astconv.rs 78.8 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use middle::astconv_util::{prim_ty_to_ty, check_path_args, NO_TPS, NO_REGIONS};
52
use middle::const_eval;
53
use middle::def;
54
use middle::resolve_lifetime as rl;
55
use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
56 57
use middle::traits;
use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty};
58
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
59
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope};
60
use util::common::{ErrorReported, FN_OUTPUT_NAME};
61
use util::nodemap::DefIdMap;
62
use util::ppaux::{self, Repr, UserString};
63

A
Aaron Turon 已提交
64
use std::iter::{repeat, AdditiveIterator};
65 66
use std::rc::Rc;
use std::slice;
67
use syntax::{abi, ast, ast_util};
68
use syntax::codemap::Span;
69
use syntax::parse::token;
70
use syntax::print::pprust;
71

72 73
pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
74

75
    fn get_item_type_scheme(&self, id: ast::DefId) -> ty::TypeScheme<'tcx>;
76

77
    fn get_trait_def(&self, id: ast::DefId) -> Rc<ty::TraitDef<'tcx>>;
N
Nick Cameron 已提交
78 79 80 81 82

    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
83 84 85
    fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
        None
    }
86

87
    /// What type should we use when a type is omitted?
88
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;
89

90 91 92 93 94 95 96 97 98 99 100 101 102 103
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>
    {
        if ty::binds_late_bound_regions(self.tcx(), &poly_trait_ref) {
B
Brian Anderson 已提交
104
            span_err!(self.tcx().sess, span, E0212,
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                "cannot extract an associated type from a higher-ranked trait bound \
                 in this context");
            self.tcx().types.err
        } else {
            // no late-bound regions, we can just ignore the binder
            self.projected_ty(span, poly_trait_ref.0.clone(), item_name)
        }
    }

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
                    _trait_ref: Rc<ty::TraitRef<'tcx>>,
                    _item_name: ast::Name)
                    -> Ty<'tcx>
    {
B
Brian Anderson 已提交
122
        span_err!(self.tcx().sess, span, E0213,
123 124 125 126
            "associated types are not accepted in this context");

        self.tcx().types.err
    }
127 128
}

E
Eduard Burtescu 已提交
129
pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
130
                            -> ty::Region {
131
    let r = match tcx.named_region_map.get(&lifetime.id) {
132 133 134
        None => {
            // should have been recorded by the `resolve_lifetime` pass
            tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
135
        }
136

137
        Some(&rl::DefStaticRegion) => {
138
            ty::ReStatic
139 140
        }

141 142
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
            ty::ReLateBound(debruijn, ty::BrNamed(ast_util::local_def(id), lifetime.name))
143 144
        }

145 146
        Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
            ty::ReEarlyBound(id, space, index, lifetime.name)
147 148
        }

149
        Some(&rl::DefFreeRegion(scope, id)) => {
150
            ty::ReFree(ty::FreeRegion {
151
                    scope: scope,
152
                    bound_region: ty::BrNamed(ast_util::local_def(id),
153
                                              lifetime.name)
154 155 156 157 158
                })
        }
    };

    debug!("ast_region_to_region(lifetime={} id={}) yields {}",
159 160 161
           lifetime.repr(tcx),
           lifetime.id,
           r.repr(tcx));
162 163

    r
164 165
}

166 167 168
pub fn opt_ast_region_to_region<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
169
    default_span: Span,
J
James Miller 已提交
170
    opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
171
{
172 173 174
    let r = match *opt_lifetime {
        Some(ref lifetime) => {
            ast_region_to_region(this.tcx(), lifetime)
175
        }
176 177 178

        None => {
            match rscope.anon_regions(default_span, 1) {
179
                Err(v) => {
180
                    debug!("optional region in illegal location");
J
Jakub Wieczorek 已提交
181 182
                    span_err!(this.tcx().sess, default_span, E0106,
                        "missing lifetime specifier");
183 184 185 186
                    match v {
                        Some(v) => {
                            let mut m = String::new();
                            let len = v.len();
187
                            for (i, (name, n)) in v.into_iter().enumerate() {
188 189 190
                                let help_name = if name.is_empty() {
                                    format!("argument {}", i + 1)
                                } else {
191
                                    format!("`{}`", name)
192 193
                                };

J
Jorge Aparicio 已提交
194
                                m.push_str(&(if n == 1 {
195
                                    help_name
196
                                } else {
197
                                    format!("one of {}'s {} elided lifetimes", help_name, n)
198
                                })[..]);
199 200 201 202 203 204 205 206 207 208

                                if len == 2 && i == 0 {
                                    m.push_str(" or ");
                                } else if i == len - 2 {
                                    m.push_str(", or ");
                                } else if i != len - 1 {
                                    m.push_str(", ");
                                }
                            }
                            if len == 1 {
P
P1start 已提交
209
                                span_help!(this.tcx().sess, default_span,
210 211 212 213
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say which {} it is borrowed from",
                                    m);
                            } else if len == 0 {
P
P1start 已提交
214
                                span_help!(this.tcx().sess, default_span,
215 216
                                    "this function's return type contains a borrowed value, but \
                                     there is no value for it to be borrowed from");
P
P1start 已提交
217
                                span_help!(this.tcx().sess, default_span,
218 219
                                    "consider giving it a 'static lifetime");
                            } else {
P
P1start 已提交
220
                                span_help!(this.tcx().sess, default_span,
221 222 223 224 225 226 227
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say whether it is borrowed from {}",
                                    m);
                            }
                        }
                        None => {},
                    }
228
                    ty::ReStatic
229 230
                }

231
                Ok(rs) => rs[0],
232
            }
233
        }
234 235
    };

B
Ben Gamari 已提交
236
    debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
237
            opt_lifetime.repr(this.tcx()),
238 239 240
            r.repr(this.tcx()));

    r
241 242
}

S
Steve Klabnik 已提交
243 244
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
245
pub fn ast_path_substs_for_ty<'tcx>(
246 247
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
248
    span: Span,
249
    param_mode: PathParamMode,
250
    decl_generics: &ty::Generics<'tcx>,
251
    item_segment: &ast::PathSegment)
252
    -> Substs<'tcx>
253
{
254
    let tcx = this.tcx();
255

256 257 258 259 260 261 262 263
    // ast_path_substs() is only called to convert paths that are
    // known to refer to traits, types, or structs. In these cases,
    // all type parameters defined for the item being referenced will
    // be in the TypeSpace or SelfSpace.
    //
    // Note: in the case of traits, the self parameter is also
    // defined, but we don't currently create a `type_param_def` for
    // `Self` because it is implicit.
264 265
    assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
    assert!(decl_generics.types.all(|d| d.space != FnSpace));
266

267
    let (regions, types, assoc_bindings) = match item_segment.parameters {
268
        ast::AngleBracketedParameters(ref data) => {
269
            convert_angle_bracketed_parameters(this, rscope, span, decl_generics, data)
270 271
        }
        ast::ParenthesizedParameters(ref data) => {
272
            span_err!(tcx.sess, span, E0214,
273
                "parenthesized parameters may only be used with a trait");
274
            convert_parenthesized_parameters(this, rscope, span, decl_generics, data)
275
        }
276 277
    };

278
    prohibit_projections(this.tcx(), &assoc_bindings);
279

280
    create_substs_for_ast_path(this,
281
                               span,
282
                               param_mode,
283 284 285
                               decl_generics,
                               None,
                               types,
286
                               regions)
287 288
}

289 290 291 292 293 294 295 296
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

297
fn create_region_substs<'tcx>(
298 299
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
300
    span: Span,
301
    decl_generics: &ty::Generics<'tcx>,
302
    regions_provided: Vec<ty::Region>)
303
    -> Substs<'tcx>
304 305 306
{
    let tcx = this.tcx();

307
    // If the type is parameterized by the this region, then replace this
308 309
    // region with the current anon region binding (in other words,
    // whatever & would get replaced with).
310
    let expected_num_region_params = decl_generics.regions.len(TypeSpace);
311
    let supplied_num_region_params = regions_provided.len();
312
    let regions = if expected_num_region_params == supplied_num_region_params {
313
        regions_provided
314 315
    } else {
        let anon_regions =
316
            rscope.anon_regions(span, expected_num_region_params);
317

318
        if supplied_num_region_params != 0 || anon_regions.is_err() {
319 320 321
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
322
        }
323 324

        match anon_regions {
325 326
            Ok(anon_regions) => anon_regions,
            Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
327
        }
328
    };
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    Substs::new_type(vec![], regions)
}

/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// The `region_substs` should be the result of `create_region_substs`
/// -- that is, a substitution with no types but the correct number of
/// regions.
fn create_substs_for_ast_path<'tcx>(
    this: &AstConv<'tcx>,
    span: Span,
344
    param_mode: PathParamMode,
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    decl_generics: &ty::Generics<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    types_provided: Vec<Ty<'tcx>>,
    region_substs: Substs<'tcx>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    debug!("create_substs_for_ast_path(decl_generics={}, self_ty={}, \
           types_provided={}, region_substs={}",
           decl_generics.repr(tcx), self_ty.repr(tcx), types_provided.repr(tcx),
           region_substs.repr(tcx));

    assert_eq!(region_substs.regions().len(TypeSpace), decl_generics.regions.len(TypeSpace));
    assert!(region_substs.types.is_empty());
360 361

    // Convert the type parameters supplied by the user.
362
    let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
363 364 365 366 367
    let formal_ty_param_count = ty_param_defs.len();
    let required_ty_param_count = ty_param_defs.iter()
                                               .take_while(|x| x.default.is_none())
                                               .count();

368 369 370 371 372 373 374 375 376 377
    // Fill with `ty_infer` if no params were specified, as long as
    // they were optional (e.g. paths inside expressions).
    let mut type_substs = if param_mode == PathParamMode::Optional &&
                             types_provided.is_empty() {
        (0..formal_ty_param_count).map(|_| this.ty_infer(span)).collect()
    } else {
        types_provided
    };

    let supplied_ty_param_count = type_substs.len();
378 379 380
    check_type_argument_count(this.tcx(), span, supplied_ty_param_count,
                              required_ty_param_count, formal_ty_param_count);

381
    if supplied_ty_param_count < required_ty_param_count {
382 383 384
        while type_substs.len() < required_ty_param_count {
            type_substs.push(tcx.types.err);
        }
385
    } else if supplied_ty_param_count > formal_ty_param_count {
386
        type_substs.truncate(formal_ty_param_count);
387
    }
388 389
    assert!(type_substs.len() >= required_ty_param_count &&
            type_substs.len() <= formal_ty_param_count);
390

391 392
    let mut substs = region_substs;
    substs.types.extend(TypeSpace, type_substs.into_iter());
393

394 395 396 397 398 399 400 401 402 403
    match self_ty {
        None => {
            // If no self-type is provided, it's still possible that
            // one was declared, because this could be an object type.
        }
        Some(ty) => {
            // If a self-type is provided, one should have been
            // "declared" (in other words, this should be a
            // trait-ref).
            assert!(decl_generics.types.get_self().is_some());
404
            substs.types.push(SelfSpace, ty);
405
        }
406
    }
407

408 409
    let actual_supplied_ty_param_count = substs.types.len(TypeSpace);
    for param in &ty_param_defs[actual_supplied_ty_param_count..] {
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        if let Some(default) = param.default {
            // If we are converting an object type, then the
            // `Self` parameter is unknown. However, some of the
            // other type parameters may reference `Self` in their
            // defaults. This will lead to an ICE if we are not
            // careful!
            if self_ty.is_none() && ty::type_has_self(default) {
                tcx.sess.span_err(
                    span,
                    &format!("the type parameter `{}` must be explicitly specified \
                              in an object type because its default value `{}` references \
                              the type `Self`",
                             param.name.user_string(tcx),
                             default.user_string(tcx)));
                substs.types.push(TypeSpace, tcx.types.err);
            } else {
426 427 428
                // This is a default type parameter.
                let default = default.subst_spanned(tcx,
                                                    &substs,
429
                                                    Some(span));
430 431
                substs.types.push(TypeSpace, default);
            }
432 433
        } else {
            tcx.sess.span_bug(span, "extra parameter without default");
434
        }
435
    }
436

437
    substs
438
}
439

440 441 442 443 444 445
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

446 447
fn convert_angle_bracketed_parameters<'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
448 449
                                            span: Span,
                                            decl_generics: &ty::Generics<'tcx>,
450
                                            data: &ast::AngleBracketedParameterData)
451
                                            -> (Substs<'tcx>,
452 453
                                                Vec<Ty<'tcx>>,
                                                Vec<ConvertedBinding<'tcx>>)
454 455 456
{
    let regions: Vec<_> =
        data.lifetimes.iter()
457 458
                      .map(|l| ast_region_to_region(this.tcx(), l))
                      .collect();
459

460 461
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, regions);
462

463 464
    let types: Vec<_> =
        data.types.iter()
465 466 467 468
                  .enumerate()
                  .map(|(i,t)| ast_ty_arg_to_ty(this, rscope, decl_generics,
                                                i, &region_substs, t))
                  .collect();
469

470 471
    let assoc_bindings: Vec<_> =
        data.bindings.iter()
472 473 474 475
                     .map(|b| ConvertedBinding { item_name: b.ident.name,
                                                 ty: ast_ty_to_ty(this, rscope, &*b.ty),
                                                 span: b.span })
                     .collect();
476

477
    (region_substs, types, assoc_bindings)
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/// Returns the appropriate lifetime to use for any output lifetimes
/// (if one exists) and a vector of the (pattern, number of lifetimes)
/// corresponding to each input type/pattern.
fn find_implied_output_region(input_tys: &[Ty], input_pats: Vec<String>)
                              -> (Option<ty::Region>, Vec<(String, uint)>)
{
    let mut lifetimes_for_params: Vec<(String, uint)> = Vec::new();
    let mut possible_implied_output_region = None;

    for (input_type, input_pat) in input_tys.iter().zip(input_pats.into_iter()) {
        let mut accumulator = Vec::new();
        ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type);

        if accumulator.len() == 1 {
            // there's a chance that the unique lifetime of this
            // iteration will be the appropriate lifetime for output
            // parameters, so lets store it.
            possible_implied_output_region = Some(accumulator[0])
        }

        lifetimes_for_params.push((input_pat, accumulator.len()));
    }

    let implied_output_region = if lifetimes_for_params.iter().map(|&(_, n)| n).sum() == 1 {
        assert!(possible_implied_output_region.is_some());
        possible_implied_output_region
    } else {
        None
    };
    (implied_output_region, lifetimes_for_params)
}

512 513 514 515 516
fn convert_ty_with_lifetime_elision<'tcx>(this: &AstConv<'tcx>,
                                          implied_output_region: Option<ty::Region>,
                                          param_lifetimes: Vec<(String, uint)>,
                                          ty: &ast::Ty)
                                          -> Ty<'tcx>
517 518 519
{
    match implied_output_region {
        Some(implied_output_region) => {
520
            let rb = ElidableRscope::new(implied_output_region);
521 522 523 524 525 526 527 528 529 530 531 532
            ast_ty_to_ty(this, &rb, ty)
        }
        None => {
            // All regions must be explicitly specified in the output
            // if the lifetime elision rules do not apply. This saves
            // the user from potentially-confusing errors.
            let rb = UnelidableRscope::new(param_lifetimes);
            ast_ty_to_ty(this, &rb, ty)
        }
    }
}

533
fn convert_parenthesized_parameters<'tcx>(this: &AstConv<'tcx>,
534 535 536
                                          rscope: &RegionScope,
                                          span: Span,
                                          decl_generics: &ty::Generics<'tcx>,
537
                                          data: &ast::ParenthesizedParameterData)
538
                                          -> (Substs<'tcx>,
539 540
                                              Vec<Ty<'tcx>>,
                                              Vec<ConvertedBinding<'tcx>>)
541
{
542 543 544
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, Vec::new());

545
    let binding_rscope = BindingRscope::new();
546 547 548 549 550
    let inputs =
        data.inputs.iter()
                   .map(|a_t| ast_ty_arg_to_ty(this, &binding_rscope, decl_generics,
                                               0, &region_substs, a_t))
                   .collect::<Vec<Ty<'tcx>>>();
551

A
Aaron Turon 已提交
552
    let input_params: Vec<_> = repeat(String::new()).take(inputs.len()).collect();
553 554 555
    let (implied_output_region,
         params_lifetimes) = find_implied_output_region(&*inputs, input_params);

556 557
    let input_ty = ty::mk_tup(this.tcx(), inputs);

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    let (output, output_span) = match data.output {
        Some(ref output_ty) => {
            (convert_ty_with_lifetime_elision(this,
                                              implied_output_region,
                                              params_lifetimes,
                                              &**output_ty),
             output_ty.span)
        }
        None => {
            (ty::mk_nil(this.tcx()), data.span)
        }
    };

    let output_binding = ConvertedBinding {
        item_name: token::intern(FN_OUTPUT_NAME),
        ty: output,
        span: output_span
575 576
    };

577
    (region_substs, vec![input_ty], vec![output_binding])
578
}
579

580 581 582
pub fn instantiate_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
583 584
    ast_trait_ref: &ast::PolyTraitRef,
    self_ty: Option<Ty<'tcx>>,
585 586
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
587
{
588 589
    let mut projections = Vec::new();

590
    // The trait reference introduces a binding level here, so
591 592 593 594 595 596
    // we need to shift the `rscope`. It'd be nice if we could
    // do away with this rscope stuff and work this knowledge
    // into resolve_lifetimes, as we do with non-omitted
    // lifetimes. Oh well, not there yet.
    let shifted_rscope = ShiftedRscope::new(rscope);

597
    let trait_ref = instantiate_trait_ref(this, &shifted_rscope,
598
                                          &ast_trait_ref.trait_ref,
599
                                          None, self_ty, Some(&mut projections));
600

601
    for projection in projections {
602 603 604 605
        poly_projections.push(ty::Binder(projection));
    }

    ty::Binder(trait_ref)
606
}
607

608 609 610
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
611 612 613
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
614 615 616
pub fn instantiate_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
617
    trait_ref: &ast::TraitRef,
618
    impl_id: Option<ast::NodeId>,
619 620 621
    self_ty: Option<Ty<'tcx>>,
    projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
N
Niko Matsakis 已提交
622
{
623 624
    let path = &trait_ref.path;
    match ::lookup_def_tcx(this.tcx(), path.span, trait_ref.ref_id) {
625
        def::DefTrait(trait_def_id) => {
626 627
            let trait_ref = ast_path_to_trait_ref(this,
                                                  rscope,
628
                                                  path.span,
629
                                                  PathParamMode::Explicit,
630 631
                                                  trait_def_id,
                                                  self_ty,
632
                                                  path.segments.last().unwrap(),
633
                                                  projections);
634 635 636
            if let Some(id) = impl_id {
                this.tcx().impl_trait_refs.borrow_mut().insert(id, trait_ref.clone());
            }
N
Niko Matsakis 已提交
637 638 639
            trait_ref
        }
        _ => {
640 641
            span_fatal!(this.tcx().sess, path.span, E0245, "`{}` is not a trait",
                        path.user_string(this.tcx()));
N
Niko Matsakis 已提交
642 643 644 645
        }
    }
}

646 647 648
fn object_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
649
    span: Span,
650
    param_mode: PathParamMode,
651
    trait_def_id: ast::DefId,
652
    trait_segment: &ast::PathSegment,
653 654 655 656 657 658 659 660 661 662
    mut projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    // we are introducing a binder here, so shift the
    // anonymous regions depth to account for that
    let shifted_rscope = ShiftedRscope::new(rscope);

    let mut tmp = Vec::new();
    let trait_ref = ty::Binder(ast_path_to_trait_ref(this,
                                                     &shifted_rscope,
663
                                                     span,
664
                                                     param_mode,
665 666
                                                     trait_def_id,
                                                     None,
667
                                                     trait_segment,
668 669 670 671 672
                                                     Some(&mut tmp)));
    projections.extend(tmp.into_iter().map(ty::Binder));
    trait_ref
}

673 674 675
fn ast_path_to_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
676
    span: Span,
677
    param_mode: PathParamMode,
678
    trait_def_id: ast::DefId,
679
    self_ty: Option<Ty<'tcx>>,
680
    trait_segment: &ast::PathSegment,
681 682
    mut projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
683
{
684
    debug!("ast_path_to_trait_ref {:?}", trait_segment);
E
Eduard Burtescu 已提交
685
    let trait_def = this.get_trait_def(trait_def_id);
686

687
    let (regions, types, assoc_bindings) = match trait_segment.parameters {
688
        ast::AngleBracketedParameters(ref data) => {
689
            // For now, require that parenthetical notation be used
690
            // only with `Fn()` etc.
691
            if !this.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
692
                span_err!(this.tcx().sess, span, E0215,
693 694
                                         "angle-bracket notation is not stable when \
                                         used with the `Fn` family of traits, use parentheses");
695
                span_help!(this.tcx().sess, span,
696 697 698 699
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

700
            convert_angle_bracketed_parameters(this, rscope, span, &trait_def.generics, data)
701 702
        }
        ast::ParenthesizedParameters(ref data) => {
703 704
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
705
            if !this.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
706
                span_err!(this.tcx().sess, span, E0216,
707 708
                                         "parenthetical notation is only stable when \
                                         used with the `Fn` family of traits");
709
                span_help!(this.tcx().sess, span,
710 711 712 713
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

714
            convert_parenthesized_parameters(this, rscope, span, &trait_def.generics, data)
715 716 717 718
        }
    };

    let substs = create_substs_for_ast_path(this,
719
                                            span,
720
                                            param_mode,
721 722 723
                                            &trait_def.generics,
                                            self_ty,
                                            types,
724 725 726 727 728 729 730
                                            regions);
    let substs = this.tcx().mk_substs(substs);

    let trait_ref = Rc::new(ty::TraitRef::new(trait_def_id, substs));

    match projections {
        None => {
731
            prohibit_projections(this.tcx(), &assoc_bindings);
732 733
        }
        Some(ref mut v) => {
734
            for binding in &assoc_bindings {
735 736
                match ast_type_binding_to_projection_predicate(this, trait_ref.clone(),
                                                               self_ty, binding) {
737 738 739 740 741 742 743 744 745
                    Ok(pp) => { v.push(pp); }
                    Err(ErrorReported) => { }
                }
            }
        }
    }

    trait_ref
}
746

747
fn ast_type_binding_to_projection_predicate<'tcx>(
748
    this: &AstConv<'tcx>,
749 750
    mut trait_ref: Rc<ty::TraitRef<'tcx>>,
    self_ty: Option<Ty<'tcx>>,
751 752 753
    binding: &ConvertedBinding<'tcx>)
    -> Result<ty::ProjectionPredicate<'tcx>, ErrorReported>
{
754 755
    let tcx = this.tcx();

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    // Given something like `U : SomeTrait<T=X>`, we want to produce a
    // predicate like `<U as SomeTrait>::T = X`. This is somewhat
    // subtle in the event that `T` is defined in a supertrait of
    // `SomeTrait`, because in that case we need to upcast.
    //
    // That is, consider this case:
    //
    // ```
    // trait SubTrait : SuperTrait<int> { }
    // trait SuperTrait<A> { type T; }
    //
    // ... B : SubTrait<T=foo> ...
    // ```
    //
    // We want to produce `<B as SuperTrait<int>>::T == foo`.

772 773 774 775 776 777 778 779 780 781 782
    // Simple case: X is defined in the current trait.
    if trait_defines_associated_type_named(this, trait_ref.def_id, binding.item_name) {
        return Ok(ty::ProjectionPredicate {
            projection_ty: ty::ProjectionTy {
                trait_ref: trait_ref,
                item_name: binding.item_name,
            },
            ty: binding.ty,
        });
    }

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    // Otherwise, we have to walk through the supertraits to find
    // those that do.  This is complicated by the fact that, for an
    // object type, the `Self` type is not present in the
    // substitutions (after all, it's being constructed right now),
    // but the `supertraits` iterator really wants one. To handle
    // this, we currently insert a dummy type and then remove it
    // later. Yuck.

    let dummy_self_ty = ty::mk_infer(tcx, ty::FreshTy(0));
    if self_ty.is_none() { // if converting for an object type
        let mut dummy_substs = trait_ref.substs.clone();
        assert!(dummy_substs.self_ty().is_none());
        dummy_substs.types.push(SelfSpace, dummy_self_ty);
        trait_ref = Rc::new(ty::TraitRef::new(trait_ref.def_id,
                                              tcx.mk_substs(dummy_substs)));
    }

    let mut candidates: Vec<ty::PolyTraitRef> =
        traits::supertraits(tcx, trait_ref.to_poly_trait_ref())
802 803
        .filter(|r| trait_defines_associated_type_named(this, r.def_id(), binding.item_name))
        .collect();
804

805 806 807
    // If converting for an object type, then remove the dummy-ty from `Self` now.
    // Yuckety yuck.
    if self_ty.is_none() {
808
        for candidate in &mut candidates {
809 810 811 812 813 814 815 816
            let mut dummy_substs = candidate.0.substs.clone();
            assert!(dummy_substs.self_ty() == Some(dummy_self_ty));
            dummy_substs.types.pop(SelfSpace);
            *candidate = ty::Binder(Rc::new(ty::TraitRef::new(candidate.def_id(),
                                                              tcx.mk_substs(dummy_substs))));
        }
    }

817
    if candidates.len() > 1 {
B
Brian Anderson 已提交
818 819
        span_err!(tcx.sess, binding.span, E0217,
            "ambiguous associated type: `{}` defined in multiple supertraits `{}`",
820
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
821
                    candidates.user_string(tcx));
822 823 824 825 826 827
        return Err(ErrorReported);
    }

    let candidate = match candidates.pop() {
        Some(c) => c,
        None => {
B
Brian Anderson 已提交
828 829
            span_err!(tcx.sess, binding.span, E0218,
                "no associated type `{}` defined in `{}`",
830
                        token::get_name(binding.item_name),
B
Brian Anderson 已提交
831
                        trait_ref.user_string(tcx));
832 833 834 835
            return Err(ErrorReported);
        }
    };

836
    if ty::binds_late_bound_regions(tcx, &candidate) {
B
Brian Anderson 已提交
837 838
        span_err!(tcx.sess, binding.span, E0219,
            "associated type `{}` defined in higher-ranked supertrait `{}`",
839
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
840
                    candidate.user_string(tcx));
841 842 843 844 845
        return Err(ErrorReported);
    }

    Ok(ty::ProjectionPredicate {
        projection_ty: ty::ProjectionTy {
846
            trait_ref: candidate.0,
847 848 849 850
            item_name: binding.item_name,
        },
        ty: binding.ty,
    })
851 852
}

853
fn ast_path_to_ty<'tcx>(
854 855
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
856
    span: Span,
857
    param_mode: PathParamMode,
858
    did: ast::DefId,
859 860
    item_segment: &ast::PathSegment)
    -> Ty<'tcx>
861
{
862
    let ty::TypeScheme {
863
        generics,
864
        ty: decl_ty
865
    } = this.get_item_type_scheme(did);
866

867 868 869
    let substs = ast_path_substs_for_ty(this, rscope,
                                        span, param_mode,
                                        &generics, item_segment);
870

871 872 873 874
    // FIXME(#12938): This is a hack until we have full support for DST.
    if Some(did) == this.tcx().lang_items.owned_box() {
        assert_eq!(substs.types.len(TypeSpace), 1);
        return ty::mk_uniq(this.tcx(), *substs.types.get(TypeSpace, 0));
875 876
    }

877
    decl_ty.subst(this.tcx(), &substs)
878 879
}

880 881
type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

882 883 884 885 886
fn ast_ty_to_trait_ref<'tcx>(this: &AstConv<'tcx>,
                             rscope: &RegionScope,
                             ty: &ast::Ty,
                             bounds: &[ast::TyParamBound])
                             -> Result<TraitAndProjections<'tcx>, ErrorReported>
887
{
888 889 890 891 892 893 894 895 896 897
    /*!
     * In a type like `Foo + Send`, we want to wait to collect the
     * full set of bounds before we make the object type, because we
     * need them to infer a region bound.  (For example, if we tried
     * made a type from just `Foo`, then it wouldn't be enough to
     * infer a 'static bound, and hence the user would get an error.)
     * So this function is used when we're dealing with a sum type to
     * convert the LHS. It only accepts a type that refers to a trait
     * name, and reports an error otherwise.
     */
898

899
    match ty.node {
900
        ast::TyPath(ref path) => {
901
            let def = this.tcx().def_map.borrow().get(&ty.id).map(|d| d.full_def());
902 903
            match def {
                Some(def::DefTrait(trait_def_id)) => {
904
                    let mut projection_bounds = Vec::new();
905 906
                    let trait_ref = object_path_to_poly_trait_ref(this,
                                                                  rscope,
907
                                                                  path.span,
908
                                                                  PathParamMode::Explicit,
909
                                                                  trait_def_id,
910
                                                                  path.segments.last().unwrap(),
911
                                                                  &mut projection_bounds);
912
                    Ok((trait_ref, projection_bounds))
913 914
                }
                _ => {
915
                    span_err!(this.tcx().sess, ty.span, E0172, "expected a reference to a trait");
916 917 918
                    Err(ErrorReported)
                }
            }
919
        }
920
        _ => {
921
            span_err!(this.tcx().sess, ty.span, E0178,
922 923 924 925
                      "expected a path on the left-hand side of `+`, not `{}`",
                      pprust::ty_to_string(ty));
            match ty.node {
                ast::TyRptr(None, ref mut_ty) => {
P
P1start 已提交
926
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
927
                               "perhaps you meant `&{}({} +{})`? (per RFC 438)",
928 929 930
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
931
                }
932
               ast::TyRptr(Some(ref lt), ref mut_ty) => {
P
P1start 已提交
933
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
934
                               "perhaps you meant `&{} {}({} +{})`? (per RFC 438)",
935 936 937 938 939 940 941
                               pprust::lifetime_to_string(lt),
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }

                _ => {
P
P1start 已提交
942
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
943
                               "perhaps you forgot parentheses? (per RFC 438)");
944 945
                }
            }
946
            Err(ErrorReported)
947
        }
948
    }
949 950
}

951 952 953 954 955 956 957
fn trait_ref_to_object_type<'tcx>(this: &AstConv<'tcx>,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_ref: ty::PolyTraitRef<'tcx>,
                                  projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
                                  bounds: &[ast::TyParamBound])
                                  -> Ty<'tcx>
958 959 960 961
{
    let existential_bounds = conv_existential_bounds(this,
                                                     rscope,
                                                     span,
962
                                                     trait_ref.clone(),
963
                                                     projection_bounds,
964 965 966 967 968 969 970
                                                     bounds);

    let result = ty::mk_trait(this.tcx(), trait_ref, existential_bounds);
    debug!("trait_ref_to_object_type: result={}",
           result.repr(this.tcx()));

    result
971 972
}

973
fn associated_path_def_to_ty<'tcx>(this: &AstConv<'tcx>,
974 975 976 977 978
                                   span: Span,
                                   ty: Ty<'tcx>,
                                   ty_path_def: def::Def,
                                   item_segment: &ast::PathSegment)
                                   -> (Ty<'tcx>, def::Def)
979 980
{
    let tcx = this.tcx();
981
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
982 983 984 985 986 987 988 989 990 991 992
    let assoc_name = item_segment.identifier.name;

    let ty_param_node_id = if let ty::ty_param(_) = ty.sty {
        ty_path_def.local_node_id()
    } else {
        span_err!(tcx.sess, span, E0223,
                "ambiguous associated type; specify the type using the syntax \
                `<{} as Trait>::{}`",
                ty.user_string(tcx), token::get_name(assoc_name));
        return (tcx.types.err, ty_path_def);
    };
993

994 995 996 997
    let mut suitable_bounds: Vec<_>;
    let ty_param_name: ast::Name;
    { // contain scope of refcell:
        let ty_param_defs = tcx.ty_param_defs.borrow();
998
        let ty_param_def = &ty_param_defs[ty_param_node_id];
999 1000
        ty_param_name = ty_param_def.name;

1001

1002
        // FIXME(#20300) -- search where clauses, not bounds
1003
        suitable_bounds =
1004
            traits::transitive_bounds(tcx, &ty_param_def.bounds.trait_bounds)
1005 1006 1007 1008 1009
            .filter(|b| trait_defines_associated_type_named(this, b.def_id(), assoc_name))
            .collect();
    }

    if suitable_bounds.len() == 0 {
1010
        span_err!(tcx.sess, span, E0220,
B
Brian Anderson 已提交
1011
                          "associated type `{}` not found for type parameter `{}`",
1012
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1013
                                  token::get_name(ty_param_name));
1014
        return (this.tcx().types.err, ty_path_def);
1015 1016 1017
    }

    if suitable_bounds.len() > 1 {
1018
        span_err!(tcx.sess, span, E0221,
B
Brian Anderson 已提交
1019
                          "ambiguous associated type `{}` in bounds of `{}`",
1020
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1021
                                  token::get_name(ty_param_name));
1022

1023
        for suitable_bound in &suitable_bounds {
1024
            span_note!(this.tcx().sess, span,
1025 1026 1027 1028 1029 1030 1031
                       "associated type `{}` could derive from `{}`",
                       token::get_name(ty_param_name),
                       suitable_bound.user_string(this.tcx()));
        }
    }

    let suitable_bound = suitable_bounds.pop().unwrap().clone();
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    let trait_did = suitable_bound.0.def_id;

    let ty = this.projected_ty_from_poly_trait_ref(span, suitable_bound, assoc_name);

    let item_did = if trait_did.krate == ast::LOCAL_CRATE {
        // `ty::trait_items` used below requires information generated
        // by type collection, which may be in progress at this point.
        match this.tcx().map.expect_item(trait_did.node).node {
            ast::ItemTrait(_, _, _, ref trait_items) => {
                trait_items.iter().filter_map(|i| {
                    if let ast::TypeTraitItem(ref assoc) = *i {
                        if assoc.ty_param.ident.name == assoc_name {
                            return Some(ast_util::local_def(assoc.ty_param.id));
                        }
                    }
                    None
                }).next().expect("missing associated type")
            }
            _ => unreachable!()
        }
    } else {
        let trait_items = ty::trait_items(this.tcx(), trait_did);
        let item = trait_items.iter().find(|i| i.name() == assoc_name);
        item.expect("missing associated type").def_id()
    };
    (ty, def::DefAssociatedTy(trait_did, item_did))
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
}

fn trait_defines_associated_type_named(this: &AstConv,
                                       trait_def_id: ast::DefId,
                                       assoc_name: ast::Name)
                                       -> bool
{
    let tcx = this.tcx();
    let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
    trait_def.associated_type_names.contains(&assoc_name)
}

1070 1071
fn qpath_to_ty<'tcx>(this: &AstConv<'tcx>,
                     rscope: &RegionScope,
1072
                     span: Span,
1073 1074
                     param_mode: PathParamMode,
                     opt_self_ty: Option<Ty<'tcx>>,
1075 1076 1077
                     trait_def_id: ast::DefId,
                     trait_segment: &ast::PathSegment,
                     item_segment: &ast::PathSegment)
1078
                     -> Ty<'tcx>
1079
{
1080
    let tcx = this.tcx();
1081

1082
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1083

1084
    let self_ty = if let Some(ty) = opt_self_ty {
1085
        ty
1086 1087 1088 1089 1090 1091 1092 1093
    } else {
        let path_str = ty::item_path_str(tcx, trait_def_id);
        span_err!(tcx.sess, span, E0223,
                  "ambiguous associated type; specify the type using the syntax \
                   `<Type as {}>::{}`",
                   path_str, &token::get_ident(item_segment.identifier));
        return tcx.types.err;
    };
1094

1095
    debug!("qpath_to_ty: self_type={}", self_ty.repr(tcx));
1096

1097
    let trait_ref = ast_path_to_trait_ref(this,
1098
                                          rscope,
1099
                                          span,
1100
                                          param_mode,
1101 1102 1103
                                          trait_def_id,
                                          Some(self_ty),
                                          trait_segment,
1104
                                          None);
1105

1106
    debug!("qpath_to_ty: trait_ref={}", trait_ref.repr(tcx));
1107

1108
    this.projected_ty(span, trait_ref, item_segment.identifier.name)
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/// Convert a type supplied as value for a type argument from AST into our
/// our internal representation. This is the same as `ast_ty_to_ty` but that
/// it applies the object lifetime default.
///
/// # Parameters
///
/// * `this`, `rscope`: the surrounding context
/// * `decl_generics`: the generics of the struct/enum/trait declaration being
///   referenced
/// * `index`: the index of the type parameter being instantiated from the list
///   (we assume it is in the `TypeSpace`)
/// * `region_substs`: a partial substitution consisting of
///   only the region type parameters being supplied to this type.
/// * `ast_ty`: the ast representation of the type being supplied
pub fn ast_ty_arg_to_ty<'tcx>(this: &AstConv<'tcx>,
                              rscope: &RegionScope,
                              decl_generics: &ty::Generics<'tcx>,
                              index: usize,
                              region_substs: &Substs<'tcx>,
                              ast_ty: &ast::Ty)
                              -> Ty<'tcx>
{
    let tcx = this.tcx();

    if let Some(def) = decl_generics.types.opt_get(TypeSpace, index) {
        let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
        let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
        ast_ty_to_ty(this, rscope1, ast_ty)
    } else {
        ast_ty_to_ty(this, rscope, ast_ty)
    }
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
pub fn finish_resolving_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                        rscope: &RegionScope,
                                        span: Span,
                                        param_mode: PathParamMode,
                                        def: &mut def::Def,
                                        opt_self_ty: Option<Ty<'tcx>>,
                                        segments: &[ast::PathSegment],
                                        assoc_segments: &[ast::PathSegment])
                                        -> Ty<'tcx> {
    let tcx = this.tcx();

    let base_ty = match *def {
        def::DefTrait(trait_def_id) => {
            // N.B. this case overlaps somewhat with
            // TyObjectSum, see that fn for details
            let mut projection_bounds = Vec::new();

            let trait_ref = object_path_to_poly_trait_ref(this,
                                                          rscope,
                                                          span,
                                                          param_mode,
                                                          trait_def_id,
                                                          segments.last().unwrap(),
                                                          &mut projection_bounds);

            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            trait_ref_to_object_type(this, rscope, span, trait_ref,
                                     projection_bounds, &[])
        }
        def::DefTy(did, _) | def::DefStruct(did) => {
            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            ast_path_to_ty(this, rscope, span,
                           param_mode, did,
                           segments.last().unwrap())
        }
        def::DefTyParam(space, index, _, name) => {
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_param(tcx, space, index, name)
        }
        def::DefSelfTy(_) => {
            // n.b.: resolve guarantees that the this type only appears in a
            // trait, which we rely upon in various places when creating
            // substs
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_self_type(tcx)
        }
        def::DefAssociatedTy(trait_did, _) => {
            check_path_args(tcx, &segments[..segments.len()-2], NO_TPS | NO_REGIONS);
            qpath_to_ty(this, rscope, span, param_mode,
                        opt_self_ty, trait_did,
                        &segments[segments.len()-2],
                        segments.last().unwrap())
        }
        def::DefMod(id) => {
            tcx.sess.span_bug(span,
                              &format!("found module name used as a type: {}",
                                       tcx.map.node_to_string(id.node)));
        }
        def::DefPrimTy(prim_ty) => {
            prim_ty_to_ty(tcx, segments, prim_ty)
        }
        _ => {
            span_fatal!(tcx.sess, span, E0248,
                        "found value name used as a type: {:?}", *def);
        }
    };

    // If any associated type segments remain, attempt to resolve them.
    let mut ty = base_ty;
    for segment in assoc_segments {
        if ty.sty == ty::ty_err {
            break;
        }
        // This is pretty bad (it will fail except for T::A and Self::A).
        let (a_ty, a_def) = associated_path_def_to_ty(this, span,
                                                      ty, *def, segment);
        ty = a_ty;
        *def = a_def;
    }
    ty
}

1226 1227 1228 1229 1230 1231
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty<'tcx>(this: &AstConv<'tcx>,
                          rscope: &RegionScope,
                          ast_ty: &ast::Ty)
                          -> Ty<'tcx>
1232 1233 1234
{
    debug!("ast_ty_to_ty(ast_ty={})",
           ast_ty.repr(this.tcx()));
1235

1236
    let tcx = this.tcx();
1237

1238
    let mut ast_ty_to_ty_cache = tcx.ast_ty_to_ty_cache.borrow_mut();
1239
    match ast_ty_to_ty_cache.get(&ast_ty.id) {
1240 1241
        Some(&ty::atttce_resolved(ty)) => return ty,
        Some(&ty::atttce_unresolved) => {
1242
            span_fatal!(tcx.sess, ast_ty.span, E0246,
1243 1244 1245
                                "illegal recursive type; insert an enum \
                                 or struct in the cycle, if this is \
                                 desired");
1246
        }
1247
        None => { /* go on */ }
1248
    }
1249 1250
    ast_ty_to_ty_cache.insert(ast_ty.id, ty::atttce_unresolved);
    drop(ast_ty_to_ty_cache);
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    let typ = match ast_ty.node {
        ast::TyVec(ref ty) => {
            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
        }
        ast::TyObjectSum(ref ty, ref bounds) => {
            match ast_ty_to_trait_ref(this, rscope, &**ty, bounds) {
                Ok((trait_ref, projection_bounds)) => {
                    trait_ref_to_object_type(this,
                                             rscope,
                                             ast_ty.span,
                                             trait_ref,
                                             projection_bounds,
                                             bounds)
1265
                }
1266 1267
                Err(ErrorReported) => {
                    this.tcx().types.err
1268 1269
                }
            }
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        }
        ast::TyPtr(ref mt) => {
            ty::mk_ptr(tcx, ty::mt {
                ty: ast_ty_to_ty(this, rscope, &*mt.ty),
                mutbl: mt.mutbl
            })
        }
        ast::TyRptr(ref region, ref mt) => {
            let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
            debug!("ty_rptr r={}", r.repr(this.tcx()));
            let rscope1 =
                &ObjectLifetimeDefaultRscope::new(
                    rscope,
                    Some(ty::ObjectLifetimeDefault::Specific(r)));
            let t = ast_ty_to_ty(this, rscope1, &*mt.ty);
            ty::mk_rptr(tcx, tcx.mk_region(r), ty::mt {ty: t, mutbl: mt.mutbl})
        }
        ast::TyTup(ref fields) => {
            let flds = fields.iter()
                             .map(|t| ast_ty_to_ty(this, rscope, &**t))
                             .collect();
            ty::mk_tup(tcx, flds)
        }
        ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
        ast::TyBareFn(ref bf) => {
            if bf.decl.variadic && bf.abi != abi::C {
                span_err!(tcx.sess, ast_ty.span, E0222,
                          "variadic function must have C calling convention");
N
Niko Matsakis 已提交
1298
            }
1299 1300 1301 1302 1303 1304 1305
            let bare_fn = ty_of_bare_fn(this, bf.unsafety, bf.abi, &*bf.decl);
            ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(bare_fn))
        }
        ast::TyPolyTraitRef(ref bounds) => {
            conv_ty_poly_trait_ref(this, rscope, ast_ty.span, bounds)
        }
        ast::TyPath(ref path) | ast::TyQPath(ast::QPath { ref path, .. }) => {
1306 1307
            let path_res = if let Some(&d) = tcx.def_map.borrow().get(&ast_ty.id) {
                d
1308 1309 1310 1311
            } else {
                tcx.sess.span_bug(ast_ty.span,
                                  &format!("unbound path {}", ast_ty.repr(tcx)))
            };
1312 1313
            let mut def = path_res.base_def;
            let base_ty_end = path.segments.len() - path_res.depth;
1314 1315 1316 1317
            let opt_self_ty = if let ast::TyQPath(ref qpath) = ast_ty.node {
                Some(ast_ty_to_ty(this, rscope, &*qpath.self_type))
            } else {
                None
1318
            };
1319 1320 1321 1322 1323
            let ty = finish_resolving_def_to_ty(this, rscope, ast_ty.span,
                                                PathParamMode::Explicit, &mut def,
                                                opt_self_ty,
                                                &path.segments[..base_ty_end],
                                                &path.segments[base_ty_end..]);
1324

1325
            if path_res.depth != 0 && ty.sty != ty::ty_err {
1326
                // Write back the new resolution.
1327 1328 1329 1330 1331
                tcx.def_map.borrow_mut().insert(ast_ty.id, def::PathResolution {
                    base_def: def,
                    last_private: path_res.last_private,
                    depth: 0
                });
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            }

            ty
        }
        ast::TyFixedLengthVec(ref ty, ref e) => {
            match const_eval::eval_const_expr_partial(tcx, &**e, Some(tcx.types.uint)) {
                Ok(r) => {
                    match r {
                        const_eval::const_int(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        const_eval::const_uint(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        _ => {
                            span_fatal!(tcx.sess, ast_ty.span, E0249,
                                        "expected constant expr for array length");
1349 1350
                        }
                    }
1351 1352 1353 1354
                }
                Err(r) => {
                    span_fatal!(tcx.sess, ast_ty.span, E0250,
                                "expected constant expr for array length: {}", r);
1355 1356
                }
            }
1357
        }
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        ast::TyTypeof(ref _e) => {
            tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
        }
        ast::TyInfer => {
            // TyInfer also appears as the type of arguments or return
            // values in a ExprClosure, or as
            // the type of local variables. Both of these cases are
            // handled specially and will not descend into this routine.
            this.ty_infer(ast_ty.span)
        }
    };
1369

1370
    tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, ty::atttce_resolved(typ));
B
Brian Anderson 已提交
1371
    return typ;
1372 1373
}

1374 1375 1376 1377 1378 1379
pub fn ty_of_arg<'tcx>(this: &AstConv<'tcx>,
                       rscope: &RegionScope,
                       a: &ast::Arg,
                       expected_ty: Option<Ty<'tcx>>)
                       -> Ty<'tcx>
{
E
Erick Tryzelaar 已提交
1380
    match a.ty.node {
1381 1382
        ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
        ast::TyInfer => this.ty_infer(a.ty.span),
1383
        _ => ast_ty_to_ty(this, rscope, &*a.ty),
1384
    }
1385 1386
}

1387 1388
struct SelfInfo<'a, 'tcx> {
    untransformed_self_ty: Ty<'tcx>,
1389
    explicit_self: &'a ast::ExplicitSelf,
1390 1391
}

1392 1393 1394 1395 1396 1397 1398
pub fn ty_of_method<'tcx>(this: &AstConv<'tcx>,
                          unsafety: ast::Unsafety,
                          untransformed_self_ty: Ty<'tcx>,
                          explicit_self: &ast::ExplicitSelf,
                          decl: &ast::FnDecl,
                          abi: abi::Abi)
                          -> (ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory) {
1399
    let self_info = Some(SelfInfo {
1400
        untransformed_self_ty: untransformed_self_ty,
1401 1402 1403 1404
        explicit_self: explicit_self,
    });
    let (bare_fn_ty, optional_explicit_self_category) =
        ty_of_method_or_bare_fn(this,
N
Niko Matsakis 已提交
1405
                                unsafety,
1406
                                abi,
1407 1408 1409
                                self_info,
                                decl);
    (bare_fn_ty, optional_explicit_self_category.unwrap())
1410 1411
}

1412
pub fn ty_of_bare_fn<'tcx>(this: &AstConv<'tcx>, unsafety: ast::Unsafety, abi: abi::Abi,
1413
                                              decl: &ast::FnDecl) -> ty::BareFnTy<'tcx> {
N
Niko Matsakis 已提交
1414
    let (bare_fn_ty, _) = ty_of_method_or_bare_fn(this, unsafety, abi, None, decl);
1415
    bare_fn_ty
1416 1417
}

1418 1419 1420 1421 1422 1423
fn ty_of_method_or_bare_fn<'a, 'tcx>(this: &AstConv<'tcx>,
                                     unsafety: ast::Unsafety,
                                     abi: abi::Abi,
                                     opt_self_info: Option<SelfInfo<'a, 'tcx>>,
                                     decl: &ast::FnDecl)
                                     -> (ty::BareFnTy<'tcx>, Option<ty::ExplicitSelfCategory>)
1424
{
1425
    debug!("ty_of_method_or_bare_fn");
1426

1427 1428
    // New region names that appear inside of the arguments of the function
    // declaration are bound to that function type.
1429
    let rb = rscope::BindingRscope::new();
1430

1431 1432 1433 1434 1435
    // `implied_output_region` is the region that will be assumed for any
    // region parameters in the return type. In accordance with the rules for
    // lifetime elision, we can determine it in two ways. First (determined
    // here), if self is by-reference, then the implied output region is the
    // region of the self parameter.
1436
    let mut explicit_self_category_result = None;
1437 1438 1439
    let (self_ty, mut implied_output_region) = match opt_self_info {
        None => (None, None),
        Some(self_info) => {
1440 1441 1442
            // This type comes from an impl or trait; no late-bound
            // regions should be present.
            assert!(!self_info.untransformed_self_ty.has_escaping_regions());
1443

1444 1445 1446 1447 1448
            // Figure out and record the explicit self category.
            let explicit_self_category =
                determine_explicit_self_category(this, &rb, &self_info);
            explicit_self_category_result = Some(explicit_self_category);
            match explicit_self_category {
1449 1450 1451
                ty::StaticExplicitSelfCategory => {
                    (None, None)
                }
1452
                ty::ByValueExplicitSelfCategory => {
1453
                    (Some(self_info.untransformed_self_ty), None)
1454 1455 1456
                }
                ty::ByReferenceExplicitSelfCategory(region, mutability) => {
                    (Some(ty::mk_rptr(this.tcx(),
H
Huon Wilson 已提交
1457
                                      this.tcx().mk_region(region),
1458
                                      ty::mt {
1459
                                        ty: self_info.untransformed_self_ty,
1460 1461 1462 1463 1464
                                        mutbl: mutability
                                      })),
                     Some(region))
                }
                ty::ByBoxExplicitSelfCategory => {
1465
                    (Some(ty::mk_uniq(this.tcx(), self_info.untransformed_self_ty)), None)
1466
                }
1467 1468
            }
        }
1469
    };
1470 1471

    // HACK(eddyb) replace the fake self type in the AST with the actual type.
1472
    let input_params = if self_ty.is_some() {
A
Aaron Turon 已提交
1473
        &decl.inputs[1..]
1474
    } else {
1475
        &decl.inputs[..]
1476
    };
1477 1478 1479 1480
    let input_tys = input_params.iter().map(|a| ty_of_arg(this, &rb, a, None));
    let input_pats: Vec<String> = input_params.iter()
                                              .map(|a| pprust::pat_to_string(&*a.pat))
                                              .collect();
1481
    let self_and_input_tys: Vec<Ty> =
A
Aaron Turon 已提交
1482
        self_ty.into_iter().chain(input_tys).collect();
1483

1484

1485 1486 1487
    // Second, if there was exactly one lifetime (either a substitution or a
    // reference) in the arguments, then any anonymous regions in the output
    // have that lifetime.
1488 1489
    let lifetimes_for_params = if implied_output_region.is_none() {
        let input_tys = if self_ty.is_some() {
1490
            // Skip the first argument if `self` is present.
A
Aaron Turon 已提交
1491
            &self_and_input_tys[1..]
1492
        } else {
1493
            &self_and_input_tys[..]
1494
        };
1495

1496 1497 1498 1499 1500 1501
        let (ior, lfp) = find_implied_output_region(input_tys, input_pats);
        implied_output_region = ior;
        lfp
    } else {
        vec![]
    };
1502

1503 1504 1505 1506
    let output_ty = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer =>
            ty::FnConverging(this.ty_infer(output.span)),
        ast::Return(ref output) =>
1507 1508 1509 1510
            ty::FnConverging(convert_ty_with_lifetime_elision(this,
                                                              implied_output_region,
                                                              lifetimes_for_params,
                                                              &**output)),
1511 1512
        ast::DefaultReturn(..) => ty::FnConverging(ty::mk_nil(this.tcx())),
        ast::NoReturn(..) => ty::FnDiverging
1513 1514
    };

1515
    (ty::BareFnTy {
N
Niko Matsakis 已提交
1516
        unsafety: unsafety,
1517
        abi: abi,
1518
        sig: ty::Binder(ty::FnSig {
1519 1520 1521
            inputs: self_and_input_tys,
            output: output_ty,
            variadic: decl.variadic
1522
        }),
1523 1524 1525
    }, explicit_self_category_result)
}

1526 1527 1528 1529
fn determine_explicit_self_category<'a, 'tcx>(this: &AstConv<'tcx>,
                                              rscope: &RegionScope,
                                              self_info: &SelfInfo<'a, 'tcx>)
                                              -> ty::ExplicitSelfCategory
1530 1531
{
    return match self_info.explicit_self.node {
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        ast::SelfStatic => ty::StaticExplicitSelfCategory,
        ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
        ast::SelfRegion(ref lifetime, mutability, _) => {
            let region =
                opt_ast_region_to_region(this,
                                         rscope,
                                         self_info.explicit_self.span,
                                         lifetime);
            ty::ByReferenceExplicitSelfCategory(region, mutability)
        }
1542 1543
        ast::SelfExplicit(ref ast_type, _) => {
            let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
            // We wish to (for now) categorize an explicit self
            // declaration like `self: SomeType` into either `self`,
            // `&self`, `&mut self`, or `Box<self>`. We do this here
            // by some simple pattern matching. A more precise check
            // is done later in `check_method_self_type()`.
            //
            // Examples:
            //
            // ```
            // impl Foo for &T {
            //     // Legal declarations:
            //     fn method1(self: &&T); // ByReferenceExplicitSelfCategory
            //     fn method2(self: &T); // ByValueExplicitSelfCategory
            //     fn method3(self: Box<&T>); // ByBoxExplicitSelfCategory
            //
            //     // Invalid cases will be caught later by `check_method_self_type`:
            //     fn method_err1(self: &mut T); // ByReferenceExplicitSelfCategory
            // }
            // ```
            //
            // To do the check we just count the number of "modifiers"
            // on each type and compare them. If they are the same or
            // the impl has more, we call it "by value". Otherwise, we
            // look at the outermost modifier on the method decl and
            // call it by-ref, by-box as appropriate. For method1, for
            // example, the impl type has one modifier, but the method
            // type has two, so we end up with
            // ByReferenceExplicitSelfCategory.

            let impl_modifiers = count_modifiers(self_info.untransformed_self_ty);
            let method_modifiers = count_modifiers(explicit_type);

            debug!("determine_explicit_self_category(self_info.untransformed_self_ty={} \
                   explicit_type={} \
                   modifiers=({},{})",
                   self_info.untransformed_self_ty.repr(this.tcx()),
                   explicit_type.repr(this.tcx()),
                   impl_modifiers,
                   method_modifiers);

            if impl_modifiers >= method_modifiers {
                ty::ByValueExplicitSelfCategory
            } else {
1588
                match explicit_type.sty {
H
Huon Wilson 已提交
1589
                    ty::ty_rptr(r, mt) => ty::ByReferenceExplicitSelfCategory(*r, mt.mutbl),
1590 1591
                    ty::ty_uniq(_) => ty::ByBoxExplicitSelfCategory,
                    _ => ty::ByValueExplicitSelfCategory,
1592 1593
                }
            }
1594 1595
        }
    };
1596

1597
    fn count_modifiers(ty: Ty) -> uint {
1598
        match ty.sty {
1599 1600 1601
            ty::ty_rptr(_, mt) => count_modifiers(mt.ty) + 1,
            ty::ty_uniq(t) => count_modifiers(t) + 1,
            _ => 0,
1602 1603
        }
    }
1604 1605
}

1606 1607
pub fn ty_of_closure<'tcx>(
    this: &AstConv<'tcx>,
N
Niko Matsakis 已提交
1608
    unsafety: ast::Unsafety,
1609
    decl: &ast::FnDecl,
1610
    abi: abi::Abi,
1611 1612
    expected_sig: Option<ty::FnSig<'tcx>>)
    -> ty::ClosureTy<'tcx>
1613
{
1614 1615
    debug!("ty_of_closure(expected_sig={})",
           expected_sig.repr(this.tcx()));
1616 1617 1618

    // new region names that appear inside of the fn decl are bound to
    // that function type
1619
    let rb = rscope::BindingRscope::new();
1620

1621
    let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
1622
        let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
1623 1624
            // no guarantee that the correct number of expected args
            // were supplied
1625
            if i < e.inputs.len() {
1626
                Some(e.inputs[i])
1627 1628 1629
            } else {
                None
            }
1630
        });
J
James Miller 已提交
1631
        ty_of_arg(this, &rb, a, expected_arg_ty)
1632
    }).collect();
1633

1634
    let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1635

1636 1637 1638 1639 1640 1641
    let is_infer = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer => true,
        ast::DefaultReturn(..) => true,
        _ => false
    };

1642
    let output_ty = match decl.output {
1643
        _ if is_infer && expected_ret_ty.is_some() =>
1644
            expected_ret_ty.unwrap(),
1645 1646
        _ if is_infer =>
            ty::FnConverging(this.ty_infer(decl.output.span())),
1647 1648
        ast::Return(ref output) =>
            ty::FnConverging(ast_ty_to_ty(this, &rb, &**output)),
1649 1650
        ast::DefaultReturn(..) => unreachable!(),
        ast::NoReturn(..) => ty::FnDiverging
1651 1652
    };

1653 1654 1655
    debug!("ty_of_closure: input_tys={}", input_tys.repr(this.tcx()));
    debug!("ty_of_closure: output_ty={}", output_ty.repr(this.tcx()));

1656
    ty::ClosureTy {
N
Niko Matsakis 已提交
1657
        unsafety: unsafety,
1658
        abi: abi,
1659 1660 1661
        sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                   output: output_ty,
                                   variadic: decl.variadic}),
1662 1663
    }
}
1664

S
Steve Klabnik 已提交
1665 1666 1667 1668
/// Given an existential type like `Foo+'a+Bar`, this routine converts the `'a` and `Bar` intos an
/// `ExistentialBounds` struct. The `main_trait_refs` argument specifies the `Foo` -- it is absent
/// for closures. Eventually this should all be normalized, I think, so that there is no "main
/// trait ref" and instead we just have a flat list of bounds as the existential type.
1669
fn conv_existential_bounds<'tcx>(
1670 1671
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1672
    span: Span,
1673
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1674
    projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
1675
    ast_bounds: &[ast::TyParamBound])
1676
    -> ty::ExistentialBounds<'tcx>
1677
{
1678
    let partitioned_bounds =
1679
        partition_bounds(this.tcx(), span, ast_bounds);
1680 1681

    conv_existential_bounds_from_partitioned_bounds(
1682
        this, rscope, span, principal_trait_ref, projection_bounds, partitioned_bounds)
1683 1684
}

1685 1686 1687
fn conv_ty_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1688 1689
    span: Span,
    ast_bounds: &[ast::TyParamBound])
1690
    -> Ty<'tcx>
1691
{
1692
    let mut partitioned_bounds = partition_bounds(this.tcx(), span, &ast_bounds[..]);
1693

1694
    let mut projection_bounds = Vec::new();
A
Aaron Turon 已提交
1695 1696
    let main_trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
        let trait_bound = partitioned_bounds.trait_bounds.remove(0);
1697 1698 1699 1700 1701
        instantiate_poly_trait_ref(this,
                                   rscope,
                                   trait_bound,
                                   None,
                                   &mut projection_bounds)
A
Aaron Turon 已提交
1702
    } else {
B
Brian Anderson 已提交
1703
        span_err!(this.tcx().sess, span, E0224,
1704 1705
                  "at least one non-builtin trait is required for an object type");
        return this.tcx().types.err;
1706 1707
    };

1708 1709 1710 1711
    let bounds =
        conv_existential_bounds_from_partitioned_bounds(this,
                                                        rscope,
                                                        span,
1712
                                                        main_trait_bound.clone(),
1713
                                                        projection_bounds,
1714
                                                        partitioned_bounds);
1715

1716
    ty::mk_trait(this.tcx(), main_trait_bound, bounds)
1717 1718
}

1719 1720 1721
pub fn conv_existential_bounds_from_partitioned_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1722
    span: Span,
1723
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1724
    mut projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>, // Empty for boxed closures
1725
    partitioned_bounds: PartitionedBounds)
1726
    -> ty::ExistentialBounds<'tcx>
1727
{
1728 1729
    let PartitionedBounds { builtin_bounds,
                            trait_bounds,
1730
                            region_bounds } =
1731
        partitioned_bounds;
1732 1733

    if !trait_bounds.is_empty() {
1734
        let b = &trait_bounds[0];
B
Brian Anderson 已提交
1735
        span_err!(this.tcx().sess, b.trait_ref.path.span, E0225,
1736
                  "only the builtin traits can be used as closure or object bounds");
1737 1738
    }

1739 1740 1741 1742 1743 1744
    let region_bound = compute_object_lifetime_bound(this,
                                                     rscope,
                                                     span,
                                                     &region_bounds,
                                                     principal_trait_ref,
                                                     builtin_bounds);
1745

1746
    ty::sort_bounds_list(&mut projection_bounds);
1747

1748 1749 1750
    ty::ExistentialBounds {
        region_bound: region_bound,
        builtin_bounds: builtin_bounds,
1751
        projection_bounds: projection_bounds,
1752 1753 1754
    }
}

1755
/// Given the bounds on an object, determines what single region bound
S
Steve Klabnik 已提交
1756 1757 1758
/// (if any) we can use to summarize this type. The basic idea is that we will use the bound the
/// user provided, if they provided one, and otherwise search the supertypes of trait bounds for
/// region bounds. It may be that we can derive no bound at all, in which case we return `None`.
1759 1760 1761 1762 1763 1764 1765 1766
fn compute_object_lifetime_bound<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    explicit_region_bounds: &[&ast::Lifetime],
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    builtin_bounds: ty::BuiltinBounds)
    -> ty::Region
1767
{
1768 1769
    let tcx = this.tcx();

1770
    debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
1771 1772 1773 1774 1775 1776
           principal_trait_ref={}, builtin_bounds={})",
           explicit_region_bounds,
           principal_trait_ref.repr(tcx),
           builtin_bounds.repr(tcx));

    if explicit_region_bounds.len() > 1 {
B
Brian Anderson 已提交
1777 1778
        span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
            "only a single explicit lifetime bound is permitted");
1779 1780
    }

1781
    if explicit_region_bounds.len() != 0 {
1782
        // Explicitly specified region bound. Use that.
1783
        let r = explicit_region_bounds[0];
1784
        return ast_region_to_region(tcx, r);
1785 1786 1787 1788 1789
    }

    // No explicit region bound specified. Therefore, examine trait
    // bounds and see if we can derive region bounds from those.
    let derived_region_bounds =
1790
        object_region_bounds(tcx, &principal_trait_ref, builtin_bounds);
1791 1792 1793 1794

    // If there are no derived region bounds, then report back that we
    // can find no region bound.
    if derived_region_bounds.len() == 0 {
1795 1796 1797 1798 1799 1800 1801 1802 1803
        match rscope.object_lifetime_default(span) {
            Some(r) => { return r; }
            None => {
                span_err!(this.tcx().sess, span, E0228,
                          "the lifetime bound for this object type cannot be deduced \
                           from context; please supply an explicit bound");
                return ty::ReStatic;
            }
        }
1804 1805 1806 1807 1808
    }

    // If any of the derived region bounds are 'static, that is always
    // the best choice.
    if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
1809
        return ty::ReStatic;
1810 1811 1812 1813 1814
    }

    // Determine whether there is exactly one unique region in the set
    // of derived region bounds. If so, use that. Otherwise, report an
    // error.
1815
    let r = derived_region_bounds[0];
A
Aaron Turon 已提交
1816
    if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
B
Brian Anderson 已提交
1817
        span_err!(tcx.sess, span, E0227,
1818
                  "ambiguous lifetime bound, explicit lifetime bound required");
1819
    }
1820
    return r;
1821 1822
}

N
Niko Matsakis 已提交
1823 1824 1825 1826 1827 1828
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
1829 1830 1831 1832 1833
pub fn object_region_bounds<'tcx>(
    tcx: &ty::ctxt<'tcx>,
    principal: &ty::PolyTraitRef<'tcx>,
    others: ty::BuiltinBounds)
    -> Vec<ty::Region>
1834
{
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    // Since we don't actually *know* the self type for an object,
    // this "open(err)" serves as a kind of dummy standin -- basically
    // a skolemized type.
    let open_ty = ty::mk_infer(tcx, ty::FreshTy(0));

    // Note that we preserve the overall binding levels here.
    assert!(!open_ty.has_escaping_regions());
    let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
    let trait_refs = vec!(ty::Binder(Rc::new(ty::TraitRef::new(principal.0.def_id, substs))));

    let param_bounds = ty::ParamBounds {
        region_bounds: Vec::new(),
        builtin_bounds: others,
        trait_bounds: trait_refs,
        projection_bounds: Vec::new(), // not relevant to computing region bounds
    };

    let predicates = ty::predicates(tcx, open_ty, &param_bounds);
    ty::required_region_bounds(tcx, open_ty, predicates)
1854 1855 1856 1857
}

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
1858
    pub trait_bounds: Vec<&'a ast::PolyTraitRef>,
1859 1860 1861
    pub region_bounds: Vec<&'a ast::Lifetime>,
}

S
Steve Klabnik 已提交
1862 1863
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
1864 1865
pub fn partition_bounds<'a>(tcx: &ty::ctxt,
                            _span: Span,
1866
                            ast_bounds: &'a [ast::TyParamBound])
1867 1868 1869 1870 1871
                            -> PartitionedBounds<'a>
{
    let mut builtin_bounds = ty::empty_builtin_bounds();
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
1872
    let mut trait_def_ids = DefIdMap();
1873
    for ast_bound in ast_bounds {
1874
        match *ast_bound {
N
Nick Cameron 已提交
1875
            ast::TraitTyParamBound(ref b, ast::TraitBoundModifier::None) => {
N
Niko Matsakis 已提交
1876
                match ::lookup_def_tcx(tcx, b.trait_ref.path.span, b.trait_ref.ref_id) {
1877
                    def::DefTrait(trait_did) => {
1878
                        match trait_def_ids.get(&trait_did) {
1879 1880 1881 1882 1883
                            // Already seen this trait. We forbid
                            // duplicates in the list (for some
                            // reason).
                            Some(span) => {
                                span_err!(
1884
                                    tcx.sess, b.trait_ref.path.span, E0127,
1885 1886
                                    "trait `{}` already appears in the \
                                     list of bounds",
1887
                                    b.trait_ref.path.user_string(tcx));
1888 1889 1890 1891 1892
                                tcx.sess.span_note(
                                    *span,
                                    "previous appearance is here");

                                continue;
1893
                            }
1894 1895

                            None => { }
1896
                        }
1897

1898
                        trait_def_ids.insert(trait_did, b.trait_ref.path.span);
1899 1900 1901 1902

                        if ty::try_add_builtin_trait(tcx,
                                                     trait_did,
                                                     &mut builtin_bounds) {
1903 1904
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
1905 1906 1907 1908 1909 1910 1911
                            if parameters.types().len() > 0 {
                                check_type_argument_count(tcx, b.trait_ref.path.span,
                                                          parameters.types().len(), 0, 0);
                            }
                            if parameters.lifetimes().len() > 0{
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
1912
                            }
1913
                            continue; // success
1914 1915
                        }
                    }
1916 1917 1918 1919
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
1920
                }
1921 1922
                trait_bounds.push(b);
            }
N
Nick Cameron 已提交
1923
            ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {}
1924 1925 1926
            ast::RegionTyParamBound(ref l) => {
                region_bounds.push(l);
            }
1927
        }
1928 1929 1930 1931 1932 1933
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
1934 1935
    }
}
1936 1937 1938 1939 1940

fn prohibit_projections<'tcx>(tcx: &ty::ctxt<'tcx>,
                              bindings: &[ConvertedBinding<'tcx>])
{
    for binding in bindings.iter().take(1) {
B
Brian Anderson 已提交
1941
        span_err!(tcx.sess, binding.span, E0229,
1942 1943 1944
            "associated type bindings are not allowed here");
    }
}
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

fn check_type_argument_count(tcx: &ty::ctxt, span: Span, supplied: usize,
                             required: usize, accepted: usize) {
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0243,
                  "wrong number of type arguments: {} {}, found {}",
                  expected, required, supplied);
    } else if supplied > accepted {
        let expected = if required < accepted {
            "expected at most"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0244,
                  "wrong number of type arguments: {} {}, found {}",
                  expected,
                  accepted,
                  supplied);
    }
}

fn report_lifetime_number_error(tcx: &ty::ctxt, span: Span, number: usize, expected: usize) {
    span_err!(tcx.sess, span, E0107,
              "wrong number of lifetime parameters: expected {}, found {}",
              expected, number);
}