astconv.rs 79.6 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use middle::astconv_util::{prim_ty_to_ty, check_path_args, NO_TPS, NO_REGIONS};
52
use middle::const_eval;
53
use middle::def;
54
use middle::resolve_lifetime as rl;
55
use middle::privacy::{AllPublic, LastMod};
56
use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
57 58
use middle::traits;
use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty};
59
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
60
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope};
61
use util::common::{ErrorReported, FN_OUTPUT_NAME};
62
use util::nodemap::DefIdMap;
63
use util::ppaux::{self, Repr, UserString};
64

A
Aaron Turon 已提交
65
use std::iter::{repeat, AdditiveIterator};
66 67
use std::rc::Rc;
use std::slice;
68
use syntax::{abi, ast, ast_util};
69
use syntax::codemap::Span;
70
use syntax::parse::token;
71
use syntax::print::pprust;
72

73 74
pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
75

76
    fn get_item_type_scheme(&self, id: ast::DefId) -> ty::TypeScheme<'tcx>;
77

78
    fn get_trait_def(&self, id: ast::DefId) -> Rc<ty::TraitDef<'tcx>>;
N
Nick Cameron 已提交
79 80 81 82 83

    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
84 85 86
    fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
        None
    }
87

88
    /// What type should we use when a type is omitted?
89
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>
    {
        if ty::binds_late_bound_regions(self.tcx(), &poly_trait_ref) {
B
Brian Anderson 已提交
105
            span_err!(self.tcx().sess, span, E0212,
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
                "cannot extract an associated type from a higher-ranked trait bound \
                 in this context");
            self.tcx().types.err
        } else {
            // no late-bound regions, we can just ignore the binder
            self.projected_ty(span, poly_trait_ref.0.clone(), item_name)
        }
    }

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
                    _trait_ref: Rc<ty::TraitRef<'tcx>>,
                    _item_name: ast::Name)
                    -> Ty<'tcx>
    {
B
Brian Anderson 已提交
123
        span_err!(self.tcx().sess, span, E0213,
124 125 126 127
            "associated types are not accepted in this context");

        self.tcx().types.err
    }
128 129
}

E
Eduard Burtescu 已提交
130
pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
131
                            -> ty::Region {
132
    let r = match tcx.named_region_map.get(&lifetime.id) {
133 134 135
        None => {
            // should have been recorded by the `resolve_lifetime` pass
            tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
136
        }
137

138
        Some(&rl::DefStaticRegion) => {
139
            ty::ReStatic
140 141
        }

142 143
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
            ty::ReLateBound(debruijn, ty::BrNamed(ast_util::local_def(id), lifetime.name))
144 145
        }

146 147
        Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
            ty::ReEarlyBound(id, space, index, lifetime.name)
148 149
        }

150
        Some(&rl::DefFreeRegion(scope, id)) => {
151
            ty::ReFree(ty::FreeRegion {
152
                    scope: scope,
153
                    bound_region: ty::BrNamed(ast_util::local_def(id),
154
                                              lifetime.name)
155 156 157 158 159
                })
        }
    };

    debug!("ast_region_to_region(lifetime={} id={}) yields {}",
160 161 162
           lifetime.repr(tcx),
           lifetime.id,
           r.repr(tcx));
163 164

    r
165 166
}

167 168 169
pub fn opt_ast_region_to_region<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
170
    default_span: Span,
J
James Miller 已提交
171
    opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
172
{
173 174 175
    let r = match *opt_lifetime {
        Some(ref lifetime) => {
            ast_region_to_region(this.tcx(), lifetime)
176
        }
177 178 179

        None => {
            match rscope.anon_regions(default_span, 1) {
180
                Err(v) => {
181
                    debug!("optional region in illegal location");
J
Jakub Wieczorek 已提交
182 183
                    span_err!(this.tcx().sess, default_span, E0106,
                        "missing lifetime specifier");
184 185 186 187
                    match v {
                        Some(v) => {
                            let mut m = String::new();
                            let len = v.len();
188
                            for (i, (name, n)) in v.into_iter().enumerate() {
189 190 191
                                let help_name = if name.is_empty() {
                                    format!("argument {}", i + 1)
                                } else {
192
                                    format!("`{}`", name)
193 194
                                };

J
Jorge Aparicio 已提交
195
                                m.push_str(&(if n == 1 {
196
                                    help_name
197
                                } else {
198
                                    format!("one of {}'s {} elided lifetimes", help_name, n)
199
                                })[..]);
200 201 202 203 204 205 206 207 208 209

                                if len == 2 && i == 0 {
                                    m.push_str(" or ");
                                } else if i == len - 2 {
                                    m.push_str(", or ");
                                } else if i != len - 1 {
                                    m.push_str(", ");
                                }
                            }
                            if len == 1 {
P
P1start 已提交
210
                                span_help!(this.tcx().sess, default_span,
211 212 213 214
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say which {} it is borrowed from",
                                    m);
                            } else if len == 0 {
P
P1start 已提交
215
                                span_help!(this.tcx().sess, default_span,
216 217
                                    "this function's return type contains a borrowed value, but \
                                     there is no value for it to be borrowed from");
P
P1start 已提交
218
                                span_help!(this.tcx().sess, default_span,
219 220
                                    "consider giving it a 'static lifetime");
                            } else {
P
P1start 已提交
221
                                span_help!(this.tcx().sess, default_span,
222 223 224 225 226 227 228
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say whether it is borrowed from {}",
                                    m);
                            }
                        }
                        None => {},
                    }
229
                    ty::ReStatic
230 231
                }

232
                Ok(rs) => rs[0],
233
            }
234
        }
235 236
    };

B
Ben Gamari 已提交
237
    debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
238
            opt_lifetime.repr(this.tcx()),
239 240 241
            r.repr(this.tcx()));

    r
242 243
}

S
Steve Klabnik 已提交
244 245
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
246
pub fn ast_path_substs_for_ty<'tcx>(
247 248
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
249
    span: Span,
250
    param_mode: PathParamMode,
251
    decl_generics: &ty::Generics<'tcx>,
252
    item_segment: &ast::PathSegment)
253
    -> Substs<'tcx>
254
{
255
    let tcx = this.tcx();
256

257 258 259 260 261 262 263 264
    // ast_path_substs() is only called to convert paths that are
    // known to refer to traits, types, or structs. In these cases,
    // all type parameters defined for the item being referenced will
    // be in the TypeSpace or SelfSpace.
    //
    // Note: in the case of traits, the self parameter is also
    // defined, but we don't currently create a `type_param_def` for
    // `Self` because it is implicit.
265 266
    assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
    assert!(decl_generics.types.all(|d| d.space != FnSpace));
267

268
    let (regions, types, assoc_bindings) = match item_segment.parameters {
269
        ast::AngleBracketedParameters(ref data) => {
270
            convert_angle_bracketed_parameters(this, rscope, span, decl_generics, data)
271 272
        }
        ast::ParenthesizedParameters(ref data) => {
273
            span_err!(tcx.sess, span, E0214,
274
                "parenthesized parameters may only be used with a trait");
275
            convert_parenthesized_parameters(this, rscope, span, decl_generics, data)
276
        }
277 278
    };

279
    prohibit_projections(this.tcx(), &assoc_bindings);
280

281
    create_substs_for_ast_path(this,
282
                               span,
283
                               param_mode,
284 285 286
                               decl_generics,
                               None,
                               types,
287
                               regions)
288 289
}

290 291 292 293 294 295 296 297
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

298
fn create_region_substs<'tcx>(
299 300
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
301
    span: Span,
302
    decl_generics: &ty::Generics<'tcx>,
303
    regions_provided: Vec<ty::Region>)
304
    -> Substs<'tcx>
305 306 307
{
    let tcx = this.tcx();

308
    // If the type is parameterized by the this region, then replace this
309 310
    // region with the current anon region binding (in other words,
    // whatever & would get replaced with).
311
    let expected_num_region_params = decl_generics.regions.len(TypeSpace);
312
    let supplied_num_region_params = regions_provided.len();
313
    let regions = if expected_num_region_params == supplied_num_region_params {
314
        regions_provided
315 316
    } else {
        let anon_regions =
317
            rscope.anon_regions(span, expected_num_region_params);
318

319
        if supplied_num_region_params != 0 || anon_regions.is_err() {
320 321 322
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
323
        }
324 325

        match anon_regions {
326 327
            Ok(anon_regions) => anon_regions,
            Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
328
        }
329
    };
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    Substs::new_type(vec![], regions)
}

/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// The `region_substs` should be the result of `create_region_substs`
/// -- that is, a substitution with no types but the correct number of
/// regions.
fn create_substs_for_ast_path<'tcx>(
    this: &AstConv<'tcx>,
    span: Span,
345
    param_mode: PathParamMode,
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    decl_generics: &ty::Generics<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    types_provided: Vec<Ty<'tcx>>,
    region_substs: Substs<'tcx>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    debug!("create_substs_for_ast_path(decl_generics={}, self_ty={}, \
           types_provided={}, region_substs={}",
           decl_generics.repr(tcx), self_ty.repr(tcx), types_provided.repr(tcx),
           region_substs.repr(tcx));

    assert_eq!(region_substs.regions().len(TypeSpace), decl_generics.regions.len(TypeSpace));
    assert!(region_substs.types.is_empty());
361 362

    // Convert the type parameters supplied by the user.
363
    let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
364 365 366 367 368
    let formal_ty_param_count = ty_param_defs.len();
    let required_ty_param_count = ty_param_defs.iter()
                                               .take_while(|x| x.default.is_none())
                                               .count();

369 370 371 372 373 374 375 376 377 378
    // Fill with `ty_infer` if no params were specified, as long as
    // they were optional (e.g. paths inside expressions).
    let mut type_substs = if param_mode == PathParamMode::Optional &&
                             types_provided.is_empty() {
        (0..formal_ty_param_count).map(|_| this.ty_infer(span)).collect()
    } else {
        types_provided
    };

    let supplied_ty_param_count = type_substs.len();
379 380 381
    check_type_argument_count(this.tcx(), span, supplied_ty_param_count,
                              required_ty_param_count, formal_ty_param_count);

382
    if supplied_ty_param_count < required_ty_param_count {
383 384 385
        while type_substs.len() < required_ty_param_count {
            type_substs.push(tcx.types.err);
        }
386
    } else if supplied_ty_param_count > formal_ty_param_count {
387
        type_substs.truncate(formal_ty_param_count);
388
    }
389 390
    assert!(type_substs.len() >= required_ty_param_count &&
            type_substs.len() <= formal_ty_param_count);
391

392 393
    let mut substs = region_substs;
    substs.types.extend(TypeSpace, type_substs.into_iter());
394

395 396 397 398 399 400 401 402 403 404
    match self_ty {
        None => {
            // If no self-type is provided, it's still possible that
            // one was declared, because this could be an object type.
        }
        Some(ty) => {
            // If a self-type is provided, one should have been
            // "declared" (in other words, this should be a
            // trait-ref).
            assert!(decl_generics.types.get_self().is_some());
405
            substs.types.push(SelfSpace, ty);
406
        }
407
    }
408

409 410
    let actual_supplied_ty_param_count = substs.types.len(TypeSpace);
    for param in &ty_param_defs[actual_supplied_ty_param_count..] {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        if let Some(default) = param.default {
            // If we are converting an object type, then the
            // `Self` parameter is unknown. However, some of the
            // other type parameters may reference `Self` in their
            // defaults. This will lead to an ICE if we are not
            // careful!
            if self_ty.is_none() && ty::type_has_self(default) {
                tcx.sess.span_err(
                    span,
                    &format!("the type parameter `{}` must be explicitly specified \
                              in an object type because its default value `{}` references \
                              the type `Self`",
                             param.name.user_string(tcx),
                             default.user_string(tcx)));
                substs.types.push(TypeSpace, tcx.types.err);
            } else {
427 428 429
                // This is a default type parameter.
                let default = default.subst_spanned(tcx,
                                                    &substs,
430
                                                    Some(span));
431 432
                substs.types.push(TypeSpace, default);
            }
433 434
        } else {
            tcx.sess.span_bug(span, "extra parameter without default");
435
        }
436
    }
437

438
    substs
439
}
440

441 442 443 444 445 446
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

447 448
fn convert_angle_bracketed_parameters<'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
449 450
                                            span: Span,
                                            decl_generics: &ty::Generics<'tcx>,
451
                                            data: &ast::AngleBracketedParameterData)
452
                                            -> (Substs<'tcx>,
453 454
                                                Vec<Ty<'tcx>>,
                                                Vec<ConvertedBinding<'tcx>>)
455 456 457
{
    let regions: Vec<_> =
        data.lifetimes.iter()
458 459
                      .map(|l| ast_region_to_region(this.tcx(), l))
                      .collect();
460

461 462
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, regions);
463

464 465
    let types: Vec<_> =
        data.types.iter()
466 467 468 469
                  .enumerate()
                  .map(|(i,t)| ast_ty_arg_to_ty(this, rscope, decl_generics,
                                                i, &region_substs, t))
                  .collect();
470

471 472
    let assoc_bindings: Vec<_> =
        data.bindings.iter()
473 474 475 476
                     .map(|b| ConvertedBinding { item_name: b.ident.name,
                                                 ty: ast_ty_to_ty(this, rscope, &*b.ty),
                                                 span: b.span })
                     .collect();
477

478
    (region_substs, types, assoc_bindings)
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/// Returns the appropriate lifetime to use for any output lifetimes
/// (if one exists) and a vector of the (pattern, number of lifetimes)
/// corresponding to each input type/pattern.
fn find_implied_output_region(input_tys: &[Ty], input_pats: Vec<String>)
                              -> (Option<ty::Region>, Vec<(String, uint)>)
{
    let mut lifetimes_for_params: Vec<(String, uint)> = Vec::new();
    let mut possible_implied_output_region = None;

    for (input_type, input_pat) in input_tys.iter().zip(input_pats.into_iter()) {
        let mut accumulator = Vec::new();
        ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type);

        if accumulator.len() == 1 {
            // there's a chance that the unique lifetime of this
            // iteration will be the appropriate lifetime for output
            // parameters, so lets store it.
            possible_implied_output_region = Some(accumulator[0])
        }

        lifetimes_for_params.push((input_pat, accumulator.len()));
    }

    let implied_output_region = if lifetimes_for_params.iter().map(|&(_, n)| n).sum() == 1 {
        assert!(possible_implied_output_region.is_some());
        possible_implied_output_region
    } else {
        None
    };
    (implied_output_region, lifetimes_for_params)
}

513 514 515 516 517
fn convert_ty_with_lifetime_elision<'tcx>(this: &AstConv<'tcx>,
                                          implied_output_region: Option<ty::Region>,
                                          param_lifetimes: Vec<(String, uint)>,
                                          ty: &ast::Ty)
                                          -> Ty<'tcx>
518 519 520
{
    match implied_output_region {
        Some(implied_output_region) => {
521
            let rb = ElidableRscope::new(implied_output_region);
522 523 524 525 526 527 528 529 530 531 532 533
            ast_ty_to_ty(this, &rb, ty)
        }
        None => {
            // All regions must be explicitly specified in the output
            // if the lifetime elision rules do not apply. This saves
            // the user from potentially-confusing errors.
            let rb = UnelidableRscope::new(param_lifetimes);
            ast_ty_to_ty(this, &rb, ty)
        }
    }
}

534
fn convert_parenthesized_parameters<'tcx>(this: &AstConv<'tcx>,
535 536 537
                                          rscope: &RegionScope,
                                          span: Span,
                                          decl_generics: &ty::Generics<'tcx>,
538
                                          data: &ast::ParenthesizedParameterData)
539
                                          -> (Substs<'tcx>,
540 541
                                              Vec<Ty<'tcx>>,
                                              Vec<ConvertedBinding<'tcx>>)
542
{
543 544 545
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, Vec::new());

546
    let binding_rscope = BindingRscope::new();
547 548 549 550 551
    let inputs =
        data.inputs.iter()
                   .map(|a_t| ast_ty_arg_to_ty(this, &binding_rscope, decl_generics,
                                               0, &region_substs, a_t))
                   .collect::<Vec<Ty<'tcx>>>();
552

A
Aaron Turon 已提交
553
    let input_params: Vec<_> = repeat(String::new()).take(inputs.len()).collect();
554 555 556
    let (implied_output_region,
         params_lifetimes) = find_implied_output_region(&*inputs, input_params);

557 558
    let input_ty = ty::mk_tup(this.tcx(), inputs);

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    let (output, output_span) = match data.output {
        Some(ref output_ty) => {
            (convert_ty_with_lifetime_elision(this,
                                              implied_output_region,
                                              params_lifetimes,
                                              &**output_ty),
             output_ty.span)
        }
        None => {
            (ty::mk_nil(this.tcx()), data.span)
        }
    };

    let output_binding = ConvertedBinding {
        item_name: token::intern(FN_OUTPUT_NAME),
        ty: output,
        span: output_span
576 577
    };

578
    (region_substs, vec![input_ty], vec![output_binding])
579
}
580

581 582 583
pub fn instantiate_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
584 585
    ast_trait_ref: &ast::PolyTraitRef,
    self_ty: Option<Ty<'tcx>>,
586 587
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
588
{
589 590
    let mut projections = Vec::new();

591
    // The trait reference introduces a binding level here, so
592 593 594 595 596 597
    // we need to shift the `rscope`. It'd be nice if we could
    // do away with this rscope stuff and work this knowledge
    // into resolve_lifetimes, as we do with non-omitted
    // lifetimes. Oh well, not there yet.
    let shifted_rscope = ShiftedRscope::new(rscope);

598
    let trait_ref = instantiate_trait_ref(this, &shifted_rscope,
599
                                          &ast_trait_ref.trait_ref,
600
                                          None, self_ty, Some(&mut projections));
601

602
    for projection in projections {
603 604 605 606
        poly_projections.push(ty::Binder(projection));
    }

    ty::Binder(trait_ref)
607
}
608

609 610 611
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
612 613 614
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
615 616 617
pub fn instantiate_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
618
    trait_ref: &ast::TraitRef,
619
    impl_id: Option<ast::NodeId>,
620 621 622
    self_ty: Option<Ty<'tcx>>,
    projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
N
Niko Matsakis 已提交
623
{
624 625
    let path = &trait_ref.path;
    match ::lookup_def_tcx(this.tcx(), path.span, trait_ref.ref_id) {
626
        def::DefTrait(trait_def_id) => {
627 628
            let trait_ref = ast_path_to_trait_ref(this,
                                                  rscope,
629
                                                  path.span,
630
                                                  PathParamMode::Explicit,
631 632
                                                  trait_def_id,
                                                  self_ty,
633
                                                  path.segments.last().unwrap(),
634
                                                  projections);
635 636 637
            if let Some(id) = impl_id {
                this.tcx().impl_trait_refs.borrow_mut().insert(id, trait_ref.clone());
            }
N
Niko Matsakis 已提交
638 639 640
            trait_ref
        }
        _ => {
641 642
            span_fatal!(this.tcx().sess, path.span, E0245, "`{}` is not a trait",
                        path.user_string(this.tcx()));
N
Niko Matsakis 已提交
643 644 645 646
        }
    }
}

647 648 649
fn object_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
650
    span: Span,
651
    param_mode: PathParamMode,
652
    trait_def_id: ast::DefId,
653
    trait_segment: &ast::PathSegment,
654 655 656 657 658 659 660 661 662 663
    mut projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    // we are introducing a binder here, so shift the
    // anonymous regions depth to account for that
    let shifted_rscope = ShiftedRscope::new(rscope);

    let mut tmp = Vec::new();
    let trait_ref = ty::Binder(ast_path_to_trait_ref(this,
                                                     &shifted_rscope,
664
                                                     span,
665
                                                     param_mode,
666 667
                                                     trait_def_id,
                                                     None,
668
                                                     trait_segment,
669 670 671 672 673
                                                     Some(&mut tmp)));
    projections.extend(tmp.into_iter().map(ty::Binder));
    trait_ref
}

674 675 676
fn ast_path_to_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
677
    span: Span,
678
    param_mode: PathParamMode,
679
    trait_def_id: ast::DefId,
680
    self_ty: Option<Ty<'tcx>>,
681
    trait_segment: &ast::PathSegment,
682 683
    mut projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
684
{
685
    debug!("ast_path_to_trait_ref {:?}", trait_segment);
E
Eduard Burtescu 已提交
686
    let trait_def = this.get_trait_def(trait_def_id);
687

688
    let (regions, types, assoc_bindings) = match trait_segment.parameters {
689
        ast::AngleBracketedParameters(ref data) => {
690
            // For now, require that parenthetical notation be used
691
            // only with `Fn()` etc.
692
            if !this.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
693
                span_err!(this.tcx().sess, span, E0215,
694 695
                                         "angle-bracket notation is not stable when \
                                         used with the `Fn` family of traits, use parentheses");
696
                span_help!(this.tcx().sess, span,
697 698 699 700
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

701
            convert_angle_bracketed_parameters(this, rscope, span, &trait_def.generics, data)
702 703
        }
        ast::ParenthesizedParameters(ref data) => {
704 705
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
706
            if !this.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
707
                span_err!(this.tcx().sess, span, E0216,
708 709
                                         "parenthetical notation is only stable when \
                                         used with the `Fn` family of traits");
710
                span_help!(this.tcx().sess, span,
711 712 713 714
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

715
            convert_parenthesized_parameters(this, rscope, span, &trait_def.generics, data)
716 717 718 719
        }
    };

    let substs = create_substs_for_ast_path(this,
720
                                            span,
721
                                            param_mode,
722 723 724
                                            &trait_def.generics,
                                            self_ty,
                                            types,
725 726 727 728 729 730 731
                                            regions);
    let substs = this.tcx().mk_substs(substs);

    let trait_ref = Rc::new(ty::TraitRef::new(trait_def_id, substs));

    match projections {
        None => {
732
            prohibit_projections(this.tcx(), &assoc_bindings);
733 734
        }
        Some(ref mut v) => {
735
            for binding in &assoc_bindings {
736 737
                match ast_type_binding_to_projection_predicate(this, trait_ref.clone(),
                                                               self_ty, binding) {
738 739 740 741 742 743 744 745 746
                    Ok(pp) => { v.push(pp); }
                    Err(ErrorReported) => { }
                }
            }
        }
    }

    trait_ref
}
747

748
fn ast_type_binding_to_projection_predicate<'tcx>(
749
    this: &AstConv<'tcx>,
750 751
    mut trait_ref: Rc<ty::TraitRef<'tcx>>,
    self_ty: Option<Ty<'tcx>>,
752 753 754
    binding: &ConvertedBinding<'tcx>)
    -> Result<ty::ProjectionPredicate<'tcx>, ErrorReported>
{
755 756
    let tcx = this.tcx();

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    // Given something like `U : SomeTrait<T=X>`, we want to produce a
    // predicate like `<U as SomeTrait>::T = X`. This is somewhat
    // subtle in the event that `T` is defined in a supertrait of
    // `SomeTrait`, because in that case we need to upcast.
    //
    // That is, consider this case:
    //
    // ```
    // trait SubTrait : SuperTrait<int> { }
    // trait SuperTrait<A> { type T; }
    //
    // ... B : SubTrait<T=foo> ...
    // ```
    //
    // We want to produce `<B as SuperTrait<int>>::T == foo`.

773 774 775 776 777 778 779 780 781 782 783
    // Simple case: X is defined in the current trait.
    if trait_defines_associated_type_named(this, trait_ref.def_id, binding.item_name) {
        return Ok(ty::ProjectionPredicate {
            projection_ty: ty::ProjectionTy {
                trait_ref: trait_ref,
                item_name: binding.item_name,
            },
            ty: binding.ty,
        });
    }

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    // Otherwise, we have to walk through the supertraits to find
    // those that do.  This is complicated by the fact that, for an
    // object type, the `Self` type is not present in the
    // substitutions (after all, it's being constructed right now),
    // but the `supertraits` iterator really wants one. To handle
    // this, we currently insert a dummy type and then remove it
    // later. Yuck.

    let dummy_self_ty = ty::mk_infer(tcx, ty::FreshTy(0));
    if self_ty.is_none() { // if converting for an object type
        let mut dummy_substs = trait_ref.substs.clone();
        assert!(dummy_substs.self_ty().is_none());
        dummy_substs.types.push(SelfSpace, dummy_self_ty);
        trait_ref = Rc::new(ty::TraitRef::new(trait_ref.def_id,
                                              tcx.mk_substs(dummy_substs)));
    }

    let mut candidates: Vec<ty::PolyTraitRef> =
        traits::supertraits(tcx, trait_ref.to_poly_trait_ref())
803 804
        .filter(|r| trait_defines_associated_type_named(this, r.def_id(), binding.item_name))
        .collect();
805

806 807 808
    // If converting for an object type, then remove the dummy-ty from `Self` now.
    // Yuckety yuck.
    if self_ty.is_none() {
809
        for candidate in &mut candidates {
810 811 812 813 814 815 816 817
            let mut dummy_substs = candidate.0.substs.clone();
            assert!(dummy_substs.self_ty() == Some(dummy_self_ty));
            dummy_substs.types.pop(SelfSpace);
            *candidate = ty::Binder(Rc::new(ty::TraitRef::new(candidate.def_id(),
                                                              tcx.mk_substs(dummy_substs))));
        }
    }

818
    if candidates.len() > 1 {
B
Brian Anderson 已提交
819 820
        span_err!(tcx.sess, binding.span, E0217,
            "ambiguous associated type: `{}` defined in multiple supertraits `{}`",
821
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
822
                    candidates.user_string(tcx));
823 824 825 826 827 828
        return Err(ErrorReported);
    }

    let candidate = match candidates.pop() {
        Some(c) => c,
        None => {
B
Brian Anderson 已提交
829 830
            span_err!(tcx.sess, binding.span, E0218,
                "no associated type `{}` defined in `{}`",
831
                        token::get_name(binding.item_name),
B
Brian Anderson 已提交
832
                        trait_ref.user_string(tcx));
833 834 835 836
            return Err(ErrorReported);
        }
    };

837
    if ty::binds_late_bound_regions(tcx, &candidate) {
B
Brian Anderson 已提交
838 839
        span_err!(tcx.sess, binding.span, E0219,
            "associated type `{}` defined in higher-ranked supertrait `{}`",
840
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
841
                    candidate.user_string(tcx));
842 843 844 845 846
        return Err(ErrorReported);
    }

    Ok(ty::ProjectionPredicate {
        projection_ty: ty::ProjectionTy {
847
            trait_ref: candidate.0,
848 849 850 851
            item_name: binding.item_name,
        },
        ty: binding.ty,
    })
852 853
}

854
fn ast_path_to_ty<'tcx>(
855 856
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
857
    span: Span,
858
    param_mode: PathParamMode,
859
    did: ast::DefId,
860 861
    item_segment: &ast::PathSegment)
    -> Ty<'tcx>
862
{
863
    let ty::TypeScheme {
864
        generics,
865
        ty: decl_ty
866
    } = this.get_item_type_scheme(did);
867

868 869 870
    let substs = ast_path_substs_for_ty(this, rscope,
                                        span, param_mode,
                                        &generics, item_segment);
871

872 873 874 875
    // FIXME(#12938): This is a hack until we have full support for DST.
    if Some(did) == this.tcx().lang_items.owned_box() {
        assert_eq!(substs.types.len(TypeSpace), 1);
        return ty::mk_uniq(this.tcx(), *substs.types.get(TypeSpace, 0));
876 877
    }

878
    decl_ty.subst(this.tcx(), &substs)
879 880
}

881 882
type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

883 884 885 886 887
fn ast_ty_to_trait_ref<'tcx>(this: &AstConv<'tcx>,
                             rscope: &RegionScope,
                             ty: &ast::Ty,
                             bounds: &[ast::TyParamBound])
                             -> Result<TraitAndProjections<'tcx>, ErrorReported>
888
{
889 890 891 892 893 894 895 896 897 898
    /*!
     * In a type like `Foo + Send`, we want to wait to collect the
     * full set of bounds before we make the object type, because we
     * need them to infer a region bound.  (For example, if we tried
     * made a type from just `Foo`, then it wouldn't be enough to
     * infer a 'static bound, and hence the user would get an error.)
     * So this function is used when we're dealing with a sum type to
     * convert the LHS. It only accepts a type that refers to a trait
     * name, and reports an error otherwise.
     */
899

900
    match ty.node {
901
        ast::TyPath(None, ref path) => {
902
            let def = this.tcx().def_map.borrow().get(&ty.id).map(|d| d.full_def());
903 904
            match def {
                Some(def::DefTrait(trait_def_id)) => {
905
                    let mut projection_bounds = Vec::new();
906 907
                    let trait_ref = object_path_to_poly_trait_ref(this,
                                                                  rscope,
908
                                                                  path.span,
909
                                                                  PathParamMode::Explicit,
910
                                                                  trait_def_id,
911
                                                                  path.segments.last().unwrap(),
912
                                                                  &mut projection_bounds);
913
                    Ok((trait_ref, projection_bounds))
914 915
                }
                _ => {
916
                    span_err!(this.tcx().sess, ty.span, E0172, "expected a reference to a trait");
917 918 919
                    Err(ErrorReported)
                }
            }
920
        }
921
        _ => {
922
            span_err!(this.tcx().sess, ty.span, E0178,
923 924 925 926
                      "expected a path on the left-hand side of `+`, not `{}`",
                      pprust::ty_to_string(ty));
            match ty.node {
                ast::TyRptr(None, ref mut_ty) => {
P
P1start 已提交
927
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
928
                               "perhaps you meant `&{}({} +{})`? (per RFC 438)",
929 930 931
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
932
                }
933
               ast::TyRptr(Some(ref lt), ref mut_ty) => {
P
P1start 已提交
934
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
935
                               "perhaps you meant `&{} {}({} +{})`? (per RFC 438)",
936 937 938 939 940 941 942
                               pprust::lifetime_to_string(lt),
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }

                _ => {
P
P1start 已提交
943
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
944
                               "perhaps you forgot parentheses? (per RFC 438)");
945 946
                }
            }
947
            Err(ErrorReported)
948
        }
949
    }
950 951
}

952 953 954 955 956 957 958
fn trait_ref_to_object_type<'tcx>(this: &AstConv<'tcx>,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_ref: ty::PolyTraitRef<'tcx>,
                                  projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
                                  bounds: &[ast::TyParamBound])
                                  -> Ty<'tcx>
959 960 961 962
{
    let existential_bounds = conv_existential_bounds(this,
                                                     rscope,
                                                     span,
963
                                                     trait_ref.clone(),
964
                                                     projection_bounds,
965 966 967 968 969 970 971
                                                     bounds);

    let result = ty::mk_trait(this.tcx(), trait_ref, existential_bounds);
    debug!("trait_ref_to_object_type: result={}",
           result.repr(this.tcx()));

    result
972 973
}

974
fn associated_path_def_to_ty<'tcx>(this: &AstConv<'tcx>,
975 976 977 978 979
                                   span: Span,
                                   ty: Ty<'tcx>,
                                   ty_path_def: def::Def,
                                   item_segment: &ast::PathSegment)
                                   -> (Ty<'tcx>, def::Def)
980 981
{
    let tcx = this.tcx();
982
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
983 984
    let assoc_name = item_segment.identifier.name;

985 986 987 988 989 990 991
    let is_param = match (&ty.sty, ty_path_def) {
        (&ty::ty_param(_), def::DefTyParam(..)) |
        (&ty::ty_param(_), def::DefSelfTy(_)) => true,
        _ => false
    };

    let ty_param_node_id = if is_param {
992 993 994 995 996 997 998 999
        ty_path_def.local_node_id()
    } else {
        span_err!(tcx.sess, span, E0223,
                "ambiguous associated type; specify the type using the syntax \
                `<{} as Trait>::{}`",
                ty.user_string(tcx), token::get_name(assoc_name));
        return (tcx.types.err, ty_path_def);
    };
1000

1001 1002 1003 1004
    let mut suitable_bounds: Vec<_>;
    let ty_param_name: ast::Name;
    { // contain scope of refcell:
        let ty_param_defs = tcx.ty_param_defs.borrow();
1005
        let ty_param_def = &ty_param_defs[ty_param_node_id];
1006 1007
        ty_param_name = ty_param_def.name;

1008

1009
        // FIXME(#20300) -- search where clauses, not bounds
1010
        suitable_bounds =
1011
            traits::transitive_bounds(tcx, &ty_param_def.bounds.trait_bounds)
1012 1013 1014 1015 1016
            .filter(|b| trait_defines_associated_type_named(this, b.def_id(), assoc_name))
            .collect();
    }

    if suitable_bounds.len() == 0 {
1017
        span_err!(tcx.sess, span, E0220,
B
Brian Anderson 已提交
1018
                          "associated type `{}` not found for type parameter `{}`",
1019
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1020
                                  token::get_name(ty_param_name));
1021
        return (this.tcx().types.err, ty_path_def);
1022 1023 1024
    }

    if suitable_bounds.len() > 1 {
1025
        span_err!(tcx.sess, span, E0221,
B
Brian Anderson 已提交
1026
                          "ambiguous associated type `{}` in bounds of `{}`",
1027
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1028
                                  token::get_name(ty_param_name));
1029

1030
        for suitable_bound in &suitable_bounds {
1031
            span_note!(this.tcx().sess, span,
1032 1033 1034 1035 1036 1037 1038
                       "associated type `{}` could derive from `{}`",
                       token::get_name(ty_param_name),
                       suitable_bound.user_string(this.tcx()));
        }
    }

    let suitable_bound = suitable_bounds.pop().unwrap().clone();
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    let trait_did = suitable_bound.0.def_id;

    let ty = this.projected_ty_from_poly_trait_ref(span, suitable_bound, assoc_name);

    let item_did = if trait_did.krate == ast::LOCAL_CRATE {
        // `ty::trait_items` used below requires information generated
        // by type collection, which may be in progress at this point.
        match this.tcx().map.expect_item(trait_did.node).node {
            ast::ItemTrait(_, _, _, ref trait_items) => {
                trait_items.iter().filter_map(|i| {
                    if let ast::TypeTraitItem(ref assoc) = *i {
                        if assoc.ty_param.ident.name == assoc_name {
                            return Some(ast_util::local_def(assoc.ty_param.id));
                        }
                    }
                    None
                }).next().expect("missing associated type")
            }
            _ => unreachable!()
        }
    } else {
        let trait_items = ty::trait_items(this.tcx(), trait_did);
        let item = trait_items.iter().find(|i| i.name() == assoc_name);
        item.expect("missing associated type").def_id()
    };
    (ty, def::DefAssociatedTy(trait_did, item_did))
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

fn trait_defines_associated_type_named(this: &AstConv,
                                       trait_def_id: ast::DefId,
                                       assoc_name: ast::Name)
                                       -> bool
{
    let tcx = this.tcx();
    let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
    trait_def.associated_type_names.contains(&assoc_name)
}

1077 1078
fn qpath_to_ty<'tcx>(this: &AstConv<'tcx>,
                     rscope: &RegionScope,
1079
                     span: Span,
1080 1081
                     param_mode: PathParamMode,
                     opt_self_ty: Option<Ty<'tcx>>,
1082 1083 1084
                     trait_def_id: ast::DefId,
                     trait_segment: &ast::PathSegment,
                     item_segment: &ast::PathSegment)
1085
                     -> Ty<'tcx>
1086
{
1087
    let tcx = this.tcx();
1088

1089
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1090

1091
    let self_ty = if let Some(ty) = opt_self_ty {
1092
        ty
1093 1094 1095 1096 1097 1098 1099 1100
    } else {
        let path_str = ty::item_path_str(tcx, trait_def_id);
        span_err!(tcx.sess, span, E0223,
                  "ambiguous associated type; specify the type using the syntax \
                   `<Type as {}>::{}`",
                   path_str, &token::get_ident(item_segment.identifier));
        return tcx.types.err;
    };
1101

1102
    debug!("qpath_to_ty: self_type={}", self_ty.repr(tcx));
1103

1104
    let trait_ref = ast_path_to_trait_ref(this,
1105
                                          rscope,
1106
                                          span,
1107
                                          param_mode,
1108 1109 1110
                                          trait_def_id,
                                          Some(self_ty),
                                          trait_segment,
1111
                                          None);
1112

1113
    debug!("qpath_to_ty: trait_ref={}", trait_ref.repr(tcx));
1114

1115
    this.projected_ty(span, trait_ref, item_segment.identifier.name)
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/// Convert a type supplied as value for a type argument from AST into our
/// our internal representation. This is the same as `ast_ty_to_ty` but that
/// it applies the object lifetime default.
///
/// # Parameters
///
/// * `this`, `rscope`: the surrounding context
/// * `decl_generics`: the generics of the struct/enum/trait declaration being
///   referenced
/// * `index`: the index of the type parameter being instantiated from the list
///   (we assume it is in the `TypeSpace`)
/// * `region_substs`: a partial substitution consisting of
///   only the region type parameters being supplied to this type.
/// * `ast_ty`: the ast representation of the type being supplied
pub fn ast_ty_arg_to_ty<'tcx>(this: &AstConv<'tcx>,
                              rscope: &RegionScope,
                              decl_generics: &ty::Generics<'tcx>,
                              index: usize,
                              region_substs: &Substs<'tcx>,
                              ast_ty: &ast::Ty)
                              -> Ty<'tcx>
{
    let tcx = this.tcx();

    if let Some(def) = decl_generics.types.opt_get(TypeSpace, index) {
        let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
        let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
        ast_ty_to_ty(this, rscope1, ast_ty)
    } else {
        ast_ty_to_ty(this, rscope, ast_ty)
    }
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
pub fn finish_resolving_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                        rscope: &RegionScope,
                                        span: Span,
                                        param_mode: PathParamMode,
                                        def: &mut def::Def,
                                        opt_self_ty: Option<Ty<'tcx>>,
                                        segments: &[ast::PathSegment],
                                        assoc_segments: &[ast::PathSegment])
                                        -> Ty<'tcx> {
    let tcx = this.tcx();

    let base_ty = match *def {
        def::DefTrait(trait_def_id) => {
            // N.B. this case overlaps somewhat with
            // TyObjectSum, see that fn for details
            let mut projection_bounds = Vec::new();

            let trait_ref = object_path_to_poly_trait_ref(this,
                                                          rscope,
                                                          span,
                                                          param_mode,
                                                          trait_def_id,
                                                          segments.last().unwrap(),
                                                          &mut projection_bounds);

            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            trait_ref_to_object_type(this, rscope, span, trait_ref,
                                     projection_bounds, &[])
        }
        def::DefTy(did, _) | def::DefStruct(did) => {
            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            ast_path_to_ty(this, rscope, span,
                           param_mode, did,
                           segments.last().unwrap())
        }
        def::DefTyParam(space, index, _, name) => {
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_param(tcx, space, index, name)
        }
        def::DefSelfTy(_) => {
            // n.b.: resolve guarantees that the this type only appears in a
            // trait, which we rely upon in various places when creating
            // substs
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_self_type(tcx)
        }
        def::DefAssociatedTy(trait_did, _) => {
            check_path_args(tcx, &segments[..segments.len()-2], NO_TPS | NO_REGIONS);
            qpath_to_ty(this, rscope, span, param_mode,
                        opt_self_ty, trait_did,
                        &segments[segments.len()-2],
                        segments.last().unwrap())
        }
        def::DefMod(id) => {
1205 1206 1207 1208 1209 1210 1211 1212
            // Used as sentinel by callers to indicate the `<T>::a::b::c` form.
            if segments.is_empty() {
                opt_self_ty.expect("missing T in <T>::a::b::c")
            } else {
                tcx.sess.span_bug(span,
                                  &format!("found module name used as a type: {}",
                                           tcx.map.node_to_string(id.node)));
            }
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        }
        def::DefPrimTy(prim_ty) => {
            prim_ty_to_ty(tcx, segments, prim_ty)
        }
        _ => {
            span_fatal!(tcx.sess, span, E0248,
                        "found value name used as a type: {:?}", *def);
        }
    };

    // If any associated type segments remain, attempt to resolve them.
    let mut ty = base_ty;
    for segment in assoc_segments {
        if ty.sty == ty::ty_err {
            break;
        }
        // This is pretty bad (it will fail except for T::A and Self::A).
        let (a_ty, a_def) = associated_path_def_to_ty(this, span,
                                                      ty, *def, segment);
        ty = a_ty;
        *def = a_def;
    }
    ty
}

1238 1239 1240 1241 1242 1243
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty<'tcx>(this: &AstConv<'tcx>,
                          rscope: &RegionScope,
                          ast_ty: &ast::Ty)
                          -> Ty<'tcx>
1244 1245 1246
{
    debug!("ast_ty_to_ty(ast_ty={})",
           ast_ty.repr(this.tcx()));
1247

1248
    let tcx = this.tcx();
1249

1250
    let mut ast_ty_to_ty_cache = tcx.ast_ty_to_ty_cache.borrow_mut();
1251
    match ast_ty_to_ty_cache.get(&ast_ty.id) {
1252 1253
        Some(&ty::atttce_resolved(ty)) => return ty,
        Some(&ty::atttce_unresolved) => {
1254
            span_fatal!(tcx.sess, ast_ty.span, E0246,
1255 1256 1257
                                "illegal recursive type; insert an enum \
                                 or struct in the cycle, if this is \
                                 desired");
1258
        }
1259
        None => { /* go on */ }
1260
    }
1261 1262
    ast_ty_to_ty_cache.insert(ast_ty.id, ty::atttce_unresolved);
    drop(ast_ty_to_ty_cache);
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    let typ = match ast_ty.node {
        ast::TyVec(ref ty) => {
            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
        }
        ast::TyObjectSum(ref ty, ref bounds) => {
            match ast_ty_to_trait_ref(this, rscope, &**ty, bounds) {
                Ok((trait_ref, projection_bounds)) => {
                    trait_ref_to_object_type(this,
                                             rscope,
                                             ast_ty.span,
                                             trait_ref,
                                             projection_bounds,
                                             bounds)
1277
                }
1278 1279
                Err(ErrorReported) => {
                    this.tcx().types.err
1280 1281
                }
            }
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        }
        ast::TyPtr(ref mt) => {
            ty::mk_ptr(tcx, ty::mt {
                ty: ast_ty_to_ty(this, rscope, &*mt.ty),
                mutbl: mt.mutbl
            })
        }
        ast::TyRptr(ref region, ref mt) => {
            let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
            debug!("ty_rptr r={}", r.repr(this.tcx()));
            let rscope1 =
                &ObjectLifetimeDefaultRscope::new(
                    rscope,
                    Some(ty::ObjectLifetimeDefault::Specific(r)));
            let t = ast_ty_to_ty(this, rscope1, &*mt.ty);
            ty::mk_rptr(tcx, tcx.mk_region(r), ty::mt {ty: t, mutbl: mt.mutbl})
        }
        ast::TyTup(ref fields) => {
            let flds = fields.iter()
                             .map(|t| ast_ty_to_ty(this, rscope, &**t))
                             .collect();
            ty::mk_tup(tcx, flds)
        }
        ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
        ast::TyBareFn(ref bf) => {
            if bf.decl.variadic && bf.abi != abi::C {
                span_err!(tcx.sess, ast_ty.span, E0222,
                          "variadic function must have C calling convention");
N
Niko Matsakis 已提交
1310
            }
1311 1312 1313 1314 1315 1316
            let bare_fn = ty_of_bare_fn(this, bf.unsafety, bf.abi, &*bf.decl);
            ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(bare_fn))
        }
        ast::TyPolyTraitRef(ref bounds) => {
            conv_ty_poly_trait_ref(this, rscope, ast_ty.span, bounds)
        }
1317
        ast::TyPath(ref maybe_qself, ref path) => {
1318 1319
            let path_res = if let Some(&d) = tcx.def_map.borrow().get(&ast_ty.id) {
                d
1320 1321 1322 1323 1324 1325 1326
            } else if let Some(ast::QSelf { position: 0, .. }) = *maybe_qself {
                // Create some fake resolution that can't possibly be a type.
                def::PathResolution {
                    base_def: def::DefMod(ast_util::local_def(ast::CRATE_NODE_ID)),
                    last_private: LastMod(AllPublic),
                    depth: path.segments.len()
                }
1327 1328 1329 1330
            } else {
                tcx.sess.span_bug(ast_ty.span,
                                  &format!("unbound path {}", ast_ty.repr(tcx)))
            };
1331 1332
            let mut def = path_res.base_def;
            let base_ty_end = path.segments.len() - path_res.depth;
1333 1334 1335
            let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                ast_ty_to_ty(this, rscope, &qself.ty)
            });
1336 1337 1338 1339 1340
            let ty = finish_resolving_def_to_ty(this, rscope, ast_ty.span,
                                                PathParamMode::Explicit, &mut def,
                                                opt_self_ty,
                                                &path.segments[..base_ty_end],
                                                &path.segments[base_ty_end..]);
1341

1342
            if path_res.depth != 0 && ty.sty != ty::ty_err {
1343
                // Write back the new resolution.
1344 1345 1346 1347 1348
                tcx.def_map.borrow_mut().insert(ast_ty.id, def::PathResolution {
                    base_def: def,
                    last_private: path_res.last_private,
                    depth: 0
                });
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            }

            ty
        }
        ast::TyFixedLengthVec(ref ty, ref e) => {
            match const_eval::eval_const_expr_partial(tcx, &**e, Some(tcx.types.uint)) {
                Ok(r) => {
                    match r {
                        const_eval::const_int(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        const_eval::const_uint(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        _ => {
                            span_fatal!(tcx.sess, ast_ty.span, E0249,
                                        "expected constant expr for array length");
1366 1367
                        }
                    }
1368 1369 1370 1371
                }
                Err(r) => {
                    span_fatal!(tcx.sess, ast_ty.span, E0250,
                                "expected constant expr for array length: {}", r);
1372 1373
                }
            }
1374
        }
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        ast::TyTypeof(ref _e) => {
            tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
        }
        ast::TyInfer => {
            // TyInfer also appears as the type of arguments or return
            // values in a ExprClosure, or as
            // the type of local variables. Both of these cases are
            // handled specially and will not descend into this routine.
            this.ty_infer(ast_ty.span)
        }
    };
1386

1387
    tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, ty::atttce_resolved(typ));
B
Brian Anderson 已提交
1388
    return typ;
1389 1390
}

1391 1392 1393 1394 1395 1396
pub fn ty_of_arg<'tcx>(this: &AstConv<'tcx>,
                       rscope: &RegionScope,
                       a: &ast::Arg,
                       expected_ty: Option<Ty<'tcx>>)
                       -> Ty<'tcx>
{
E
Erick Tryzelaar 已提交
1397
    match a.ty.node {
1398 1399
        ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
        ast::TyInfer => this.ty_infer(a.ty.span),
1400
        _ => ast_ty_to_ty(this, rscope, &*a.ty),
1401
    }
1402 1403
}

1404 1405
struct SelfInfo<'a, 'tcx> {
    untransformed_self_ty: Ty<'tcx>,
1406
    explicit_self: &'a ast::ExplicitSelf,
1407 1408
}

1409 1410 1411 1412 1413 1414 1415
pub fn ty_of_method<'tcx>(this: &AstConv<'tcx>,
                          unsafety: ast::Unsafety,
                          untransformed_self_ty: Ty<'tcx>,
                          explicit_self: &ast::ExplicitSelf,
                          decl: &ast::FnDecl,
                          abi: abi::Abi)
                          -> (ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory) {
1416
    let self_info = Some(SelfInfo {
1417
        untransformed_self_ty: untransformed_self_ty,
1418 1419 1420 1421
        explicit_self: explicit_self,
    });
    let (bare_fn_ty, optional_explicit_self_category) =
        ty_of_method_or_bare_fn(this,
N
Niko Matsakis 已提交
1422
                                unsafety,
1423
                                abi,
1424 1425 1426
                                self_info,
                                decl);
    (bare_fn_ty, optional_explicit_self_category.unwrap())
1427 1428
}

1429
pub fn ty_of_bare_fn<'tcx>(this: &AstConv<'tcx>, unsafety: ast::Unsafety, abi: abi::Abi,
1430
                                              decl: &ast::FnDecl) -> ty::BareFnTy<'tcx> {
N
Niko Matsakis 已提交
1431
    let (bare_fn_ty, _) = ty_of_method_or_bare_fn(this, unsafety, abi, None, decl);
1432
    bare_fn_ty
1433 1434
}

1435 1436 1437 1438 1439 1440
fn ty_of_method_or_bare_fn<'a, 'tcx>(this: &AstConv<'tcx>,
                                     unsafety: ast::Unsafety,
                                     abi: abi::Abi,
                                     opt_self_info: Option<SelfInfo<'a, 'tcx>>,
                                     decl: &ast::FnDecl)
                                     -> (ty::BareFnTy<'tcx>, Option<ty::ExplicitSelfCategory>)
1441
{
1442
    debug!("ty_of_method_or_bare_fn");
1443

1444 1445
    // New region names that appear inside of the arguments of the function
    // declaration are bound to that function type.
1446
    let rb = rscope::BindingRscope::new();
1447

1448 1449 1450 1451 1452
    // `implied_output_region` is the region that will be assumed for any
    // region parameters in the return type. In accordance with the rules for
    // lifetime elision, we can determine it in two ways. First (determined
    // here), if self is by-reference, then the implied output region is the
    // region of the self parameter.
1453
    let mut explicit_self_category_result = None;
1454 1455 1456
    let (self_ty, mut implied_output_region) = match opt_self_info {
        None => (None, None),
        Some(self_info) => {
1457 1458 1459
            // This type comes from an impl or trait; no late-bound
            // regions should be present.
            assert!(!self_info.untransformed_self_ty.has_escaping_regions());
1460

1461 1462 1463 1464 1465
            // Figure out and record the explicit self category.
            let explicit_self_category =
                determine_explicit_self_category(this, &rb, &self_info);
            explicit_self_category_result = Some(explicit_self_category);
            match explicit_self_category {
1466 1467 1468
                ty::StaticExplicitSelfCategory => {
                    (None, None)
                }
1469
                ty::ByValueExplicitSelfCategory => {
1470
                    (Some(self_info.untransformed_self_ty), None)
1471 1472 1473
                }
                ty::ByReferenceExplicitSelfCategory(region, mutability) => {
                    (Some(ty::mk_rptr(this.tcx(),
H
Huon Wilson 已提交
1474
                                      this.tcx().mk_region(region),
1475
                                      ty::mt {
1476
                                        ty: self_info.untransformed_self_ty,
1477 1478 1479 1480 1481
                                        mutbl: mutability
                                      })),
                     Some(region))
                }
                ty::ByBoxExplicitSelfCategory => {
1482
                    (Some(ty::mk_uniq(this.tcx(), self_info.untransformed_self_ty)), None)
1483
                }
1484 1485
            }
        }
1486
    };
1487 1488

    // HACK(eddyb) replace the fake self type in the AST with the actual type.
1489
    let input_params = if self_ty.is_some() {
A
Aaron Turon 已提交
1490
        &decl.inputs[1..]
1491
    } else {
1492
        &decl.inputs[..]
1493
    };
1494 1495 1496 1497
    let input_tys = input_params.iter().map(|a| ty_of_arg(this, &rb, a, None));
    let input_pats: Vec<String> = input_params.iter()
                                              .map(|a| pprust::pat_to_string(&*a.pat))
                                              .collect();
1498
    let self_and_input_tys: Vec<Ty> =
A
Aaron Turon 已提交
1499
        self_ty.into_iter().chain(input_tys).collect();
1500

1501

1502 1503 1504
    // Second, if there was exactly one lifetime (either a substitution or a
    // reference) in the arguments, then any anonymous regions in the output
    // have that lifetime.
1505 1506
    let lifetimes_for_params = if implied_output_region.is_none() {
        let input_tys = if self_ty.is_some() {
1507
            // Skip the first argument if `self` is present.
A
Aaron Turon 已提交
1508
            &self_and_input_tys[1..]
1509
        } else {
1510
            &self_and_input_tys[..]
1511
        };
1512

1513 1514 1515 1516 1517 1518
        let (ior, lfp) = find_implied_output_region(input_tys, input_pats);
        implied_output_region = ior;
        lfp
    } else {
        vec![]
    };
1519

1520 1521 1522 1523
    let output_ty = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer =>
            ty::FnConverging(this.ty_infer(output.span)),
        ast::Return(ref output) =>
1524 1525 1526 1527
            ty::FnConverging(convert_ty_with_lifetime_elision(this,
                                                              implied_output_region,
                                                              lifetimes_for_params,
                                                              &**output)),
1528 1529
        ast::DefaultReturn(..) => ty::FnConverging(ty::mk_nil(this.tcx())),
        ast::NoReturn(..) => ty::FnDiverging
1530 1531
    };

1532
    (ty::BareFnTy {
N
Niko Matsakis 已提交
1533
        unsafety: unsafety,
1534
        abi: abi,
1535
        sig: ty::Binder(ty::FnSig {
1536 1537 1538
            inputs: self_and_input_tys,
            output: output_ty,
            variadic: decl.variadic
1539
        }),
1540 1541 1542
    }, explicit_self_category_result)
}

1543 1544 1545 1546
fn determine_explicit_self_category<'a, 'tcx>(this: &AstConv<'tcx>,
                                              rscope: &RegionScope,
                                              self_info: &SelfInfo<'a, 'tcx>)
                                              -> ty::ExplicitSelfCategory
1547 1548
{
    return match self_info.explicit_self.node {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        ast::SelfStatic => ty::StaticExplicitSelfCategory,
        ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
        ast::SelfRegion(ref lifetime, mutability, _) => {
            let region =
                opt_ast_region_to_region(this,
                                         rscope,
                                         self_info.explicit_self.span,
                                         lifetime);
            ty::ByReferenceExplicitSelfCategory(region, mutability)
        }
1559 1560
        ast::SelfExplicit(ref ast_type, _) => {
            let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
            // We wish to (for now) categorize an explicit self
            // declaration like `self: SomeType` into either `self`,
            // `&self`, `&mut self`, or `Box<self>`. We do this here
            // by some simple pattern matching. A more precise check
            // is done later in `check_method_self_type()`.
            //
            // Examples:
            //
            // ```
            // impl Foo for &T {
            //     // Legal declarations:
            //     fn method1(self: &&T); // ByReferenceExplicitSelfCategory
            //     fn method2(self: &T); // ByValueExplicitSelfCategory
            //     fn method3(self: Box<&T>); // ByBoxExplicitSelfCategory
            //
            //     // Invalid cases will be caught later by `check_method_self_type`:
            //     fn method_err1(self: &mut T); // ByReferenceExplicitSelfCategory
            // }
            // ```
            //
            // To do the check we just count the number of "modifiers"
            // on each type and compare them. If they are the same or
            // the impl has more, we call it "by value". Otherwise, we
            // look at the outermost modifier on the method decl and
            // call it by-ref, by-box as appropriate. For method1, for
            // example, the impl type has one modifier, but the method
            // type has two, so we end up with
            // ByReferenceExplicitSelfCategory.

            let impl_modifiers = count_modifiers(self_info.untransformed_self_ty);
            let method_modifiers = count_modifiers(explicit_type);

            debug!("determine_explicit_self_category(self_info.untransformed_self_ty={} \
                   explicit_type={} \
                   modifiers=({},{})",
                   self_info.untransformed_self_ty.repr(this.tcx()),
                   explicit_type.repr(this.tcx()),
                   impl_modifiers,
                   method_modifiers);

            if impl_modifiers >= method_modifiers {
                ty::ByValueExplicitSelfCategory
            } else {
1605
                match explicit_type.sty {
H
Huon Wilson 已提交
1606
                    ty::ty_rptr(r, mt) => ty::ByReferenceExplicitSelfCategory(*r, mt.mutbl),
1607 1608
                    ty::ty_uniq(_) => ty::ByBoxExplicitSelfCategory,
                    _ => ty::ByValueExplicitSelfCategory,
1609 1610
                }
            }
1611 1612
        }
    };
1613

1614
    fn count_modifiers(ty: Ty) -> uint {
1615
        match ty.sty {
1616 1617 1618
            ty::ty_rptr(_, mt) => count_modifiers(mt.ty) + 1,
            ty::ty_uniq(t) => count_modifiers(t) + 1,
            _ => 0,
1619 1620
        }
    }
1621 1622
}

1623 1624
pub fn ty_of_closure<'tcx>(
    this: &AstConv<'tcx>,
N
Niko Matsakis 已提交
1625
    unsafety: ast::Unsafety,
1626
    decl: &ast::FnDecl,
1627
    abi: abi::Abi,
1628 1629
    expected_sig: Option<ty::FnSig<'tcx>>)
    -> ty::ClosureTy<'tcx>
1630
{
1631 1632
    debug!("ty_of_closure(expected_sig={})",
           expected_sig.repr(this.tcx()));
1633 1634 1635

    // new region names that appear inside of the fn decl are bound to
    // that function type
1636
    let rb = rscope::BindingRscope::new();
1637

1638
    let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
1639
        let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
1640 1641
            // no guarantee that the correct number of expected args
            // were supplied
1642
            if i < e.inputs.len() {
1643
                Some(e.inputs[i])
1644 1645 1646
            } else {
                None
            }
1647
        });
J
James Miller 已提交
1648
        ty_of_arg(this, &rb, a, expected_arg_ty)
1649
    }).collect();
1650

1651
    let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1652

1653 1654 1655 1656 1657 1658
    let is_infer = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer => true,
        ast::DefaultReturn(..) => true,
        _ => false
    };

1659
    let output_ty = match decl.output {
1660
        _ if is_infer && expected_ret_ty.is_some() =>
1661
            expected_ret_ty.unwrap(),
1662 1663
        _ if is_infer =>
            ty::FnConverging(this.ty_infer(decl.output.span())),
1664 1665
        ast::Return(ref output) =>
            ty::FnConverging(ast_ty_to_ty(this, &rb, &**output)),
1666 1667
        ast::DefaultReturn(..) => unreachable!(),
        ast::NoReturn(..) => ty::FnDiverging
1668 1669
    };

1670 1671 1672
    debug!("ty_of_closure: input_tys={}", input_tys.repr(this.tcx()));
    debug!("ty_of_closure: output_ty={}", output_ty.repr(this.tcx()));

1673
    ty::ClosureTy {
N
Niko Matsakis 已提交
1674
        unsafety: unsafety,
1675
        abi: abi,
1676 1677 1678
        sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                   output: output_ty,
                                   variadic: decl.variadic}),
1679 1680
    }
}
1681

S
Steve Klabnik 已提交
1682 1683 1684 1685
/// Given an existential type like `Foo+'a+Bar`, this routine converts the `'a` and `Bar` intos an
/// `ExistentialBounds` struct. The `main_trait_refs` argument specifies the `Foo` -- it is absent
/// for closures. Eventually this should all be normalized, I think, so that there is no "main
/// trait ref" and instead we just have a flat list of bounds as the existential type.
1686
fn conv_existential_bounds<'tcx>(
1687 1688
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1689
    span: Span,
1690
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1691
    projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
1692
    ast_bounds: &[ast::TyParamBound])
1693
    -> ty::ExistentialBounds<'tcx>
1694
{
1695
    let partitioned_bounds =
1696
        partition_bounds(this.tcx(), span, ast_bounds);
1697 1698

    conv_existential_bounds_from_partitioned_bounds(
1699
        this, rscope, span, principal_trait_ref, projection_bounds, partitioned_bounds)
1700 1701
}

1702 1703 1704
fn conv_ty_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1705 1706
    span: Span,
    ast_bounds: &[ast::TyParamBound])
1707
    -> Ty<'tcx>
1708
{
1709
    let mut partitioned_bounds = partition_bounds(this.tcx(), span, &ast_bounds[..]);
1710

1711
    let mut projection_bounds = Vec::new();
A
Aaron Turon 已提交
1712 1713
    let main_trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
        let trait_bound = partitioned_bounds.trait_bounds.remove(0);
1714 1715 1716 1717 1718
        instantiate_poly_trait_ref(this,
                                   rscope,
                                   trait_bound,
                                   None,
                                   &mut projection_bounds)
A
Aaron Turon 已提交
1719
    } else {
B
Brian Anderson 已提交
1720
        span_err!(this.tcx().sess, span, E0224,
1721 1722
                  "at least one non-builtin trait is required for an object type");
        return this.tcx().types.err;
1723 1724
    };

1725 1726 1727 1728
    let bounds =
        conv_existential_bounds_from_partitioned_bounds(this,
                                                        rscope,
                                                        span,
1729
                                                        main_trait_bound.clone(),
1730
                                                        projection_bounds,
1731
                                                        partitioned_bounds);
1732

1733
    ty::mk_trait(this.tcx(), main_trait_bound, bounds)
1734 1735
}

1736 1737 1738
pub fn conv_existential_bounds_from_partitioned_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1739
    span: Span,
1740
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1741
    mut projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>, // Empty for boxed closures
1742
    partitioned_bounds: PartitionedBounds)
1743
    -> ty::ExistentialBounds<'tcx>
1744
{
1745 1746
    let PartitionedBounds { builtin_bounds,
                            trait_bounds,
1747
                            region_bounds } =
1748
        partitioned_bounds;
1749 1750

    if !trait_bounds.is_empty() {
1751
        let b = &trait_bounds[0];
B
Brian Anderson 已提交
1752
        span_err!(this.tcx().sess, b.trait_ref.path.span, E0225,
1753
                  "only the builtin traits can be used as closure or object bounds");
1754 1755
    }

1756 1757 1758 1759 1760 1761
    let region_bound = compute_object_lifetime_bound(this,
                                                     rscope,
                                                     span,
                                                     &region_bounds,
                                                     principal_trait_ref,
                                                     builtin_bounds);
1762

1763
    ty::sort_bounds_list(&mut projection_bounds);
1764

1765 1766 1767
    ty::ExistentialBounds {
        region_bound: region_bound,
        builtin_bounds: builtin_bounds,
1768
        projection_bounds: projection_bounds,
1769 1770 1771
    }
}

1772
/// Given the bounds on an object, determines what single region bound
S
Steve Klabnik 已提交
1773 1774 1775
/// (if any) we can use to summarize this type. The basic idea is that we will use the bound the
/// user provided, if they provided one, and otherwise search the supertypes of trait bounds for
/// region bounds. It may be that we can derive no bound at all, in which case we return `None`.
1776 1777 1778 1779 1780 1781 1782 1783
fn compute_object_lifetime_bound<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    explicit_region_bounds: &[&ast::Lifetime],
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    builtin_bounds: ty::BuiltinBounds)
    -> ty::Region
1784
{
1785 1786
    let tcx = this.tcx();

1787
    debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
1788 1789 1790 1791 1792 1793
           principal_trait_ref={}, builtin_bounds={})",
           explicit_region_bounds,
           principal_trait_ref.repr(tcx),
           builtin_bounds.repr(tcx));

    if explicit_region_bounds.len() > 1 {
B
Brian Anderson 已提交
1794 1795
        span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
            "only a single explicit lifetime bound is permitted");
1796 1797
    }

1798
    if explicit_region_bounds.len() != 0 {
1799
        // Explicitly specified region bound. Use that.
1800
        let r = explicit_region_bounds[0];
1801
        return ast_region_to_region(tcx, r);
1802 1803 1804 1805 1806
    }

    // No explicit region bound specified. Therefore, examine trait
    // bounds and see if we can derive region bounds from those.
    let derived_region_bounds =
1807
        object_region_bounds(tcx, &principal_trait_ref, builtin_bounds);
1808 1809 1810 1811

    // If there are no derived region bounds, then report back that we
    // can find no region bound.
    if derived_region_bounds.len() == 0 {
1812 1813 1814 1815 1816 1817 1818 1819 1820
        match rscope.object_lifetime_default(span) {
            Some(r) => { return r; }
            None => {
                span_err!(this.tcx().sess, span, E0228,
                          "the lifetime bound for this object type cannot be deduced \
                           from context; please supply an explicit bound");
                return ty::ReStatic;
            }
        }
1821 1822 1823 1824 1825
    }

    // If any of the derived region bounds are 'static, that is always
    // the best choice.
    if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
1826
        return ty::ReStatic;
1827 1828 1829 1830 1831
    }

    // Determine whether there is exactly one unique region in the set
    // of derived region bounds. If so, use that. Otherwise, report an
    // error.
1832
    let r = derived_region_bounds[0];
A
Aaron Turon 已提交
1833
    if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
B
Brian Anderson 已提交
1834
        span_err!(tcx.sess, span, E0227,
1835
                  "ambiguous lifetime bound, explicit lifetime bound required");
1836
    }
1837
    return r;
1838 1839
}

N
Niko Matsakis 已提交
1840 1841 1842 1843 1844 1845
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
1846 1847 1848 1849 1850
pub fn object_region_bounds<'tcx>(
    tcx: &ty::ctxt<'tcx>,
    principal: &ty::PolyTraitRef<'tcx>,
    others: ty::BuiltinBounds)
    -> Vec<ty::Region>
1851
{
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    // Since we don't actually *know* the self type for an object,
    // this "open(err)" serves as a kind of dummy standin -- basically
    // a skolemized type.
    let open_ty = ty::mk_infer(tcx, ty::FreshTy(0));

    // Note that we preserve the overall binding levels here.
    assert!(!open_ty.has_escaping_regions());
    let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
    let trait_refs = vec!(ty::Binder(Rc::new(ty::TraitRef::new(principal.0.def_id, substs))));

    let param_bounds = ty::ParamBounds {
        region_bounds: Vec::new(),
        builtin_bounds: others,
        trait_bounds: trait_refs,
        projection_bounds: Vec::new(), // not relevant to computing region bounds
    };

    let predicates = ty::predicates(tcx, open_ty, &param_bounds);
    ty::required_region_bounds(tcx, open_ty, predicates)
1871 1872 1873 1874
}

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
1875
    pub trait_bounds: Vec<&'a ast::PolyTraitRef>,
1876 1877 1878
    pub region_bounds: Vec<&'a ast::Lifetime>,
}

S
Steve Klabnik 已提交
1879 1880
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
1881 1882
pub fn partition_bounds<'a>(tcx: &ty::ctxt,
                            _span: Span,
1883
                            ast_bounds: &'a [ast::TyParamBound])
1884 1885 1886 1887 1888
                            -> PartitionedBounds<'a>
{
    let mut builtin_bounds = ty::empty_builtin_bounds();
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
1889
    let mut trait_def_ids = DefIdMap();
1890
    for ast_bound in ast_bounds {
1891
        match *ast_bound {
N
Nick Cameron 已提交
1892
            ast::TraitTyParamBound(ref b, ast::TraitBoundModifier::None) => {
N
Niko Matsakis 已提交
1893
                match ::lookup_def_tcx(tcx, b.trait_ref.path.span, b.trait_ref.ref_id) {
1894
                    def::DefTrait(trait_did) => {
1895
                        match trait_def_ids.get(&trait_did) {
1896 1897 1898 1899 1900
                            // Already seen this trait. We forbid
                            // duplicates in the list (for some
                            // reason).
                            Some(span) => {
                                span_err!(
1901
                                    tcx.sess, b.trait_ref.path.span, E0127,
1902 1903
                                    "trait `{}` already appears in the \
                                     list of bounds",
1904
                                    b.trait_ref.path.user_string(tcx));
1905 1906 1907 1908 1909
                                tcx.sess.span_note(
                                    *span,
                                    "previous appearance is here");

                                continue;
1910
                            }
1911 1912

                            None => { }
1913
                        }
1914

1915
                        trait_def_ids.insert(trait_did, b.trait_ref.path.span);
1916 1917 1918 1919

                        if ty::try_add_builtin_trait(tcx,
                                                     trait_did,
                                                     &mut builtin_bounds) {
1920 1921
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
1922 1923 1924 1925 1926 1927 1928
                            if parameters.types().len() > 0 {
                                check_type_argument_count(tcx, b.trait_ref.path.span,
                                                          parameters.types().len(), 0, 0);
                            }
                            if parameters.lifetimes().len() > 0{
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
1929
                            }
1930
                            continue; // success
1931 1932
                        }
                    }
1933 1934 1935 1936
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
1937
                }
1938 1939
                trait_bounds.push(b);
            }
N
Nick Cameron 已提交
1940
            ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {}
1941 1942 1943
            ast::RegionTyParamBound(ref l) => {
                region_bounds.push(l);
            }
1944
        }
1945 1946 1947 1948 1949 1950
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
1951 1952
    }
}
1953 1954 1955 1956 1957

fn prohibit_projections<'tcx>(tcx: &ty::ctxt<'tcx>,
                              bindings: &[ConvertedBinding<'tcx>])
{
    for binding in bindings.iter().take(1) {
B
Brian Anderson 已提交
1958
        span_err!(tcx.sess, binding.span, E0229,
1959 1960 1961
            "associated type bindings are not allowed here");
    }
}
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

fn check_type_argument_count(tcx: &ty::ctxt, span: Span, supplied: usize,
                             required: usize, accepted: usize) {
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0243,
                  "wrong number of type arguments: {} {}, found {}",
                  expected, required, supplied);
    } else if supplied > accepted {
        let expected = if required < accepted {
            "expected at most"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0244,
                  "wrong number of type arguments: {} {}, found {}",
                  expected,
                  accepted,
                  supplied);
    }
}

fn report_lifetime_number_error(tcx: &ty::ctxt, span: Span, number: usize, expected: usize) {
    span_err!(tcx.sess, span, E0107,
              "wrong number of lifetime parameters: expected {}, found {}",
              expected, number);
}