,
                                  bounds: Vec<ty::PolyTraitRef<'tcx>>,
                                  ty_param_name: &str,
                                  assoc_name: &str,
                                  span: Span)
    -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
{
1133
    if bounds.is_empty() {
1134
        span_err!(tcx.sess, span, E0220,
1135 1136 1137
                  "associated type `{}` not found for `{}`",
                  assoc_name,
                  ty_param_name);
1138
        return Err(ErrorReported);
1139 1140
    }

1141
    if bounds.len() > 1 {
1142
        span_err!(tcx.sess, span, E0221,
1143 1144 1145
                  "ambiguous associated type `{}` in bounds of `{}`",
                  assoc_name,
                  ty_param_name);
1146

1147
        for bound in &bounds {
1148
            span_note!(tcx.sess, span,
1149
                       "associated type `{}` could derive from `{}`",
1150 1151
                       ty_param_name,
                       bound.user_string(tcx));
1152 1153 1154
        }
    }

1155
    Ok(bounds[0].clone())
1156 1157
}

N
Nick Cameron 已提交
1158 1159 1160 1161 1162 1163
// Create a type from a a path to an associated type.
// For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
// and item_segment is the path segment for D. We return a type and a def for
// the whole path.
// Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
// parameter or Self.
1164
fn associated_path_def_to_ty<'tcx>(this: &AstConv<'tcx>,
1165 1166 1167 1168 1169
                                   span: Span,
                                   ty: Ty<'tcx>,
                                   ty_path_def: def::Def,
                                   item_segment: &ast::PathSegment)
                                   -> (Ty<'tcx>, def::Def)
1170 1171
{
    let tcx = this.tcx();
1172 1173
    let assoc_name = item_segment.identifier.name;

N
Nick Cameron 已提交
1174
    debug!("associated_path_def_to_ty: {}::{}", ty.repr(tcx), token::get_name(assoc_name));
1175

N
Nick Cameron 已提交
1176
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1177

1178 1179
    // Find the type of the associated item, and the trait where the associated
    // item is declared.
1180
    let bound = match (&ty.sty, ty_path_def) {
1181 1182 1183 1184 1185
        (_, def::DefSelfTy(Some(trait_did), Some((impl_id, _)))) => {
            // `Self` in an impl of a trait - we have a concrete self type and a
            // trait reference.
            match tcx.map.expect_item(impl_id).node {
                ast::ItemImpl(_, _, _, Some(ref trait_ref), _, _) => {
1186 1187 1188 1189
                    if this.ensure_super_predicates(span, trait_did).is_err() {
                        return (tcx.types.err, ty_path_def);
                    }

1190 1191 1192 1193 1194 1195 1196 1197 1198
                    let trait_segment = &trait_ref.path.segments.last().unwrap();
                    let trait_ref = ast_path_to_mono_trait_ref(this,
                                                               &ExplicitRscope,
                                                               span,
                                                               PathParamMode::Explicit,
                                                               trait_did,
                                                               Some(ty),
                                                               trait_segment);

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
                    let candidates: Vec<ty::PolyTraitRef> =
                        traits::supertraits(tcx, ty::Binder(trait_ref.clone()))
                        .filter(|r| this.trait_defines_associated_type_named(r.def_id(),
                                                                             assoc_name))
                        .collect();

                    match one_bound_for_assoc_type(tcx,
                                                   candidates,
                                                   "Self",
                                                   &token::get_name(assoc_name),
                                                   span) {
                        Ok(bound) => bound,
                        Err(ErrorReported) => return (tcx.types.err, ty_path_def),
                    }
1213 1214 1215 1216
                }
                _ => unreachable!()
            }
        }
N
Nick Cameron 已提交
1217
        (&ty::ty_param(_), def::DefTyParam(..)) |
1218 1219 1220
        (&ty::ty_param(_), def::DefSelfTy(Some(_), None)) => {
            // A type parameter or Self, we need to find the associated item from
            // a bound.
1221 1222
            let ty_param_node_id = ty_path_def.local_node_id();
            match find_bound_for_assoc_item(this, ty_param_node_id, assoc_name, span) {
1223 1224
                Ok(bound) => bound,
                Err(ErrorReported) => return (tcx.types.err, ty_path_def),
1225
            }
1226
        }
N
Nick Cameron 已提交
1227 1228 1229 1230 1231 1232 1233 1234
        _ => {
            report_ambiguous_associated_type(tcx,
                                             span,
                                             &ty.user_string(tcx),
                                             "Trait",
                                             &token::get_name(assoc_name));
            return (tcx.types.err, ty_path_def);
        }
1235 1236
    };

1237 1238
    let trait_did = bound.0.def_id;
    let ty = this.projected_ty_from_poly_trait_ref(span, bound, assoc_name);
1239 1240 1241 1242

    let item_did = if trait_did.krate == ast::LOCAL_CRATE {
        // `ty::trait_items` used below requires information generated
        // by type collection, which may be in progress at this point.
1243
        match tcx.map.expect_item(trait_did.node).node {
1244
            ast::ItemTrait(_, _, _, ref trait_items) => {
N
Nick Cameron 已提交
1245 1246
                let item = trait_items.iter()
                                      .find(|i| i.ident.name == assoc_name)
1247 1248
                                      .expect("missing associated type");
                ast_util::local_def(item.id)
1249 1250 1251 1252
            }
            _ => unreachable!()
        }
    } else {
1253
        let trait_items = ty::trait_items(tcx, trait_did);
1254 1255 1256
        let item = trait_items.iter().find(|i| i.name() == assoc_name);
        item.expect("missing associated type").def_id()
    };
N
Nick Cameron 已提交
1257

1258
    (ty, def::DefAssociatedTy(trait_did, item_did))
1259 1260
}

1261 1262
fn qpath_to_ty<'tcx>(this: &AstConv<'tcx>,
                     rscope: &RegionScope,
1263
                     span: Span,
1264 1265
                     param_mode: PathParamMode,
                     opt_self_ty: Option<Ty<'tcx>>,
1266 1267 1268
                     trait_def_id: ast::DefId,
                     trait_segment: &ast::PathSegment,
                     item_segment: &ast::PathSegment)
1269
                     -> Ty<'tcx>
1270
{
1271
    let tcx = this.tcx();
1272

1273
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1274

1275
    let self_ty = if let Some(ty) = opt_self_ty {
1276
        ty
1277 1278
    } else {
        let path_str = ty::item_path_str(tcx, trait_def_id);
N
Nick Cameron 已提交
1279 1280 1281 1282 1283
        report_ambiguous_associated_type(tcx,
                                         span,
                                         "Type",
                                         &path_str,
                                         &token::get_ident(item_segment.identifier));
1284 1285
        return tcx.types.err;
    };
1286

1287
    debug!("qpath_to_ty: self_type={}", self_ty.repr(tcx));
1288

1289 1290 1291 1292 1293 1294 1295
    let trait_ref = ast_path_to_mono_trait_ref(this,
                                               rscope,
                                               span,
                                               param_mode,
                                               trait_def_id,
                                               Some(self_ty),
                                               trait_segment);
1296

1297
    debug!("qpath_to_ty: trait_ref={}", trait_ref.repr(tcx));
1298

1299
    this.projected_ty(span, trait_ref, item_segment.identifier.name)
1300 1301
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/// Convert a type supplied as value for a type argument from AST into our
/// our internal representation. This is the same as `ast_ty_to_ty` but that
/// it applies the object lifetime default.
///
/// # Parameters
///
/// * `this`, `rscope`: the surrounding context
/// * `decl_generics`: the generics of the struct/enum/trait declaration being
///   referenced
/// * `index`: the index of the type parameter being instantiated from the list
///   (we assume it is in the `TypeSpace`)
/// * `region_substs`: a partial substitution consisting of
///   only the region type parameters being supplied to this type.
/// * `ast_ty`: the ast representation of the type being supplied
pub fn ast_ty_arg_to_ty<'tcx>(this: &AstConv<'tcx>,
                              rscope: &RegionScope,
                              decl_generics: &ty::Generics<'tcx>,
                              index: usize,
                              region_substs: &Substs<'tcx>,
                              ast_ty: &ast::Ty)
                              -> Ty<'tcx>
{
    let tcx = this.tcx();

    if let Some(def) = decl_generics.types.opt_get(TypeSpace, index) {
        let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
        let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
        ast_ty_to_ty(this, rscope1, ast_ty)
    } else {
        ast_ty_to_ty(this, rscope, ast_ty)
    }
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
// Check the base def in a PathResolution and convert it to a Ty. If there are
// associated types in the PathResolution, these will need to be seperately
// resolved.
fn base_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                        rscope: &RegionScope,
                        span: Span,
                        param_mode: PathParamMode,
                        def: &def::Def,
                        opt_self_ty: Option<Ty<'tcx>>,
                        base_segments: &[ast::PathSegment])
                        -> Ty<'tcx> {
1346 1347
    let tcx = this.tcx();

1348
    match *def {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        def::DefTrait(trait_def_id) => {
            // N.B. this case overlaps somewhat with
            // TyObjectSum, see that fn for details
            let mut projection_bounds = Vec::new();

            let trait_ref = object_path_to_poly_trait_ref(this,
                                                          rscope,
                                                          span,
                                                          param_mode,
                                                          trait_def_id,
N
Nick Cameron 已提交
1359
                                                          base_segments.last().unwrap(),
1360 1361
                                                          &mut projection_bounds);

N
Nick Cameron 已提交
1362 1363 1364 1365 1366 1367 1368
            check_path_args(tcx, base_segments.init(), NO_TPS | NO_REGIONS);
            trait_ref_to_object_type(this,
                                     rscope,
                                     span,
                                     trait_ref,
                                     projection_bounds,
                                     &[])
1369 1370
        }
        def::DefTy(did, _) | def::DefStruct(did) => {
N
Nick Cameron 已提交
1371
            check_path_args(tcx, base_segments.init(), NO_TPS | NO_REGIONS);
1372 1373 1374 1375 1376
            ast_path_to_ty(this,
                           rscope,
                           span,
                           param_mode,
                           did,
N
Nick Cameron 已提交
1377
                           base_segments.last().unwrap())
1378 1379
        }
        def::DefTyParam(space, index, _, name) => {
N
Nick Cameron 已提交
1380
            check_path_args(tcx, base_segments, NO_TPS | NO_REGIONS);
1381 1382
            ty::mk_param(tcx, space, index, name)
        }
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
        def::DefSelfTy(_, Some((_, self_ty_id))) => {
            // Self in impl (we know the concrete type).
            check_path_args(tcx, base_segments, NO_TPS | NO_REGIONS);
            if let Some(&ty) = tcx.ast_ty_to_ty_cache.borrow().get(&self_ty_id) {
                ty
            } else {
                tcx.sess.span_bug(span, "self type has not been fully resolved")
            }
        }
        def::DefSelfTy(Some(_), None) => {
            // Self in trait.
N
Nick Cameron 已提交
1394
            check_path_args(tcx, base_segments, NO_TPS | NO_REGIONS);
1395 1396 1397
            ty::mk_self_type(tcx)
        }
        def::DefAssociatedTy(trait_did, _) => {
N
Nick Cameron 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406
            check_path_args(tcx, &base_segments[..base_segments.len()-2], NO_TPS | NO_REGIONS);
            qpath_to_ty(this,
                        rscope,
                        span,
                        param_mode,
                        opt_self_ty,
                        trait_did,
                        &base_segments[base_segments.len()-2],
                        base_segments.last().unwrap())
1407 1408
        }
        def::DefMod(id) => {
1409 1410 1411 1412
            // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
            // FIXME(#22519) This part of the resolution logic should be
            // avoided entirely for that form, once we stop needed a Def
            // for `associated_path_def_to_ty`.
1413 1414 1415
            // Fixing this will also let use resolve <Self>::Foo the same way we
            // resolve Self::Foo, at the moment we can't resolve the former because
            // we don't have the trait information around, which is just sad.
N
Nick Cameron 已提交
1416 1417 1418 1419 1420 1421

            if !base_segments.is_empty() {
                span_err!(tcx.sess,
                          span,
                          E0247,
                          "found module name used as a type: {}",
1422 1423
                          tcx.map.node_to_string(id.node));
                return this.tcx().types.err;
1424
            }
N
Nick Cameron 已提交
1425 1426

            opt_self_ty.expect("missing T in <T>::a::b::c")
1427 1428
        }
        def::DefPrimTy(prim_ty) => {
N
Nick Cameron 已提交
1429
            prim_ty_to_ty(tcx, base_segments, prim_ty)
1430 1431
        }
        _ => {
1432 1433 1434
            span_err!(tcx.sess, span, E0248,
                      "found value name used as a type: {:?}", *def);
            return this.tcx().types.err;
1435
        }
1436 1437
    }
}
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
// Note that both base_segments and assoc_segments may be empty, although not at
// the same time.
pub fn finish_resolving_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                        rscope: &RegionScope,
                                        span: Span,
                                        param_mode: PathParamMode,
                                        def: &def::Def,
                                        opt_self_ty: Option<Ty<'tcx>>,
                                        base_segments: &[ast::PathSegment],
                                        assoc_segments: &[ast::PathSegment])
                                        -> Ty<'tcx> {
    let mut ty = base_def_to_ty(this,
                                rscope,
                                span,
                                param_mode,
                                def,
                                opt_self_ty,
                                base_segments);
N
Nick Cameron 已提交
1457
    let mut def = *def;
1458
    // If any associated type segments remain, attempt to resolve them.
1459 1460 1461 1462 1463
    for segment in assoc_segments {
        if ty.sty == ty::ty_err {
            break;
        }
        // This is pretty bad (it will fail except for T::A and Self::A).
N
Nick Cameron 已提交
1464 1465 1466 1467 1468
        let (a_ty, a_def) = associated_path_def_to_ty(this,
                                                      span,
                                                      ty,
                                                      def,
                                                      segment);
1469
        ty = a_ty;
N
Nick Cameron 已提交
1470
        def = a_def;
1471 1472 1473 1474
    }
    ty
}

1475 1476 1477 1478 1479 1480
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty<'tcx>(this: &AstConv<'tcx>,
                          rscope: &RegionScope,
                          ast_ty: &ast::Ty)
                          -> Ty<'tcx>
1481 1482 1483
{
    debug!("ast_ty_to_ty(ast_ty={})",
           ast_ty.repr(this.tcx()));
1484

1485
    let tcx = this.tcx();
1486

1487 1488
    if let Some(&ty) = tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
        return ty;
1489 1490
    }

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    let typ = match ast_ty.node {
        ast::TyVec(ref ty) => {
            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
        }
        ast::TyObjectSum(ref ty, ref bounds) => {
            match ast_ty_to_trait_ref(this, rscope, &**ty, bounds) {
                Ok((trait_ref, projection_bounds)) => {
                    trait_ref_to_object_type(this,
                                             rscope,
                                             ast_ty.span,
                                             trait_ref,
                                             projection_bounds,
                                             bounds)
1504
                }
1505 1506
                Err(ErrorReported) => {
                    this.tcx().types.err
1507 1508
                }
            }
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        }
        ast::TyPtr(ref mt) => {
            ty::mk_ptr(tcx, ty::mt {
                ty: ast_ty_to_ty(this, rscope, &*mt.ty),
                mutbl: mt.mutbl
            })
        }
        ast::TyRptr(ref region, ref mt) => {
            let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
            debug!("ty_rptr r={}", r.repr(this.tcx()));
            let rscope1 =
                &ObjectLifetimeDefaultRscope::new(
                    rscope,
                    Some(ty::ObjectLifetimeDefault::Specific(r)));
            let t = ast_ty_to_ty(this, rscope1, &*mt.ty);
            ty::mk_rptr(tcx, tcx.mk_region(r), ty::mt {ty: t, mutbl: mt.mutbl})
        }
        ast::TyTup(ref fields) => {
            let flds = fields.iter()
                             .map(|t| ast_ty_to_ty(this, rscope, &**t))
                             .collect();
            ty::mk_tup(tcx, flds)
        }
        ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
        ast::TyBareFn(ref bf) => {
            if bf.decl.variadic && bf.abi != abi::C {
                span_err!(tcx.sess, ast_ty.span, E0222,
                          "variadic function must have C calling convention");
N
Niko Matsakis 已提交
1537
            }
1538 1539 1540 1541 1542 1543
            let bare_fn = ty_of_bare_fn(this, bf.unsafety, bf.abi, &*bf.decl);
            ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(bare_fn))
        }
        ast::TyPolyTraitRef(ref bounds) => {
            conv_ty_poly_trait_ref(this, rscope, ast_ty.span, bounds)
        }
1544
        ast::TyPath(ref maybe_qself, ref path) => {
1545 1546
            let path_res = if let Some(&d) = tcx.def_map.borrow().get(&ast_ty.id) {
                d
1547 1548 1549 1550 1551 1552 1553
            } else if let Some(ast::QSelf { position: 0, .. }) = *maybe_qself {
                // Create some fake resolution that can't possibly be a type.
                def::PathResolution {
                    base_def: def::DefMod(ast_util::local_def(ast::CRATE_NODE_ID)),
                    last_private: LastMod(AllPublic),
                    depth: path.segments.len()
                }
1554 1555 1556 1557
            } else {
                tcx.sess.span_bug(ast_ty.span,
                                  &format!("unbound path {}", ast_ty.repr(tcx)))
            };
N
Nick Cameron 已提交
1558
            let def = path_res.base_def;
1559
            let base_ty_end = path.segments.len() - path_res.depth;
1560 1561 1562
            let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                ast_ty_to_ty(this, rscope, &qself.ty)
            });
N
Nick Cameron 已提交
1563 1564 1565 1566 1567
            let ty = finish_resolving_def_to_ty(this,
                                                rscope,
                                                ast_ty.span,
                                                PathParamMode::Explicit,
                                                &def,
1568 1569 1570
                                                opt_self_ty,
                                                &path.segments[..base_ty_end],
                                                &path.segments[base_ty_end..]);
1571

1572
            if path_res.depth != 0 && ty.sty != ty::ty_err {
1573
                // Write back the new resolution.
1574 1575 1576 1577 1578
                tcx.def_map.borrow_mut().insert(ast_ty.id, def::PathResolution {
                    base_def: def,
                    last_private: path_res.last_private,
                    depth: 0
                });
1579 1580 1581 1582 1583
            }

            ty
        }
        ast::TyFixedLengthVec(ref ty, ref e) => {
1584
            match const_eval::eval_const_expr_partial(tcx, &**e, Some(tcx.types.usize)) {
1585 1586 1587 1588
                Ok(r) => {
                    match r {
                        const_eval::const_int(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
1589
                                        Some(i as usize)),
1590 1591
                        const_eval::const_uint(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
1592
                                        Some(i as usize)),
1593
                        _ => {
1594 1595 1596
                            span_err!(tcx.sess, ast_ty.span, E0249,
                                      "expected constant expr for array length");
                            this.tcx().types.err
1597 1598
                        }
                    }
1599
                }
1600 1601 1602
                Err(ref r) => {
                    let subspan  =
                        ast_ty.span.lo <= r.span.lo && r.span.hi <= ast_ty.span.hi;
1603
                    span_err!(tcx.sess, r.span, E0250,
1604
                              "array length constant evaluation error: {}",
1605
                              r.description());
1606 1607 1608 1609
                    if !subspan {
                        span_note!(tcx.sess, ast_ty.span, "for array length here")
                    }
                    this.tcx().types.err
1610 1611
                }
            }
1612
        }
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        ast::TyTypeof(ref _e) => {
            tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
        }
        ast::TyInfer => {
            // TyInfer also appears as the type of arguments or return
            // values in a ExprClosure, or as
            // the type of local variables. Both of these cases are
            // handled specially and will not descend into this routine.
            this.ty_infer(ast_ty.span)
        }
    };
1624

1625
    tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, typ);
B
Brian Anderson 已提交
1626
    return typ;
1627 1628
}

1629 1630 1631 1632 1633 1634
pub fn ty_of_arg<'tcx>(this: &AstConv<'tcx>,
                       rscope: &RegionScope,
                       a: &ast::Arg,
                       expected_ty: Option<Ty<'tcx>>)
                       -> Ty<'tcx>
{
E
Erick Tryzelaar 已提交
1635
    match a.ty.node {
1636 1637
        ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
        ast::TyInfer => this.ty_infer(a.ty.span),
1638
        _ => ast_ty_to_ty(this, rscope, &*a.ty),
1639
    }
1640 1641
}

1642 1643
struct SelfInfo<'a, 'tcx> {
    untransformed_self_ty: Ty<'tcx>,
1644
    explicit_self: &'a ast::ExplicitSelf,
1645 1646
}

1647
pub fn ty_of_method<'tcx>(this: &AstConv<'tcx>,
1648 1649
                          sig: &ast::MethodSig,
                          untransformed_self_ty: Ty<'tcx>)
1650
                          -> (ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory) {
1651
    let self_info = Some(SelfInfo {
1652
        untransformed_self_ty: untransformed_self_ty,
1653
        explicit_self: &sig.explicit_self,
1654 1655 1656
    });
    let (bare_fn_ty, optional_explicit_self_category) =
        ty_of_method_or_bare_fn(this,
1657 1658
                                sig.unsafety,
                                sig.abi,
1659
                                self_info,
1660
                                &sig.decl);
1661
    (bare_fn_ty, optional_explicit_self_category.unwrap())
1662 1663
}

1664
pub fn ty_of_bare_fn<'tcx>(this: &AstConv<'tcx>, unsafety: ast::Unsafety, abi: abi::Abi,
1665
                                              decl: &ast::FnDecl) -> ty::BareFnTy<'tcx> {
N
Niko Matsakis 已提交
1666
    let (bare_fn_ty, _) = ty_of_method_or_bare_fn(this, unsafety, abi, None, decl);
1667
    bare_fn_ty
1668 1669
}

1670 1671 1672 1673 1674 1675
fn ty_of_method_or_bare_fn<'a, 'tcx>(this: &AstConv<'tcx>,
                                     unsafety: ast::Unsafety,
                                     abi: abi::Abi,
                                     opt_self_info: Option<SelfInfo<'a, 'tcx>>,
                                     decl: &ast::FnDecl)
                                     -> (ty::BareFnTy<'tcx>, Option<ty::ExplicitSelfCategory>)
1676
{
1677
    debug!("ty_of_method_or_bare_fn");
1678

1679 1680
    // New region names that appear inside of the arguments of the function
    // declaration are bound to that function type.
1681
    let rb = rscope::BindingRscope::new();
1682

1683 1684 1685 1686 1687
    // `implied_output_region` is the region that will be assumed for any
    // region parameters in the return type. In accordance with the rules for
    // lifetime elision, we can determine it in two ways. First (determined
    // here), if self is by-reference, then the implied output region is the
    // region of the self parameter.
1688
    let mut explicit_self_category_result = None;
1689 1690 1691
    let (self_ty, mut implied_output_region) = match opt_self_info {
        None => (None, None),
        Some(self_info) => {
1692 1693 1694
            // This type comes from an impl or trait; no late-bound
            // regions should be present.
            assert!(!self_info.untransformed_self_ty.has_escaping_regions());
1695

1696 1697 1698 1699 1700
            // Figure out and record the explicit self category.
            let explicit_self_category =
                determine_explicit_self_category(this, &rb, &self_info);
            explicit_self_category_result = Some(explicit_self_category);
            match explicit_self_category {
1701 1702 1703
                ty::StaticExplicitSelfCategory => {
                    (None, None)
                }
1704
                ty::ByValueExplicitSelfCategory => {
1705
                    (Some(self_info.untransformed_self_ty), None)
1706 1707 1708
                }
                ty::ByReferenceExplicitSelfCategory(region, mutability) => {
                    (Some(ty::mk_rptr(this.tcx(),
H
Huon Wilson 已提交
1709
                                      this.tcx().mk_region(region),
1710
                                      ty::mt {
1711
                                        ty: self_info.untransformed_self_ty,
1712 1713 1714 1715 1716
                                        mutbl: mutability
                                      })),
                     Some(region))
                }
                ty::ByBoxExplicitSelfCategory => {
1717
                    (Some(ty::mk_uniq(this.tcx(), self_info.untransformed_self_ty)), None)
1718
                }
1719 1720
            }
        }
1721
    };
1722 1723

    // HACK(eddyb) replace the fake self type in the AST with the actual type.
1724
    let input_params = if self_ty.is_some() {
A
Aaron Turon 已提交
1725
        &decl.inputs[1..]
1726
    } else {
1727
        &decl.inputs[..]
1728
    };
1729 1730 1731 1732
    let input_tys = input_params.iter().map(|a| ty_of_arg(this, &rb, a, None));
    let input_pats: Vec<String> = input_params.iter()
                                              .map(|a| pprust::pat_to_string(&*a.pat))
                                              .collect();
1733
    let self_and_input_tys: Vec<Ty> =
A
Aaron Turon 已提交
1734
        self_ty.into_iter().chain(input_tys).collect();
1735

1736

1737 1738 1739
    // Second, if there was exactly one lifetime (either a substitution or a
    // reference) in the arguments, then any anonymous regions in the output
    // have that lifetime.
1740 1741
    let lifetimes_for_params = if implied_output_region.is_none() {
        let input_tys = if self_ty.is_some() {
1742
            // Skip the first argument if `self` is present.
A
Aaron Turon 已提交
1743
            &self_and_input_tys[1..]
1744
        } else {
1745
            &self_and_input_tys[..]
1746
        };
1747

1748 1749 1750 1751 1752 1753
        let (ior, lfp) = find_implied_output_region(input_tys, input_pats);
        implied_output_region = ior;
        lfp
    } else {
        vec![]
    };
1754

1755 1756 1757 1758
    let output_ty = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer =>
            ty::FnConverging(this.ty_infer(output.span)),
        ast::Return(ref output) =>
1759 1760 1761 1762
            ty::FnConverging(convert_ty_with_lifetime_elision(this,
                                                              implied_output_region,
                                                              lifetimes_for_params,
                                                              &**output)),
1763 1764
        ast::DefaultReturn(..) => ty::FnConverging(ty::mk_nil(this.tcx())),
        ast::NoReturn(..) => ty::FnDiverging
1765 1766
    };

1767
    (ty::BareFnTy {
N
Niko Matsakis 已提交
1768
        unsafety: unsafety,
1769
        abi: abi,
1770
        sig: ty::Binder(ty::FnSig {
1771 1772 1773
            inputs: self_and_input_tys,
            output: output_ty,
            variadic: decl.variadic
1774
        }),
1775 1776 1777
    }, explicit_self_category_result)
}

1778 1779 1780 1781
fn determine_explicit_self_category<'a, 'tcx>(this: &AstConv<'tcx>,
                                              rscope: &RegionScope,
                                              self_info: &SelfInfo<'a, 'tcx>)
                                              -> ty::ExplicitSelfCategory
1782 1783
{
    return match self_info.explicit_self.node {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        ast::SelfStatic => ty::StaticExplicitSelfCategory,
        ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
        ast::SelfRegion(ref lifetime, mutability, _) => {
            let region =
                opt_ast_region_to_region(this,
                                         rscope,
                                         self_info.explicit_self.span,
                                         lifetime);
            ty::ByReferenceExplicitSelfCategory(region, mutability)
        }
1794 1795
        ast::SelfExplicit(ref ast_type, _) => {
            let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
            // We wish to (for now) categorize an explicit self
            // declaration like `self: SomeType` into either `self`,
            // `&self`, `&mut self`, or `Box<self>`. We do this here
            // by some simple pattern matching. A more precise check
            // is done later in `check_method_self_type()`.
            //
            // Examples:
            //
            // ```
            // impl Foo for &T {
            //     // Legal declarations:
            //     fn method1(self: &&T); // ByReferenceExplicitSelfCategory
            //     fn method2(self: &T); // ByValueExplicitSelfCategory
            //     fn method3(self: Box<&T>); // ByBoxExplicitSelfCategory
            //
            //     // Invalid cases will be caught later by `check_method_self_type`:
            //     fn method_err1(self: &mut T); // ByReferenceExplicitSelfCategory
            // }
            // ```
            //
            // To do the check we just count the number of "modifiers"
            // on each type and compare them. If they are the same or
            // the impl has more, we call it "by value". Otherwise, we
            // look at the outermost modifier on the method decl and
            // call it by-ref, by-box as appropriate. For method1, for
            // example, the impl type has one modifier, but the method
            // type has two, so we end up with
            // ByReferenceExplicitSelfCategory.

            let impl_modifiers = count_modifiers(self_info.untransformed_self_ty);
            let method_modifiers = count_modifiers(explicit_type);

            debug!("determine_explicit_self_category(self_info.untransformed_self_ty={} \
                   explicit_type={} \
                   modifiers=({},{})",
                   self_info.untransformed_self_ty.repr(this.tcx()),
                   explicit_type.repr(this.tcx()),
                   impl_modifiers,
                   method_modifiers);

            if impl_modifiers >= method_modifiers {
                ty::ByValueExplicitSelfCategory
            } else {
1840
                match explicit_type.sty {
H
Huon Wilson 已提交
1841
                    ty::ty_rptr(r, mt) => ty::ByReferenceExplicitSelfCategory(*r, mt.mutbl),
1842 1843
                    ty::ty_uniq(_) => ty::ByBoxExplicitSelfCategory,
                    _ => ty::ByValueExplicitSelfCategory,
1844 1845
                }
            }
1846 1847
        }
    };
1848

1849
    fn count_modifiers(ty: Ty) -> usize {
1850
        match ty.sty {
1851 1852 1853
            ty::ty_rptr(_, mt) => count_modifiers(mt.ty) + 1,
            ty::ty_uniq(t) => count_modifiers(t) + 1,
            _ => 0,
1854 1855
        }
    }
1856 1857
}

1858 1859
pub fn ty_of_closure<'tcx>(
    this: &AstConv<'tcx>,
N
Niko Matsakis 已提交
1860
    unsafety: ast::Unsafety,
1861
    decl: &ast::FnDecl,
1862
    abi: abi::Abi,
1863 1864
    expected_sig: Option<ty::FnSig<'tcx>>)
    -> ty::ClosureTy<'tcx>
1865
{
1866 1867
    debug!("ty_of_closure(expected_sig={})",
           expected_sig.repr(this.tcx()));
1868 1869 1870

    // new region names that appear inside of the fn decl are bound to
    // that function type
1871
    let rb = rscope::BindingRscope::new();
1872

1873
    let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
1874
        let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
1875 1876
            // no guarantee that the correct number of expected args
            // were supplied
1877
            if i < e.inputs.len() {
1878
                Some(e.inputs[i])
1879 1880 1881
            } else {
                None
            }
1882
        });
J
James Miller 已提交
1883
        ty_of_arg(this, &rb, a, expected_arg_ty)
1884
    }).collect();
1885

1886
    let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1887

1888 1889 1890 1891 1892 1893
    let is_infer = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer => true,
        ast::DefaultReturn(..) => true,
        _ => false
    };

1894
    let output_ty = match decl.output {
1895
        _ if is_infer && expected_ret_ty.is_some() =>
1896
            expected_ret_ty.unwrap(),
1897 1898
        _ if is_infer =>
            ty::FnConverging(this.ty_infer(decl.output.span())),
1899 1900
        ast::Return(ref output) =>
            ty::FnConverging(ast_ty_to_ty(this, &rb, &**output)),
1901 1902
        ast::DefaultReturn(..) => unreachable!(),
        ast::NoReturn(..) => ty::FnDiverging
1903 1904
    };

1905 1906 1907
    debug!("ty_of_closure: input_tys={}", input_tys.repr(this.tcx()));
    debug!("ty_of_closure: output_ty={}", output_ty.repr(this.tcx()));

1908
    ty::ClosureTy {
N
Niko Matsakis 已提交
1909
        unsafety: unsafety,
1910
        abi: abi,
1911 1912 1913
        sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                   output: output_ty,
                                   variadic: decl.variadic}),
1914 1915
    }
}
1916

S
Steve Klabnik 已提交
1917 1918 1919 1920
/// Given an existential type like `Foo+'a+Bar`, this routine converts the `'a` and `Bar` intos an
/// `ExistentialBounds` struct. The `main_trait_refs` argument specifies the `Foo` -- it is absent
/// for closures. Eventually this should all be normalized, I think, so that there is no "main
/// trait ref" and instead we just have a flat list of bounds as the existential type.
1921
fn conv_existential_bounds<'tcx>(
1922 1923
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1924
    span: Span,
1925
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1926
    projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
1927
    ast_bounds: &[ast::TyParamBound])
1928
    -> ty::ExistentialBounds<'tcx>
1929
{
1930
    let partitioned_bounds =
1931
        partition_bounds(this.tcx(), span, ast_bounds);
1932 1933

    conv_existential_bounds_from_partitioned_bounds(
1934
        this, rscope, span, principal_trait_ref, projection_bounds, partitioned_bounds)
1935 1936
}

1937 1938 1939
fn conv_ty_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1940 1941
    span: Span,
    ast_bounds: &[ast::TyParamBound])
1942
    -> Ty<'tcx>
1943
{
1944
    let mut partitioned_bounds = partition_bounds(this.tcx(), span, &ast_bounds[..]);
1945

1946
    let mut projection_bounds = Vec::new();
A
Aaron Turon 已提交
1947 1948
    let main_trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
        let trait_bound = partitioned_bounds.trait_bounds.remove(0);
1949 1950 1951 1952 1953
        instantiate_poly_trait_ref(this,
                                   rscope,
                                   trait_bound,
                                   None,
                                   &mut projection_bounds)
A
Aaron Turon 已提交
1954
    } else {
B
Brian Anderson 已提交
1955
        span_err!(this.tcx().sess, span, E0224,
1956 1957
                  "at least one non-builtin trait is required for an object type");
        return this.tcx().types.err;
1958 1959
    };

1960 1961 1962 1963
    let bounds =
        conv_existential_bounds_from_partitioned_bounds(this,
                                                        rscope,
                                                        span,
1964
                                                        main_trait_bound.clone(),
1965
                                                        projection_bounds,
1966
                                                        partitioned_bounds);
1967

1968
    make_object_type(this, span, main_trait_bound, bounds)
1969 1970
}

1971 1972 1973
pub fn conv_existential_bounds_from_partitioned_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1974
    span: Span,
1975
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1976
    mut projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>, // Empty for boxed closures
1977
    partitioned_bounds: PartitionedBounds)
1978
    -> ty::ExistentialBounds<'tcx>
1979
{
1980 1981
    let PartitionedBounds { builtin_bounds,
                            trait_bounds,
1982
                            region_bounds } =
1983
        partitioned_bounds;
1984 1985

    if !trait_bounds.is_empty() {
1986
        let b = &trait_bounds[0];
B
Brian Anderson 已提交
1987
        span_err!(this.tcx().sess, b.trait_ref.path.span, E0225,
1988
                  "only the builtin traits can be used as closure or object bounds");
1989 1990
    }

1991 1992 1993 1994 1995 1996
    let region_bound = compute_object_lifetime_bound(this,
                                                     rscope,
                                                     span,
                                                     &region_bounds,
                                                     principal_trait_ref,
                                                     builtin_bounds);
1997

1998
    ty::sort_bounds_list(&mut projection_bounds);
1999

2000 2001 2002
    ty::ExistentialBounds {
        region_bound: region_bound,
        builtin_bounds: builtin_bounds,
2003
        projection_bounds: projection_bounds,
2004 2005 2006
    }
}

2007
/// Given the bounds on an object, determines what single region bound
S
Steve Klabnik 已提交
2008 2009 2010
/// (if any) we can use to summarize this type. The basic idea is that we will use the bound the
/// user provided, if they provided one, and otherwise search the supertypes of trait bounds for
/// region bounds. It may be that we can derive no bound at all, in which case we return `None`.
2011 2012 2013 2014 2015 2016 2017 2018
fn compute_object_lifetime_bound<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    explicit_region_bounds: &[&ast::Lifetime],
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    builtin_bounds: ty::BuiltinBounds)
    -> ty::Region
2019
{
2020 2021
    let tcx = this.tcx();

2022
    debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
2023 2024 2025 2026 2027 2028
           principal_trait_ref={}, builtin_bounds={})",
           explicit_region_bounds,
           principal_trait_ref.repr(tcx),
           builtin_bounds.repr(tcx));

    if explicit_region_bounds.len() > 1 {
B
Brian Anderson 已提交
2029 2030
        span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
            "only a single explicit lifetime bound is permitted");
2031 2032
    }

2033
    if !explicit_region_bounds.is_empty() {
2034
        // Explicitly specified region bound. Use that.
2035
        let r = explicit_region_bounds[0];
2036
        return ast_region_to_region(tcx, r);
2037 2038
    }

2039 2040 2041 2042
    if let Err(ErrorReported) = this.ensure_super_predicates(span,principal_trait_ref.def_id()) {
        return ty::ReStatic;
    }

2043 2044 2045
    // No explicit region bound specified. Therefore, examine trait
    // bounds and see if we can derive region bounds from those.
    let derived_region_bounds =
2046
        object_region_bounds(tcx, &principal_trait_ref, builtin_bounds);
2047 2048 2049

    // If there are no derived region bounds, then report back that we
    // can find no region bound.
2050
    if derived_region_bounds.is_empty() {
2051 2052 2053 2054 2055 2056 2057 2058 2059
        match rscope.object_lifetime_default(span) {
            Some(r) => { return r; }
            None => {
                span_err!(this.tcx().sess, span, E0228,
                          "the lifetime bound for this object type cannot be deduced \
                           from context; please supply an explicit bound");
                return ty::ReStatic;
            }
        }
2060 2061 2062 2063 2064
    }

    // If any of the derived region bounds are 'static, that is always
    // the best choice.
    if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
2065
        return ty::ReStatic;
2066 2067 2068 2069 2070
    }

    // Determine whether there is exactly one unique region in the set
    // of derived region bounds. If so, use that. Otherwise, report an
    // error.
2071
    let r = derived_region_bounds[0];
A
Aaron Turon 已提交
2072
    if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
B
Brian Anderson 已提交
2073
        span_err!(tcx.sess, span, E0227,
2074
                  "ambiguous lifetime bound, explicit lifetime bound required");
2075
    }
2076
    return r;
2077 2078
}

N
Niko Matsakis 已提交
2079 2080 2081 2082 2083 2084
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
2085 2086 2087 2088 2089
pub fn object_region_bounds<'tcx>(
    tcx: &ty::ctxt<'tcx>,
    principal: &ty::PolyTraitRef<'tcx>,
    others: ty::BuiltinBounds)
    -> Vec<ty::Region>
2090
{
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    // Since we don't actually *know* the self type for an object,
    // this "open(err)" serves as a kind of dummy standin -- basically
    // a skolemized type.
    let open_ty = ty::mk_infer(tcx, ty::FreshTy(0));

    // Note that we preserve the overall binding levels here.
    assert!(!open_ty.has_escaping_regions());
    let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
    let trait_refs = vec!(ty::Binder(Rc::new(ty::TraitRef::new(principal.0.def_id, substs))));

    let param_bounds = ty::ParamBounds {
        region_bounds: Vec::new(),
        builtin_bounds: others,
        trait_bounds: trait_refs,
        projection_bounds: Vec::new(), // not relevant to computing region bounds
    };

    let predicates = ty::predicates(tcx, open_ty, &param_bounds);
    ty::required_region_bounds(tcx, open_ty, predicates)
2110 2111 2112 2113
}

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
2114
    pub trait_bounds: Vec<&'a ast::PolyTraitRef>,
2115 2116 2117
    pub region_bounds: Vec<&'a ast::Lifetime>,
}

S
Steve Klabnik 已提交
2118 2119
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
2120 2121
pub fn partition_bounds<'a>(tcx: &ty::ctxt,
                            _span: Span,
2122
                            ast_bounds: &'a [ast::TyParamBound])
2123 2124 2125 2126 2127
                            -> PartitionedBounds<'a>
{
    let mut builtin_bounds = ty::empty_builtin_bounds();
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
2128
    for ast_bound in ast_bounds {
2129
        match *ast_bound {
N
Nick Cameron 已提交
2130
            ast::TraitTyParamBound(ref b, ast::TraitBoundModifier::None) => {
2131
                match ::lookup_full_def(tcx, b.trait_ref.path.span, b.trait_ref.ref_id) {
2132
                    def::DefTrait(trait_did) => {
2133 2134 2135
                        if ty::try_add_builtin_trait(tcx,
                                                     trait_did,
                                                     &mut builtin_bounds) {
2136 2137
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
2138
                            if !parameters.types().is_empty() {
2139 2140 2141
                                check_type_argument_count(tcx, b.trait_ref.path.span,
                                                          parameters.types().len(), 0, 0);
                            }
2142
                            if !parameters.lifetimes().is_empty() {
2143 2144
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
2145
                            }
2146
                            continue; // success
2147 2148
                        }
                    }
2149 2150 2151 2152
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
2153
                }
2154 2155
                trait_bounds.push(b);
            }
N
Nick Cameron 已提交
2156
            ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {}
2157 2158 2159
            ast::RegionTyParamBound(ref l) => {
                region_bounds.push(l);
            }
2160
        }
2161 2162 2163 2164 2165 2166
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
2167 2168
    }
}
2169 2170 2171 2172 2173

fn prohibit_projections<'tcx>(tcx: &ty::ctxt<'tcx>,
                              bindings: &[ConvertedBinding<'tcx>])
{
    for binding in bindings.iter().take(1) {
B
Brian Anderson 已提交
2174
        span_err!(tcx.sess, binding.span, E0229,
2175 2176 2177
            "associated type bindings are not allowed here");
    }
}
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

fn check_type_argument_count(tcx: &ty::ctxt, span: Span, supplied: usize,
                             required: usize, accepted: usize) {
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0243,
                  "wrong number of type arguments: {} {}, found {}",
                  expected, required, supplied);
    } else if supplied > accepted {
        let expected = if required < accepted {
            "expected at most"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0244,
                  "wrong number of type arguments: {} {}, found {}",
                  expected,
                  accepted,
                  supplied);
    }
}

fn report_lifetime_number_error(tcx: &ty::ctxt, span: Span, number: usize, expected: usize) {
    span_err!(tcx.sess, span, E0107,
              "wrong number of lifetime parameters: expected {}, found {}",
              expected, number);
}