astconv.rs 81.2 KB
Newer Older
V
Virgile Andreani 已提交
1
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steve Klabnik 已提交
11 12 13 14 15 16 17 18
//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
19 20 21 22 23 24
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
S
Steve Klabnik 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.
50

51
use middle::astconv_util::{prim_ty_to_ty, check_path_args, NO_TPS, NO_REGIONS};
52
use middle::const_eval;
53
use middle::def;
54
use middle::resolve_lifetime as rl;
55
use middle::privacy::{AllPublic, LastMod};
56
use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
57 58
use middle::traits;
use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty};
59
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope,
60
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope};
61
use util::common::{ErrorReported, FN_OUTPUT_NAME};
62
use util::nodemap::DefIdMap;
63
use util::ppaux::{self, Repr, UserString};
64

A
Aaron Turon 已提交
65
use std::iter::{repeat, AdditiveIterator};
66 67
use std::rc::Rc;
use std::slice;
68
use syntax::{abi, ast, ast_util};
69
use syntax::codemap::Span;
70
use syntax::parse::token;
71
use syntax::print::pprust;
72

73 74
pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
75

76 77
    fn get_item_type_scheme(&self, span: Span, id: ast::DefId)
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>;
78

79 80
    fn get_trait_def(&self, span: Span, id: ast::DefId)
                     -> Result<Rc<ty::TraitDef<'tcx>>, ErrorReported>;
N
Nick Cameron 已提交
81

82 83
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;
84

N
Nick Cameron 已提交
85 86 87 88
    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
89 90 91
    fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
        None
    }
92

93
    /// What type should we use when a type is omitted?
94
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109
    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>
    {
        if ty::binds_late_bound_regions(self.tcx(), &poly_trait_ref) {
B
Brian Anderson 已提交
110
            span_err!(self.tcx().sess, span, E0212,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                "cannot extract an associated type from a higher-ranked trait bound \
                 in this context");
            self.tcx().types.err
        } else {
            // no late-bound regions, we can just ignore the binder
            self.projected_ty(span, poly_trait_ref.0.clone(), item_name)
        }
    }

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
                    _trait_ref: Rc<ty::TraitRef<'tcx>>,
                    _item_name: ast::Name)
                    -> Ty<'tcx>
    {
B
Brian Anderson 已提交
128
        span_err!(self.tcx().sess, span, E0213,
129 130 131 132
            "associated types are not accepted in this context");

        self.tcx().types.err
    }
133 134
}

E
Eduard Burtescu 已提交
135
pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
136
                            -> ty::Region {
137
    let r = match tcx.named_region_map.get(&lifetime.id) {
138 139 140
        None => {
            // should have been recorded by the `resolve_lifetime` pass
            tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
141
        }
142

143
        Some(&rl::DefStaticRegion) => {
144
            ty::ReStatic
145 146
        }

147 148
        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
            ty::ReLateBound(debruijn, ty::BrNamed(ast_util::local_def(id), lifetime.name))
149 150
        }

151 152
        Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
            ty::ReEarlyBound(id, space, index, lifetime.name)
153 154
        }

155
        Some(&rl::DefFreeRegion(scope, id)) => {
156
            ty::ReFree(ty::FreeRegion {
157
                    scope: scope,
158
                    bound_region: ty::BrNamed(ast_util::local_def(id),
159
                                              lifetime.name)
160 161 162 163 164
                })
        }
    };

    debug!("ast_region_to_region(lifetime={} id={}) yields {}",
165 166 167
           lifetime.repr(tcx),
           lifetime.id,
           r.repr(tcx));
168 169

    r
170 171
}

172 173 174
pub fn opt_ast_region_to_region<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
175
    default_span: Span,
J
James Miller 已提交
176
    opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
177
{
178 179 180
    let r = match *opt_lifetime {
        Some(ref lifetime) => {
            ast_region_to_region(this.tcx(), lifetime)
181
        }
182 183 184

        None => {
            match rscope.anon_regions(default_span, 1) {
185
                Err(v) => {
186
                    debug!("optional region in illegal location");
J
Jakub Wieczorek 已提交
187 188
                    span_err!(this.tcx().sess, default_span, E0106,
                        "missing lifetime specifier");
189 190 191 192
                    match v {
                        Some(v) => {
                            let mut m = String::new();
                            let len = v.len();
193
                            for (i, (name, n)) in v.into_iter().enumerate() {
194 195 196
                                let help_name = if name.is_empty() {
                                    format!("argument {}", i + 1)
                                } else {
197
                                    format!("`{}`", name)
198 199
                                };

J
Jorge Aparicio 已提交
200
                                m.push_str(&(if n == 1 {
201
                                    help_name
202
                                } else {
203
                                    format!("one of {}'s {} elided lifetimes", help_name, n)
204
                                })[..]);
205 206 207

                                if len == 2 && i == 0 {
                                    m.push_str(" or ");
208
                                } else if i + 2 == len {
209
                                    m.push_str(", or ");
210
                                } else if i + 1 != len {
211 212 213 214
                                    m.push_str(", ");
                                }
                            }
                            if len == 1 {
P
P1start 已提交
215
                                span_help!(this.tcx().sess, default_span,
216 217 218 219
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say which {} it is borrowed from",
                                    m);
                            } else if len == 0 {
P
P1start 已提交
220
                                span_help!(this.tcx().sess, default_span,
221 222
                                    "this function's return type contains a borrowed value, but \
                                     there is no value for it to be borrowed from");
P
P1start 已提交
223
                                span_help!(this.tcx().sess, default_span,
224 225
                                    "consider giving it a 'static lifetime");
                            } else {
P
P1start 已提交
226
                                span_help!(this.tcx().sess, default_span,
227 228 229 230 231 232 233
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say whether it is borrowed from {}",
                                    m);
                            }
                        }
                        None => {},
                    }
234
                    ty::ReStatic
235 236
                }

237
                Ok(rs) => rs[0],
238
            }
239
        }
240 241
    };

B
Ben Gamari 已提交
242
    debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
243
            opt_lifetime.repr(this.tcx()),
244 245 246
            r.repr(this.tcx()));

    r
247 248
}

S
Steve Klabnik 已提交
249 250
/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
251
pub fn ast_path_substs_for_ty<'tcx>(
252 253
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
254
    span: Span,
255
    param_mode: PathParamMode,
256
    decl_generics: &ty::Generics<'tcx>,
257
    item_segment: &ast::PathSegment)
258
    -> Substs<'tcx>
259
{
260
    let tcx = this.tcx();
261

262 263 264 265 266 267 268 269
    // ast_path_substs() is only called to convert paths that are
    // known to refer to traits, types, or structs. In these cases,
    // all type parameters defined for the item being referenced will
    // be in the TypeSpace or SelfSpace.
    //
    // Note: in the case of traits, the self parameter is also
    // defined, but we don't currently create a `type_param_def` for
    // `Self` because it is implicit.
270 271
    assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
    assert!(decl_generics.types.all(|d| d.space != FnSpace));
272

273
    let (regions, types, assoc_bindings) = match item_segment.parameters {
274
        ast::AngleBracketedParameters(ref data) => {
275
            convert_angle_bracketed_parameters(this, rscope, span, decl_generics, data)
276 277
        }
        ast::ParenthesizedParameters(ref data) => {
278
            span_err!(tcx.sess, span, E0214,
279
                "parenthesized parameters may only be used with a trait");
280
            convert_parenthesized_parameters(this, rscope, span, decl_generics, data)
281
        }
282 283
    };

284
    prohibit_projections(this.tcx(), &assoc_bindings);
285

286
    create_substs_for_ast_path(this,
287
                               span,
288
                               param_mode,
289 290 291
                               decl_generics,
                               None,
                               types,
292
                               regions)
293 294
}

295 296 297 298 299 300 301 302
#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

303
fn create_region_substs<'tcx>(
304 305
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
306
    span: Span,
307
    decl_generics: &ty::Generics<'tcx>,
308
    regions_provided: Vec<ty::Region>)
309
    -> Substs<'tcx>
310 311 312
{
    let tcx = this.tcx();

313
    // If the type is parameterized by the this region, then replace this
314 315
    // region with the current anon region binding (in other words,
    // whatever & would get replaced with).
316
    let expected_num_region_params = decl_generics.regions.len(TypeSpace);
317
    let supplied_num_region_params = regions_provided.len();
318
    let regions = if expected_num_region_params == supplied_num_region_params {
319
        regions_provided
320 321
    } else {
        let anon_regions =
322
            rscope.anon_regions(span, expected_num_region_params);
323

324
        if supplied_num_region_params != 0 || anon_regions.is_err() {
325 326 327
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
328
        }
329 330

        match anon_regions {
331 332
            Ok(anon_regions) => anon_regions,
            Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
333
        }
334
    };
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    Substs::new_type(vec![], regions)
}

/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// The `region_substs` should be the result of `create_region_substs`
/// -- that is, a substitution with no types but the correct number of
/// regions.
fn create_substs_for_ast_path<'tcx>(
    this: &AstConv<'tcx>,
    span: Span,
350
    param_mode: PathParamMode,
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    decl_generics: &ty::Generics<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    types_provided: Vec<Ty<'tcx>>,
    region_substs: Substs<'tcx>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    debug!("create_substs_for_ast_path(decl_generics={}, self_ty={}, \
           types_provided={}, region_substs={}",
           decl_generics.repr(tcx), self_ty.repr(tcx), types_provided.repr(tcx),
           region_substs.repr(tcx));

    assert_eq!(region_substs.regions().len(TypeSpace), decl_generics.regions.len(TypeSpace));
    assert!(region_substs.types.is_empty());
366 367

    // Convert the type parameters supplied by the user.
368
    let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
369 370 371 372 373
    let formal_ty_param_count = ty_param_defs.len();
    let required_ty_param_count = ty_param_defs.iter()
                                               .take_while(|x| x.default.is_none())
                                               .count();

374 375 376 377 378 379 380 381 382 383
    // Fill with `ty_infer` if no params were specified, as long as
    // they were optional (e.g. paths inside expressions).
    let mut type_substs = if param_mode == PathParamMode::Optional &&
                             types_provided.is_empty() {
        (0..formal_ty_param_count).map(|_| this.ty_infer(span)).collect()
    } else {
        types_provided
    };

    let supplied_ty_param_count = type_substs.len();
384 385 386
    check_type_argument_count(this.tcx(), span, supplied_ty_param_count,
                              required_ty_param_count, formal_ty_param_count);

387
    if supplied_ty_param_count < required_ty_param_count {
388 389 390
        while type_substs.len() < required_ty_param_count {
            type_substs.push(tcx.types.err);
        }
391
    } else if supplied_ty_param_count > formal_ty_param_count {
392
        type_substs.truncate(formal_ty_param_count);
393
    }
394 395
    assert!(type_substs.len() >= required_ty_param_count &&
            type_substs.len() <= formal_ty_param_count);
396

397 398
    let mut substs = region_substs;
    substs.types.extend(TypeSpace, type_substs.into_iter());
399

400 401 402 403 404 405 406 407 408 409
    match self_ty {
        None => {
            // If no self-type is provided, it's still possible that
            // one was declared, because this could be an object type.
        }
        Some(ty) => {
            // If a self-type is provided, one should have been
            // "declared" (in other words, this should be a
            // trait-ref).
            assert!(decl_generics.types.get_self().is_some());
410
            substs.types.push(SelfSpace, ty);
411
        }
412
    }
413

414 415
    let actual_supplied_ty_param_count = substs.types.len(TypeSpace);
    for param in &ty_param_defs[actual_supplied_ty_param_count..] {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        if let Some(default) = param.default {
            // If we are converting an object type, then the
            // `Self` parameter is unknown. However, some of the
            // other type parameters may reference `Self` in their
            // defaults. This will lead to an ICE if we are not
            // careful!
            if self_ty.is_none() && ty::type_has_self(default) {
                tcx.sess.span_err(
                    span,
                    &format!("the type parameter `{}` must be explicitly specified \
                              in an object type because its default value `{}` references \
                              the type `Self`",
                             param.name.user_string(tcx),
                             default.user_string(tcx)));
                substs.types.push(TypeSpace, tcx.types.err);
            } else {
432 433 434
                // This is a default type parameter.
                let default = default.subst_spanned(tcx,
                                                    &substs,
435
                                                    Some(span));
436 437
                substs.types.push(TypeSpace, default);
            }
438 439
        } else {
            tcx.sess.span_bug(span, "extra parameter without default");
440
        }
441
    }
442

443
    substs
444
}
445

446 447 448 449 450 451
struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

452 453
fn convert_angle_bracketed_parameters<'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
454 455
                                            span: Span,
                                            decl_generics: &ty::Generics<'tcx>,
456
                                            data: &ast::AngleBracketedParameterData)
457
                                            -> (Substs<'tcx>,
458 459
                                                Vec<Ty<'tcx>>,
                                                Vec<ConvertedBinding<'tcx>>)
460 461 462
{
    let regions: Vec<_> =
        data.lifetimes.iter()
463 464
                      .map(|l| ast_region_to_region(this.tcx(), l))
                      .collect();
465

466 467
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, regions);
468

469 470
    let types: Vec<_> =
        data.types.iter()
471 472 473 474
                  .enumerate()
                  .map(|(i,t)| ast_ty_arg_to_ty(this, rscope, decl_generics,
                                                i, &region_substs, t))
                  .collect();
475

476 477
    let assoc_bindings: Vec<_> =
        data.bindings.iter()
478 479 480 481
                     .map(|b| ConvertedBinding { item_name: b.ident.name,
                                                 ty: ast_ty_to_ty(this, rscope, &*b.ty),
                                                 span: b.span })
                     .collect();
482

483
    (region_substs, types, assoc_bindings)
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/// Returns the appropriate lifetime to use for any output lifetimes
/// (if one exists) and a vector of the (pattern, number of lifetimes)
/// corresponding to each input type/pattern.
fn find_implied_output_region(input_tys: &[Ty], input_pats: Vec<String>)
                              -> (Option<ty::Region>, Vec<(String, uint)>)
{
    let mut lifetimes_for_params: Vec<(String, uint)> = Vec::new();
    let mut possible_implied_output_region = None;

    for (input_type, input_pat) in input_tys.iter().zip(input_pats.into_iter()) {
        let mut accumulator = Vec::new();
        ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type);

        if accumulator.len() == 1 {
            // there's a chance that the unique lifetime of this
            // iteration will be the appropriate lifetime for output
            // parameters, so lets store it.
            possible_implied_output_region = Some(accumulator[0])
        }

        lifetimes_for_params.push((input_pat, accumulator.len()));
    }

    let implied_output_region = if lifetimes_for_params.iter().map(|&(_, n)| n).sum() == 1 {
        assert!(possible_implied_output_region.is_some());
        possible_implied_output_region
    } else {
        None
    };
    (implied_output_region, lifetimes_for_params)
}

518 519 520 521 522
fn convert_ty_with_lifetime_elision<'tcx>(this: &AstConv<'tcx>,
                                          implied_output_region: Option<ty::Region>,
                                          param_lifetimes: Vec<(String, uint)>,
                                          ty: &ast::Ty)
                                          -> Ty<'tcx>
523 524 525
{
    match implied_output_region {
        Some(implied_output_region) => {
526
            let rb = ElidableRscope::new(implied_output_region);
527 528 529 530 531 532 533 534 535 536 537 538
            ast_ty_to_ty(this, &rb, ty)
        }
        None => {
            // All regions must be explicitly specified in the output
            // if the lifetime elision rules do not apply. This saves
            // the user from potentially-confusing errors.
            let rb = UnelidableRscope::new(param_lifetimes);
            ast_ty_to_ty(this, &rb, ty)
        }
    }
}

539
fn convert_parenthesized_parameters<'tcx>(this: &AstConv<'tcx>,
540 541 542
                                          rscope: &RegionScope,
                                          span: Span,
                                          decl_generics: &ty::Generics<'tcx>,
543
                                          data: &ast::ParenthesizedParameterData)
544
                                          -> (Substs<'tcx>,
545 546
                                              Vec<Ty<'tcx>>,
                                              Vec<ConvertedBinding<'tcx>>)
547
{
548 549 550
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, Vec::new());

551
    let binding_rscope = BindingRscope::new();
552 553 554 555 556
    let inputs =
        data.inputs.iter()
                   .map(|a_t| ast_ty_arg_to_ty(this, &binding_rscope, decl_generics,
                                               0, &region_substs, a_t))
                   .collect::<Vec<Ty<'tcx>>>();
557

A
Aaron Turon 已提交
558
    let input_params: Vec<_> = repeat(String::new()).take(inputs.len()).collect();
559 560 561
    let (implied_output_region,
         params_lifetimes) = find_implied_output_region(&*inputs, input_params);

562 563
    let input_ty = ty::mk_tup(this.tcx(), inputs);

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    let (output, output_span) = match data.output {
        Some(ref output_ty) => {
            (convert_ty_with_lifetime_elision(this,
                                              implied_output_region,
                                              params_lifetimes,
                                              &**output_ty),
             output_ty.span)
        }
        None => {
            (ty::mk_nil(this.tcx()), data.span)
        }
    };

    let output_binding = ConvertedBinding {
        item_name: token::intern(FN_OUTPUT_NAME),
        ty: output,
        span: output_span
581 582
    };

583
    (region_substs, vec![input_ty], vec![output_binding])
584
}
585

586 587 588
pub fn instantiate_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
589 590
    ast_trait_ref: &ast::PolyTraitRef,
    self_ty: Option<Ty<'tcx>>,
591 592
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
593
{
594 595
    let mut projections = Vec::new();

596
    // The trait reference introduces a binding level here, so
597 598 599 600 601 602
    // we need to shift the `rscope`. It'd be nice if we could
    // do away with this rscope stuff and work this knowledge
    // into resolve_lifetimes, as we do with non-omitted
    // lifetimes. Oh well, not there yet.
    let shifted_rscope = ShiftedRscope::new(rscope);

603
    let trait_ref = instantiate_trait_ref(this, &shifted_rscope,
604
                                          &ast_trait_ref.trait_ref,
605
                                          None, self_ty, Some(&mut projections));
606

607
    for projection in projections {
608 609 610 611
        poly_projections.push(ty::Binder(projection));
    }

    ty::Binder(trait_ref)
612
}
613

614 615 616
/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
617 618 619
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
620 621 622
pub fn instantiate_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
623
    trait_ref: &ast::TraitRef,
624
    impl_id: Option<ast::NodeId>,
625 626 627
    self_ty: Option<Ty<'tcx>>,
    projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
N
Niko Matsakis 已提交
628
{
629
    let path = &trait_ref.path;
630
    match ::lookup_full_def(this.tcx(), path.span, trait_ref.ref_id) {
631
        def::DefTrait(trait_def_id) => {
632 633
            let trait_ref = ast_path_to_trait_ref(this,
                                                  rscope,
634
                                                  path.span,
635
                                                  PathParamMode::Explicit,
636 637
                                                  trait_def_id,
                                                  self_ty,
638
                                                  path.segments.last().unwrap(),
639
                                                  projections);
640 641 642
            if let Some(id) = impl_id {
                this.tcx().impl_trait_refs.borrow_mut().insert(id, trait_ref.clone());
            }
N
Niko Matsakis 已提交
643 644 645
            trait_ref
        }
        _ => {
646 647
            span_fatal!(this.tcx().sess, path.span, E0245, "`{}` is not a trait",
                        path.user_string(this.tcx()));
N
Niko Matsakis 已提交
648 649 650 651
        }
    }
}

652 653 654
fn object_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
655
    span: Span,
656
    param_mode: PathParamMode,
657
    trait_def_id: ast::DefId,
658
    trait_segment: &ast::PathSegment,
659 660 661 662 663 664 665 666 667 668
    mut projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    // we are introducing a binder here, so shift the
    // anonymous regions depth to account for that
    let shifted_rscope = ShiftedRscope::new(rscope);

    let mut tmp = Vec::new();
    let trait_ref = ty::Binder(ast_path_to_trait_ref(this,
                                                     &shifted_rscope,
669
                                                     span,
670
                                                     param_mode,
671 672
                                                     trait_def_id,
                                                     None,
673
                                                     trait_segment,
674 675 676 677 678
                                                     Some(&mut tmp)));
    projections.extend(tmp.into_iter().map(ty::Binder));
    trait_ref
}

679 680 681
fn ast_path_to_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
682
    span: Span,
683
    param_mode: PathParamMode,
684
    trait_def_id: ast::DefId,
685
    self_ty: Option<Ty<'tcx>>,
686
    trait_segment: &ast::PathSegment,
687 688
    mut projections: Option<&mut Vec<ty::ProjectionPredicate<'tcx>>>)
    -> Rc<ty::TraitRef<'tcx>>
689
{
690
    debug!("ast_path_to_trait_ref {:?}", trait_segment);
691
    let trait_def = match this.get_trait_def(span, trait_def_id) {
692 693 694 695 696 697 698
        Ok(trait_def) => trait_def,
        Err(ErrorReported) => {
            // No convenient way to recover from a cycle here. Just bail. Sorry!
            this.tcx().sess.abort_if_errors();
            this.tcx().sess.bug("ErrorReported returned, but no errors reports?")
        }
    };
699

700
    let (regions, types, assoc_bindings) = match trait_segment.parameters {
701
        ast::AngleBracketedParameters(ref data) => {
702
            // For now, require that parenthetical notation be used
703
            // only with `Fn()` etc.
704
            if !this.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
705
                span_err!(this.tcx().sess, span, E0215,
706 707
                                         "angle-bracket notation is not stable when \
                                         used with the `Fn` family of traits, use parentheses");
708
                span_help!(this.tcx().sess, span,
709 710 711 712
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

713
            convert_angle_bracketed_parameters(this, rscope, span, &trait_def.generics, data)
714 715
        }
        ast::ParenthesizedParameters(ref data) => {
716 717
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
718
            if !this.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
719
                span_err!(this.tcx().sess, span, E0216,
720 721
                                         "parenthetical notation is only stable when \
                                         used with the `Fn` family of traits");
722
                span_help!(this.tcx().sess, span,
723 724 725 726
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

727
            convert_parenthesized_parameters(this, rscope, span, &trait_def.generics, data)
728 729 730 731
        }
    };

    let substs = create_substs_for_ast_path(this,
732
                                            span,
733
                                            param_mode,
734 735 736
                                            &trait_def.generics,
                                            self_ty,
                                            types,
737 738 739 740 741 742 743
                                            regions);
    let substs = this.tcx().mk_substs(substs);

    let trait_ref = Rc::new(ty::TraitRef::new(trait_def_id, substs));

    match projections {
        None => {
744
            prohibit_projections(this.tcx(), &assoc_bindings);
745 746
        }
        Some(ref mut v) => {
747
            for binding in &assoc_bindings {
748 749
                match ast_type_binding_to_projection_predicate(this, trait_ref.clone(),
                                                               self_ty, binding) {
750 751 752 753 754 755 756 757 758
                    Ok(pp) => { v.push(pp); }
                    Err(ErrorReported) => { }
                }
            }
        }
    }

    trait_ref
}
759

760
fn ast_type_binding_to_projection_predicate<'tcx>(
761
    this: &AstConv<'tcx>,
762 763
    mut trait_ref: Rc<ty::TraitRef<'tcx>>,
    self_ty: Option<Ty<'tcx>>,
764 765 766
    binding: &ConvertedBinding<'tcx>)
    -> Result<ty::ProjectionPredicate<'tcx>, ErrorReported>
{
767 768
    let tcx = this.tcx();

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    // Given something like `U : SomeTrait<T=X>`, we want to produce a
    // predicate like `<U as SomeTrait>::T = X`. This is somewhat
    // subtle in the event that `T` is defined in a supertrait of
    // `SomeTrait`, because in that case we need to upcast.
    //
    // That is, consider this case:
    //
    // ```
    // trait SubTrait : SuperTrait<int> { }
    // trait SuperTrait<A> { type T; }
    //
    // ... B : SubTrait<T=foo> ...
    // ```
    //
    // We want to produce `<B as SuperTrait<int>>::T == foo`.

785 786 787 788 789 790 791 792 793 794 795
    // Simple case: X is defined in the current trait.
    if trait_defines_associated_type_named(this, trait_ref.def_id, binding.item_name) {
        return Ok(ty::ProjectionPredicate {
            projection_ty: ty::ProjectionTy {
                trait_ref: trait_ref,
                item_name: binding.item_name,
            },
            ty: binding.ty,
        });
    }

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
    // Otherwise, we have to walk through the supertraits to find
    // those that do.  This is complicated by the fact that, for an
    // object type, the `Self` type is not present in the
    // substitutions (after all, it's being constructed right now),
    // but the `supertraits` iterator really wants one. To handle
    // this, we currently insert a dummy type and then remove it
    // later. Yuck.

    let dummy_self_ty = ty::mk_infer(tcx, ty::FreshTy(0));
    if self_ty.is_none() { // if converting for an object type
        let mut dummy_substs = trait_ref.substs.clone();
        assert!(dummy_substs.self_ty().is_none());
        dummy_substs.types.push(SelfSpace, dummy_self_ty);
        trait_ref = Rc::new(ty::TraitRef::new(trait_ref.def_id,
                                              tcx.mk_substs(dummy_substs)));
    }

    let mut candidates: Vec<ty::PolyTraitRef> =
        traits::supertraits(tcx, trait_ref.to_poly_trait_ref())
815 816
        .filter(|r| trait_defines_associated_type_named(this, r.def_id(), binding.item_name))
        .collect();
817

818 819 820
    // If converting for an object type, then remove the dummy-ty from `Self` now.
    // Yuckety yuck.
    if self_ty.is_none() {
821
        for candidate in &mut candidates {
822 823 824 825 826 827 828 829
            let mut dummy_substs = candidate.0.substs.clone();
            assert!(dummy_substs.self_ty() == Some(dummy_self_ty));
            dummy_substs.types.pop(SelfSpace);
            *candidate = ty::Binder(Rc::new(ty::TraitRef::new(candidate.def_id(),
                                                              tcx.mk_substs(dummy_substs))));
        }
    }

830
    if candidates.len() > 1 {
B
Brian Anderson 已提交
831 832
        span_err!(tcx.sess, binding.span, E0217,
            "ambiguous associated type: `{}` defined in multiple supertraits `{}`",
833
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
834
                    candidates.user_string(tcx));
835 836 837 838 839 840
        return Err(ErrorReported);
    }

    let candidate = match candidates.pop() {
        Some(c) => c,
        None => {
B
Brian Anderson 已提交
841 842
            span_err!(tcx.sess, binding.span, E0218,
                "no associated type `{}` defined in `{}`",
843
                        token::get_name(binding.item_name),
B
Brian Anderson 已提交
844
                        trait_ref.user_string(tcx));
845 846 847 848
            return Err(ErrorReported);
        }
    };

849
    if ty::binds_late_bound_regions(tcx, &candidate) {
B
Brian Anderson 已提交
850 851
        span_err!(tcx.sess, binding.span, E0219,
            "associated type `{}` defined in higher-ranked supertrait `{}`",
852
                    token::get_name(binding.item_name),
B
Brian Anderson 已提交
853
                    candidate.user_string(tcx));
854 855 856 857 858
        return Err(ErrorReported);
    }

    Ok(ty::ProjectionPredicate {
        projection_ty: ty::ProjectionTy {
859
            trait_ref: candidate.0,
860 861 862 863
            item_name: binding.item_name,
        },
        ty: binding.ty,
    })
864 865
}

866
fn ast_path_to_ty<'tcx>(
867 868
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
869
    span: Span,
870
    param_mode: PathParamMode,
871
    did: ast::DefId,
872 873
    item_segment: &ast::PathSegment)
    -> Ty<'tcx>
874
{
875
    let tcx = this.tcx();
876
    let (generics, decl_ty) = match this.get_item_type_scheme(span, did) {
877
        Ok(ty::TypeScheme { generics,  ty: decl_ty }) => {
878
            (generics, decl_ty)
879 880
        }
        Err(ErrorReported) => {
881
            return tcx.types.err;
882 883
        }
    };
884

885 886 887 888
    let substs = ast_path_substs_for_ty(this, rscope,
                                        span, param_mode,
                                        &generics, item_segment);

889 890 891 892
    // FIXME(#12938): This is a hack until we have full support for DST.
    if Some(did) == this.tcx().lang_items.owned_box() {
        assert_eq!(substs.types.len(TypeSpace), 1);
        return ty::mk_uniq(this.tcx(), *substs.types.get(TypeSpace, 0));
893 894
    }

895
    decl_ty.subst(this.tcx(), &substs)
896 897
}

898 899
type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

900 901 902 903 904
fn ast_ty_to_trait_ref<'tcx>(this: &AstConv<'tcx>,
                             rscope: &RegionScope,
                             ty: &ast::Ty,
                             bounds: &[ast::TyParamBound])
                             -> Result<TraitAndProjections<'tcx>, ErrorReported>
905
{
906 907 908 909 910 911 912 913 914 915
    /*!
     * In a type like `Foo + Send`, we want to wait to collect the
     * full set of bounds before we make the object type, because we
     * need them to infer a region bound.  (For example, if we tried
     * made a type from just `Foo`, then it wouldn't be enough to
     * infer a 'static bound, and hence the user would get an error.)
     * So this function is used when we're dealing with a sum type to
     * convert the LHS. It only accepts a type that refers to a trait
     * name, and reports an error otherwise.
     */
916

917
    match ty.node {
918
        ast::TyPath(None, ref path) => {
919 920 921 922
            let def = match this.tcx().def_map.borrow().get(&ty.id) {
                Some(&def::PathResolution { base_def, depth: 0, .. }) => Some(base_def),
                _ => None
            };
923 924
            match def {
                Some(def::DefTrait(trait_def_id)) => {
925
                    let mut projection_bounds = Vec::new();
926 927
                    let trait_ref = object_path_to_poly_trait_ref(this,
                                                                  rscope,
928
                                                                  path.span,
929
                                                                  PathParamMode::Explicit,
930
                                                                  trait_def_id,
931
                                                                  path.segments.last().unwrap(),
932
                                                                  &mut projection_bounds);
933
                    Ok((trait_ref, projection_bounds))
934 935
                }
                _ => {
936
                    span_err!(this.tcx().sess, ty.span, E0172, "expected a reference to a trait");
937 938 939
                    Err(ErrorReported)
                }
            }
940
        }
941
        _ => {
942
            span_err!(this.tcx().sess, ty.span, E0178,
943 944 945 946
                      "expected a path on the left-hand side of `+`, not `{}`",
                      pprust::ty_to_string(ty));
            match ty.node {
                ast::TyRptr(None, ref mut_ty) => {
P
P1start 已提交
947
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
948
                               "perhaps you meant `&{}({} +{})`? (per RFC 438)",
949 950 951
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
952
                }
953
               ast::TyRptr(Some(ref lt), ref mut_ty) => {
P
P1start 已提交
954
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
955
                               "perhaps you meant `&{} {}({} +{})`? (per RFC 438)",
956 957 958 959 960 961 962
                               pprust::lifetime_to_string(lt),
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }

                _ => {
P
P1start 已提交
963
                    span_help!(this.tcx().sess, ty.span,
C
Chris Morgan 已提交
964
                               "perhaps you forgot parentheses? (per RFC 438)");
965 966
                }
            }
967
            Err(ErrorReported)
968
        }
969
    }
970 971
}

972 973 974 975 976 977 978
fn trait_ref_to_object_type<'tcx>(this: &AstConv<'tcx>,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_ref: ty::PolyTraitRef<'tcx>,
                                  projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
                                  bounds: &[ast::TyParamBound])
                                  -> Ty<'tcx>
979 980 981 982
{
    let existential_bounds = conv_existential_bounds(this,
                                                     rscope,
                                                     span,
983
                                                     trait_ref.clone(),
984
                                                     projection_bounds,
985 986 987 988 989 990 991
                                                     bounds);

    let result = ty::mk_trait(this.tcx(), trait_ref, existential_bounds);
    debug!("trait_ref_to_object_type: result={}",
           result.repr(this.tcx()));

    result
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004
fn report_ambiguous_associated_type(tcx: &ty::ctxt,
                                    span: Span,
                                    type_str: &str,
                                    trait_str: &str,
                                    name: &str) {
    span_err!(tcx.sess, span, E0223,
              "ambiguous associated type; specify the type using the syntax \
               `<{} as {}>::{}`",
              type_str, trait_str, name);
}

1005
fn associated_path_def_to_ty<'tcx>(this: &AstConv<'tcx>,
1006 1007 1008 1009 1010
                                   span: Span,
                                   ty: Ty<'tcx>,
                                   ty_path_def: def::Def,
                                   item_segment: &ast::PathSegment)
                                   -> (Ty<'tcx>, def::Def)
1011 1012
{
    let tcx = this.tcx();
1013
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1014 1015
    let assoc_name = item_segment.identifier.name;

1016 1017 1018 1019 1020 1021 1022
    let is_param = match (&ty.sty, ty_path_def) {
        (&ty::ty_param(_), def::DefTyParam(..)) |
        (&ty::ty_param(_), def::DefSelfTy(_)) => true,
        _ => false
    };

    let ty_param_node_id = if is_param {
1023 1024
        ty_path_def.local_node_id()
    } else {
1025 1026
        report_ambiguous_associated_type(
            tcx, span, &ty.user_string(tcx), "Trait", &token::get_name(assoc_name));
1027 1028
        return (tcx.types.err, ty_path_def);
    };
1029

1030 1031 1032 1033
    let ty_param_name = tcx.ty_param_defs.borrow()[ty_param_node_id].name;

    // FIXME(#20300) -- search where clauses, not bounds
    let bounds =
1034
        this.get_type_parameter_bounds(span, ty_param_node_id)
1035 1036 1037 1038 1039 1040
            .unwrap_or(Vec::new());

    let mut suitable_bounds: Vec<_> =
        traits::transitive_bounds(tcx, &bounds)
        .filter(|b| trait_defines_associated_type_named(this, b.def_id(), assoc_name))
        .collect();
1041 1042

    if suitable_bounds.len() == 0 {
1043
        span_err!(tcx.sess, span, E0220,
B
Brian Anderson 已提交
1044
                          "associated type `{}` not found for type parameter `{}`",
1045
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1046
                                  token::get_name(ty_param_name));
1047
        return (this.tcx().types.err, ty_path_def);
1048 1049 1050
    }

    if suitable_bounds.len() > 1 {
1051
        span_err!(tcx.sess, span, E0221,
B
Brian Anderson 已提交
1052
                          "ambiguous associated type `{}` in bounds of `{}`",
1053
                                  token::get_name(assoc_name),
B
Brian Anderson 已提交
1054
                                  token::get_name(ty_param_name));
1055

1056
        for suitable_bound in &suitable_bounds {
1057
            span_note!(this.tcx().sess, span,
1058 1059 1060 1061 1062 1063 1064
                       "associated type `{}` could derive from `{}`",
                       token::get_name(ty_param_name),
                       suitable_bound.user_string(this.tcx()));
        }
    }

    let suitable_bound = suitable_bounds.pop().unwrap().clone();
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    let trait_did = suitable_bound.0.def_id;

    let ty = this.projected_ty_from_poly_trait_ref(span, suitable_bound, assoc_name);

    let item_did = if trait_did.krate == ast::LOCAL_CRATE {
        // `ty::trait_items` used below requires information generated
        // by type collection, which may be in progress at this point.
        match this.tcx().map.expect_item(trait_did.node).node {
            ast::ItemTrait(_, _, _, ref trait_items) => {
                trait_items.iter().filter_map(|i| {
                    if let ast::TypeTraitItem(ref assoc) = *i {
                        if assoc.ty_param.ident.name == assoc_name {
                            return Some(ast_util::local_def(assoc.ty_param.id));
                        }
                    }
                    None
                }).next().expect("missing associated type")
            }
            _ => unreachable!()
        }
    } else {
        let trait_items = ty::trait_items(this.tcx(), trait_did);
        let item = trait_items.iter().find(|i| i.name() == assoc_name);
        item.expect("missing associated type").def_id()
    };
    (ty, def::DefAssociatedTy(trait_did, item_did))
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

fn trait_defines_associated_type_named(this: &AstConv,
                                       trait_def_id: ast::DefId,
                                       assoc_name: ast::Name)
                                       -> bool
{
    let tcx = this.tcx();
    let trait_def = ty::lookup_trait_def(tcx, trait_def_id);
    trait_def.associated_type_names.contains(&assoc_name)
}

1103 1104
fn qpath_to_ty<'tcx>(this: &AstConv<'tcx>,
                     rscope: &RegionScope,
1105
                     span: Span,
1106 1107
                     param_mode: PathParamMode,
                     opt_self_ty: Option<Ty<'tcx>>,
1108 1109 1110
                     trait_def_id: ast::DefId,
                     trait_segment: &ast::PathSegment,
                     item_segment: &ast::PathSegment)
1111
                     -> Ty<'tcx>
1112
{
1113
    let tcx = this.tcx();
1114

1115
    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);
1116

1117
    let self_ty = if let Some(ty) = opt_self_ty {
1118
        ty
1119 1120
    } else {
        let path_str = ty::item_path_str(tcx, trait_def_id);
1121 1122
        report_ambiguous_associated_type(
            tcx, span, "Type", &path_str, &token::get_ident(item_segment.identifier));
1123 1124
        return tcx.types.err;
    };
1125

1126
    debug!("qpath_to_ty: self_type={}", self_ty.repr(tcx));
1127

1128
    let trait_ref = ast_path_to_trait_ref(this,
1129
                                          rscope,
1130
                                          span,
1131
                                          param_mode,
1132 1133 1134
                                          trait_def_id,
                                          Some(self_ty),
                                          trait_segment,
1135
                                          None);
1136

1137
    debug!("qpath_to_ty: trait_ref={}", trait_ref.repr(tcx));
1138

1139
    this.projected_ty(span, trait_ref, item_segment.identifier.name)
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/// Convert a type supplied as value for a type argument from AST into our
/// our internal representation. This is the same as `ast_ty_to_ty` but that
/// it applies the object lifetime default.
///
/// # Parameters
///
/// * `this`, `rscope`: the surrounding context
/// * `decl_generics`: the generics of the struct/enum/trait declaration being
///   referenced
/// * `index`: the index of the type parameter being instantiated from the list
///   (we assume it is in the `TypeSpace`)
/// * `region_substs`: a partial substitution consisting of
///   only the region type parameters being supplied to this type.
/// * `ast_ty`: the ast representation of the type being supplied
pub fn ast_ty_arg_to_ty<'tcx>(this: &AstConv<'tcx>,
                              rscope: &RegionScope,
                              decl_generics: &ty::Generics<'tcx>,
                              index: usize,
                              region_substs: &Substs<'tcx>,
                              ast_ty: &ast::Ty)
                              -> Ty<'tcx>
{
    let tcx = this.tcx();

    if let Some(def) = decl_generics.types.opt_get(TypeSpace, index) {
        let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
        let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
        ast_ty_to_ty(this, rscope1, ast_ty)
    } else {
        ast_ty_to_ty(this, rscope, ast_ty)
    }
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
pub fn finish_resolving_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                        rscope: &RegionScope,
                                        span: Span,
                                        param_mode: PathParamMode,
                                        def: &mut def::Def,
                                        opt_self_ty: Option<Ty<'tcx>>,
                                        segments: &[ast::PathSegment],
                                        assoc_segments: &[ast::PathSegment])
                                        -> Ty<'tcx> {
    let tcx = this.tcx();

    let base_ty = match *def {
        def::DefTrait(trait_def_id) => {
            // N.B. this case overlaps somewhat with
            // TyObjectSum, see that fn for details
            let mut projection_bounds = Vec::new();

            let trait_ref = object_path_to_poly_trait_ref(this,
                                                          rscope,
                                                          span,
                                                          param_mode,
                                                          trait_def_id,
                                                          segments.last().unwrap(),
                                                          &mut projection_bounds);

            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            trait_ref_to_object_type(this, rscope, span, trait_ref,
                                     projection_bounds, &[])
        }
        def::DefTy(did, _) | def::DefStruct(did) => {
            check_path_args(tcx, segments.init(), NO_TPS | NO_REGIONS);
            ast_path_to_ty(this, rscope, span,
                           param_mode, did,
                           segments.last().unwrap())
        }
        def::DefTyParam(space, index, _, name) => {
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_param(tcx, space, index, name)
        }
        def::DefSelfTy(_) => {
            // n.b.: resolve guarantees that the this type only appears in a
            // trait, which we rely upon in various places when creating
            // substs
            check_path_args(tcx, segments, NO_TPS | NO_REGIONS);
            ty::mk_self_type(tcx)
        }
        def::DefAssociatedTy(trait_did, _) => {
            check_path_args(tcx, &segments[..segments.len()-2], NO_TPS | NO_REGIONS);
            qpath_to_ty(this, rscope, span, param_mode,
                        opt_self_ty, trait_did,
                        &segments[segments.len()-2],
                        segments.last().unwrap())
        }
        def::DefMod(id) => {
1229 1230 1231 1232
            // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
            // FIXME(#22519) This part of the resolution logic should be
            // avoided entirely for that form, once we stop needed a Def
            // for `associated_path_def_to_ty`.
1233 1234 1235
            if segments.is_empty() {
                opt_self_ty.expect("missing T in <T>::a::b::c")
            } else {
1236 1237 1238
                span_err!(tcx.sess, span, E0247, "found module name used as a type: {}",
                          tcx.map.node_to_string(id.node));
                return this.tcx().types.err;
1239
            }
1240 1241 1242 1243 1244
        }
        def::DefPrimTy(prim_ty) => {
            prim_ty_to_ty(tcx, segments, prim_ty)
        }
        _ => {
1245 1246 1247
            span_err!(tcx.sess, span, E0248,
                      "found value name used as a type: {:?}", *def);
            return this.tcx().types.err;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
        }
    };

    // If any associated type segments remain, attempt to resolve them.
    let mut ty = base_ty;
    for segment in assoc_segments {
        if ty.sty == ty::ty_err {
            break;
        }
        // This is pretty bad (it will fail except for T::A and Self::A).
        let (a_ty, a_def) = associated_path_def_to_ty(this, span,
                                                      ty, *def, segment);
        ty = a_ty;
        *def = a_def;
    }
    ty
}

1266 1267 1268 1269 1270 1271
/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty<'tcx>(this: &AstConv<'tcx>,
                          rscope: &RegionScope,
                          ast_ty: &ast::Ty)
                          -> Ty<'tcx>
1272 1273 1274
{
    debug!("ast_ty_to_ty(ast_ty={})",
           ast_ty.repr(this.tcx()));
1275

1276
    let tcx = this.tcx();
1277

1278
    let mut ast_ty_to_ty_cache = tcx.ast_ty_to_ty_cache.borrow_mut();
1279
    match ast_ty_to_ty_cache.get(&ast_ty.id) {
1280 1281
        Some(&ty::atttce_resolved(ty)) => return ty,
        Some(&ty::atttce_unresolved) => {
1282
            span_err!(tcx.sess, ast_ty.span, E0246,
1283 1284 1285
                                "illegal recursive type; insert an enum \
                                 or struct in the cycle, if this is \
                                 desired");
1286
            return this.tcx().types.err;
1287
        }
1288
        None => { /* go on */ }
1289
    }
1290 1291
    ast_ty_to_ty_cache.insert(ast_ty.id, ty::atttce_unresolved);
    drop(ast_ty_to_ty_cache);
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    let typ = match ast_ty.node {
        ast::TyVec(ref ty) => {
            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
        }
        ast::TyObjectSum(ref ty, ref bounds) => {
            match ast_ty_to_trait_ref(this, rscope, &**ty, bounds) {
                Ok((trait_ref, projection_bounds)) => {
                    trait_ref_to_object_type(this,
                                             rscope,
                                             ast_ty.span,
                                             trait_ref,
                                             projection_bounds,
                                             bounds)
1306
                }
1307 1308
                Err(ErrorReported) => {
                    this.tcx().types.err
1309 1310
                }
            }
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        }
        ast::TyPtr(ref mt) => {
            ty::mk_ptr(tcx, ty::mt {
                ty: ast_ty_to_ty(this, rscope, &*mt.ty),
                mutbl: mt.mutbl
            })
        }
        ast::TyRptr(ref region, ref mt) => {
            let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
            debug!("ty_rptr r={}", r.repr(this.tcx()));
            let rscope1 =
                &ObjectLifetimeDefaultRscope::new(
                    rscope,
                    Some(ty::ObjectLifetimeDefault::Specific(r)));
            let t = ast_ty_to_ty(this, rscope1, &*mt.ty);
            ty::mk_rptr(tcx, tcx.mk_region(r), ty::mt {ty: t, mutbl: mt.mutbl})
        }
        ast::TyTup(ref fields) => {
            let flds = fields.iter()
                             .map(|t| ast_ty_to_ty(this, rscope, &**t))
                             .collect();
            ty::mk_tup(tcx, flds)
        }
        ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
        ast::TyBareFn(ref bf) => {
            if bf.decl.variadic && bf.abi != abi::C {
                span_err!(tcx.sess, ast_ty.span, E0222,
                          "variadic function must have C calling convention");
N
Niko Matsakis 已提交
1339
            }
1340 1341 1342 1343 1344 1345
            let bare_fn = ty_of_bare_fn(this, bf.unsafety, bf.abi, &*bf.decl);
            ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(bare_fn))
        }
        ast::TyPolyTraitRef(ref bounds) => {
            conv_ty_poly_trait_ref(this, rscope, ast_ty.span, bounds)
        }
1346
        ast::TyPath(ref maybe_qself, ref path) => {
1347 1348
            let path_res = if let Some(&d) = tcx.def_map.borrow().get(&ast_ty.id) {
                d
1349 1350 1351 1352 1353 1354 1355
            } else if let Some(ast::QSelf { position: 0, .. }) = *maybe_qself {
                // Create some fake resolution that can't possibly be a type.
                def::PathResolution {
                    base_def: def::DefMod(ast_util::local_def(ast::CRATE_NODE_ID)),
                    last_private: LastMod(AllPublic),
                    depth: path.segments.len()
                }
1356 1357 1358 1359
            } else {
                tcx.sess.span_bug(ast_ty.span,
                                  &format!("unbound path {}", ast_ty.repr(tcx)))
            };
1360 1361
            let mut def = path_res.base_def;
            let base_ty_end = path.segments.len() - path_res.depth;
1362 1363 1364
            let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                ast_ty_to_ty(this, rscope, &qself.ty)
            });
1365 1366 1367 1368 1369
            let ty = finish_resolving_def_to_ty(this, rscope, ast_ty.span,
                                                PathParamMode::Explicit, &mut def,
                                                opt_self_ty,
                                                &path.segments[..base_ty_end],
                                                &path.segments[base_ty_end..]);
1370

1371
            if path_res.depth != 0 && ty.sty != ty::ty_err {
1372
                // Write back the new resolution.
1373 1374 1375 1376 1377
                tcx.def_map.borrow_mut().insert(ast_ty.id, def::PathResolution {
                    base_def: def,
                    last_private: path_res.last_private,
                    depth: 0
                });
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
            }

            ty
        }
        ast::TyFixedLengthVec(ref ty, ref e) => {
            match const_eval::eval_const_expr_partial(tcx, &**e, Some(tcx.types.uint)) {
                Ok(r) => {
                    match r {
                        const_eval::const_int(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        const_eval::const_uint(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as uint)),
                        _ => {
1393 1394 1395
                            span_err!(tcx.sess, ast_ty.span, E0249,
                                      "expected constant expr for array length");
                            this.tcx().types.err
1396 1397
                        }
                    }
1398
                }
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                Err(ref r) => {
                    let subspan  =
                        ast_ty.span.lo <= r.span.lo && r.span.hi <= ast_ty.span.hi;
                    span_err!(tcx.sess, ast_ty.span, E0250,
                              "array length constant evaluation error: {}",
                              r.description().as_slice());
                    if !subspan {
                        span_note!(tcx.sess, ast_ty.span, "for array length here")
                    }
                    this.tcx().types.err
1409 1410
                }
            }
1411
        }
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        ast::TyTypeof(ref _e) => {
            tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
        }
        ast::TyInfer => {
            // TyInfer also appears as the type of arguments or return
            // values in a ExprClosure, or as
            // the type of local variables. Both of these cases are
            // handled specially and will not descend into this routine.
            this.ty_infer(ast_ty.span)
        }
    };
1423

1424
    tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, ty::atttce_resolved(typ));
B
Brian Anderson 已提交
1425
    return typ;
1426 1427
}

1428 1429 1430 1431 1432 1433
pub fn ty_of_arg<'tcx>(this: &AstConv<'tcx>,
                       rscope: &RegionScope,
                       a: &ast::Arg,
                       expected_ty: Option<Ty<'tcx>>)
                       -> Ty<'tcx>
{
E
Erick Tryzelaar 已提交
1434
    match a.ty.node {
1435 1436
        ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
        ast::TyInfer => this.ty_infer(a.ty.span),
1437
        _ => ast_ty_to_ty(this, rscope, &*a.ty),
1438
    }
1439 1440
}

1441 1442
struct SelfInfo<'a, 'tcx> {
    untransformed_self_ty: Ty<'tcx>,
1443
    explicit_self: &'a ast::ExplicitSelf,
1444 1445
}

1446 1447 1448 1449 1450 1451 1452
pub fn ty_of_method<'tcx>(this: &AstConv<'tcx>,
                          unsafety: ast::Unsafety,
                          untransformed_self_ty: Ty<'tcx>,
                          explicit_self: &ast::ExplicitSelf,
                          decl: &ast::FnDecl,
                          abi: abi::Abi)
                          -> (ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory) {
1453
    let self_info = Some(SelfInfo {
1454
        untransformed_self_ty: untransformed_self_ty,
1455 1456 1457 1458
        explicit_self: explicit_self,
    });
    let (bare_fn_ty, optional_explicit_self_category) =
        ty_of_method_or_bare_fn(this,
N
Niko Matsakis 已提交
1459
                                unsafety,
1460
                                abi,
1461 1462 1463
                                self_info,
                                decl);
    (bare_fn_ty, optional_explicit_self_category.unwrap())
1464 1465
}

1466
pub fn ty_of_bare_fn<'tcx>(this: &AstConv<'tcx>, unsafety: ast::Unsafety, abi: abi::Abi,
1467
                                              decl: &ast::FnDecl) -> ty::BareFnTy<'tcx> {
N
Niko Matsakis 已提交
1468
    let (bare_fn_ty, _) = ty_of_method_or_bare_fn(this, unsafety, abi, None, decl);
1469
    bare_fn_ty
1470 1471
}

1472 1473 1474 1475 1476 1477
fn ty_of_method_or_bare_fn<'a, 'tcx>(this: &AstConv<'tcx>,
                                     unsafety: ast::Unsafety,
                                     abi: abi::Abi,
                                     opt_self_info: Option<SelfInfo<'a, 'tcx>>,
                                     decl: &ast::FnDecl)
                                     -> (ty::BareFnTy<'tcx>, Option<ty::ExplicitSelfCategory>)
1478
{
1479
    debug!("ty_of_method_or_bare_fn");
1480

1481 1482
    // New region names that appear inside of the arguments of the function
    // declaration are bound to that function type.
1483
    let rb = rscope::BindingRscope::new();
1484

1485 1486 1487 1488 1489
    // `implied_output_region` is the region that will be assumed for any
    // region parameters in the return type. In accordance with the rules for
    // lifetime elision, we can determine it in two ways. First (determined
    // here), if self is by-reference, then the implied output region is the
    // region of the self parameter.
1490
    let mut explicit_self_category_result = None;
1491 1492 1493
    let (self_ty, mut implied_output_region) = match opt_self_info {
        None => (None, None),
        Some(self_info) => {
1494 1495 1496
            // This type comes from an impl or trait; no late-bound
            // regions should be present.
            assert!(!self_info.untransformed_self_ty.has_escaping_regions());
1497

1498 1499 1500 1501 1502
            // Figure out and record the explicit self category.
            let explicit_self_category =
                determine_explicit_self_category(this, &rb, &self_info);
            explicit_self_category_result = Some(explicit_self_category);
            match explicit_self_category {
1503 1504 1505
                ty::StaticExplicitSelfCategory => {
                    (None, None)
                }
1506
                ty::ByValueExplicitSelfCategory => {
1507
                    (Some(self_info.untransformed_self_ty), None)
1508 1509 1510
                }
                ty::ByReferenceExplicitSelfCategory(region, mutability) => {
                    (Some(ty::mk_rptr(this.tcx(),
H
Huon Wilson 已提交
1511
                                      this.tcx().mk_region(region),
1512
                                      ty::mt {
1513
                                        ty: self_info.untransformed_self_ty,
1514 1515 1516 1517 1518
                                        mutbl: mutability
                                      })),
                     Some(region))
                }
                ty::ByBoxExplicitSelfCategory => {
1519
                    (Some(ty::mk_uniq(this.tcx(), self_info.untransformed_self_ty)), None)
1520
                }
1521 1522
            }
        }
1523
    };
1524 1525

    // HACK(eddyb) replace the fake self type in the AST with the actual type.
1526
    let input_params = if self_ty.is_some() {
A
Aaron Turon 已提交
1527
        &decl.inputs[1..]
1528
    } else {
1529
        &decl.inputs[..]
1530
    };
1531 1532 1533 1534
    let input_tys = input_params.iter().map(|a| ty_of_arg(this, &rb, a, None));
    let input_pats: Vec<String> = input_params.iter()
                                              .map(|a| pprust::pat_to_string(&*a.pat))
                                              .collect();
1535
    let self_and_input_tys: Vec<Ty> =
A
Aaron Turon 已提交
1536
        self_ty.into_iter().chain(input_tys).collect();
1537

1538

1539 1540 1541
    // Second, if there was exactly one lifetime (either a substitution or a
    // reference) in the arguments, then any anonymous regions in the output
    // have that lifetime.
1542 1543
    let lifetimes_for_params = if implied_output_region.is_none() {
        let input_tys = if self_ty.is_some() {
1544
            // Skip the first argument if `self` is present.
A
Aaron Turon 已提交
1545
            &self_and_input_tys[1..]
1546
        } else {
1547
            &self_and_input_tys[..]
1548
        };
1549

1550 1551 1552 1553 1554 1555
        let (ior, lfp) = find_implied_output_region(input_tys, input_pats);
        implied_output_region = ior;
        lfp
    } else {
        vec![]
    };
1556

1557 1558 1559 1560
    let output_ty = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer =>
            ty::FnConverging(this.ty_infer(output.span)),
        ast::Return(ref output) =>
1561 1562 1563 1564
            ty::FnConverging(convert_ty_with_lifetime_elision(this,
                                                              implied_output_region,
                                                              lifetimes_for_params,
                                                              &**output)),
1565 1566
        ast::DefaultReturn(..) => ty::FnConverging(ty::mk_nil(this.tcx())),
        ast::NoReturn(..) => ty::FnDiverging
1567 1568
    };

1569
    (ty::BareFnTy {
N
Niko Matsakis 已提交
1570
        unsafety: unsafety,
1571
        abi: abi,
1572
        sig: ty::Binder(ty::FnSig {
1573 1574 1575
            inputs: self_and_input_tys,
            output: output_ty,
            variadic: decl.variadic
1576
        }),
1577 1578 1579
    }, explicit_self_category_result)
}

1580 1581 1582 1583
fn determine_explicit_self_category<'a, 'tcx>(this: &AstConv<'tcx>,
                                              rscope: &RegionScope,
                                              self_info: &SelfInfo<'a, 'tcx>)
                                              -> ty::ExplicitSelfCategory
1584 1585
{
    return match self_info.explicit_self.node {
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        ast::SelfStatic => ty::StaticExplicitSelfCategory,
        ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
        ast::SelfRegion(ref lifetime, mutability, _) => {
            let region =
                opt_ast_region_to_region(this,
                                         rscope,
                                         self_info.explicit_self.span,
                                         lifetime);
            ty::ByReferenceExplicitSelfCategory(region, mutability)
        }
1596 1597
        ast::SelfExplicit(ref ast_type, _) => {
            let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
            // We wish to (for now) categorize an explicit self
            // declaration like `self: SomeType` into either `self`,
            // `&self`, `&mut self`, or `Box<self>`. We do this here
            // by some simple pattern matching. A more precise check
            // is done later in `check_method_self_type()`.
            //
            // Examples:
            //
            // ```
            // impl Foo for &T {
            //     // Legal declarations:
            //     fn method1(self: &&T); // ByReferenceExplicitSelfCategory
            //     fn method2(self: &T); // ByValueExplicitSelfCategory
            //     fn method3(self: Box<&T>); // ByBoxExplicitSelfCategory
            //
            //     // Invalid cases will be caught later by `check_method_self_type`:
            //     fn method_err1(self: &mut T); // ByReferenceExplicitSelfCategory
            // }
            // ```
            //
            // To do the check we just count the number of "modifiers"
            // on each type and compare them. If they are the same or
            // the impl has more, we call it "by value". Otherwise, we
            // look at the outermost modifier on the method decl and
            // call it by-ref, by-box as appropriate. For method1, for
            // example, the impl type has one modifier, but the method
            // type has two, so we end up with
            // ByReferenceExplicitSelfCategory.

            let impl_modifiers = count_modifiers(self_info.untransformed_self_ty);
            let method_modifiers = count_modifiers(explicit_type);

            debug!("determine_explicit_self_category(self_info.untransformed_self_ty={} \
                   explicit_type={} \
                   modifiers=({},{})",
                   self_info.untransformed_self_ty.repr(this.tcx()),
                   explicit_type.repr(this.tcx()),
                   impl_modifiers,
                   method_modifiers);

            if impl_modifiers >= method_modifiers {
                ty::ByValueExplicitSelfCategory
            } else {
1642
                match explicit_type.sty {
H
Huon Wilson 已提交
1643
                    ty::ty_rptr(r, mt) => ty::ByReferenceExplicitSelfCategory(*r, mt.mutbl),
1644 1645
                    ty::ty_uniq(_) => ty::ByBoxExplicitSelfCategory,
                    _ => ty::ByValueExplicitSelfCategory,
1646 1647
                }
            }
1648 1649
        }
    };
1650

1651
    fn count_modifiers(ty: Ty) -> uint {
1652
        match ty.sty {
1653 1654 1655
            ty::ty_rptr(_, mt) => count_modifiers(mt.ty) + 1,
            ty::ty_uniq(t) => count_modifiers(t) + 1,
            _ => 0,
1656 1657
        }
    }
1658 1659
}

1660 1661
pub fn ty_of_closure<'tcx>(
    this: &AstConv<'tcx>,
N
Niko Matsakis 已提交
1662
    unsafety: ast::Unsafety,
1663
    decl: &ast::FnDecl,
1664
    abi: abi::Abi,
1665 1666
    expected_sig: Option<ty::FnSig<'tcx>>)
    -> ty::ClosureTy<'tcx>
1667
{
1668 1669
    debug!("ty_of_closure(expected_sig={})",
           expected_sig.repr(this.tcx()));
1670 1671 1672

    // new region names that appear inside of the fn decl are bound to
    // that function type
1673
    let rb = rscope::BindingRscope::new();
1674

1675
    let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
1676
        let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
1677 1678
            // no guarantee that the correct number of expected args
            // were supplied
1679
            if i < e.inputs.len() {
1680
                Some(e.inputs[i])
1681 1682 1683
            } else {
                None
            }
1684
        });
J
James Miller 已提交
1685
        ty_of_arg(this, &rb, a, expected_arg_ty)
1686
    }).collect();
1687

1688
    let expected_ret_ty = expected_sig.map(|e| e.output);
J
Jakub Bukaj 已提交
1689

1690 1691 1692 1693 1694 1695
    let is_infer = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer => true,
        ast::DefaultReturn(..) => true,
        _ => false
    };

1696
    let output_ty = match decl.output {
1697
        _ if is_infer && expected_ret_ty.is_some() =>
1698
            expected_ret_ty.unwrap(),
1699 1700
        _ if is_infer =>
            ty::FnConverging(this.ty_infer(decl.output.span())),
1701 1702
        ast::Return(ref output) =>
            ty::FnConverging(ast_ty_to_ty(this, &rb, &**output)),
1703 1704
        ast::DefaultReturn(..) => unreachable!(),
        ast::NoReturn(..) => ty::FnDiverging
1705 1706
    };

1707 1708 1709
    debug!("ty_of_closure: input_tys={}", input_tys.repr(this.tcx()));
    debug!("ty_of_closure: output_ty={}", output_ty.repr(this.tcx()));

1710
    ty::ClosureTy {
N
Niko Matsakis 已提交
1711
        unsafety: unsafety,
1712
        abi: abi,
1713 1714 1715
        sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                   output: output_ty,
                                   variadic: decl.variadic}),
1716 1717
    }
}
1718

S
Steve Klabnik 已提交
1719 1720 1721 1722
/// Given an existential type like `Foo+'a+Bar`, this routine converts the `'a` and `Bar` intos an
/// `ExistentialBounds` struct. The `main_trait_refs` argument specifies the `Foo` -- it is absent
/// for closures. Eventually this should all be normalized, I think, so that there is no "main
/// trait ref" and instead we just have a flat list of bounds as the existential type.
1723
fn conv_existential_bounds<'tcx>(
1724 1725
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1726
    span: Span,
1727
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1728
    projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
1729
    ast_bounds: &[ast::TyParamBound])
1730
    -> ty::ExistentialBounds<'tcx>
1731
{
1732
    let partitioned_bounds =
1733
        partition_bounds(this.tcx(), span, ast_bounds);
1734 1735

    conv_existential_bounds_from_partitioned_bounds(
1736
        this, rscope, span, principal_trait_ref, projection_bounds, partitioned_bounds)
1737 1738
}

1739 1740 1741
fn conv_ty_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1742 1743
    span: Span,
    ast_bounds: &[ast::TyParamBound])
1744
    -> Ty<'tcx>
1745
{
1746
    let mut partitioned_bounds = partition_bounds(this.tcx(), span, &ast_bounds[..]);
1747

1748
    let mut projection_bounds = Vec::new();
A
Aaron Turon 已提交
1749 1750
    let main_trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
        let trait_bound = partitioned_bounds.trait_bounds.remove(0);
1751 1752 1753 1754 1755
        instantiate_poly_trait_ref(this,
                                   rscope,
                                   trait_bound,
                                   None,
                                   &mut projection_bounds)
A
Aaron Turon 已提交
1756
    } else {
B
Brian Anderson 已提交
1757
        span_err!(this.tcx().sess, span, E0224,
1758 1759
                  "at least one non-builtin trait is required for an object type");
        return this.tcx().types.err;
1760 1761
    };

1762 1763 1764 1765
    let bounds =
        conv_existential_bounds_from_partitioned_bounds(this,
                                                        rscope,
                                                        span,
1766
                                                        main_trait_bound.clone(),
1767
                                                        projection_bounds,
1768
                                                        partitioned_bounds);
1769

1770
    ty::mk_trait(this.tcx(), main_trait_bound, bounds)
1771 1772
}

1773 1774 1775
pub fn conv_existential_bounds_from_partitioned_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
1776
    span: Span,
1777
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
1778
    mut projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>, // Empty for boxed closures
1779
    partitioned_bounds: PartitionedBounds)
1780
    -> ty::ExistentialBounds<'tcx>
1781
{
1782 1783
    let PartitionedBounds { builtin_bounds,
                            trait_bounds,
1784
                            region_bounds } =
1785
        partitioned_bounds;
1786 1787

    if !trait_bounds.is_empty() {
1788
        let b = &trait_bounds[0];
B
Brian Anderson 已提交
1789
        span_err!(this.tcx().sess, b.trait_ref.path.span, E0225,
1790
                  "only the builtin traits can be used as closure or object bounds");
1791 1792
    }

1793 1794 1795 1796 1797 1798
    let region_bound = compute_object_lifetime_bound(this,
                                                     rscope,
                                                     span,
                                                     &region_bounds,
                                                     principal_trait_ref,
                                                     builtin_bounds);
1799

1800
    ty::sort_bounds_list(&mut projection_bounds);
1801

1802 1803 1804
    ty::ExistentialBounds {
        region_bound: region_bound,
        builtin_bounds: builtin_bounds,
1805
        projection_bounds: projection_bounds,
1806 1807 1808
    }
}

1809
/// Given the bounds on an object, determines what single region bound
S
Steve Klabnik 已提交
1810 1811 1812
/// (if any) we can use to summarize this type. The basic idea is that we will use the bound the
/// user provided, if they provided one, and otherwise search the supertypes of trait bounds for
/// region bounds. It may be that we can derive no bound at all, in which case we return `None`.
1813 1814 1815 1816 1817 1818 1819 1820
fn compute_object_lifetime_bound<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    explicit_region_bounds: &[&ast::Lifetime],
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    builtin_bounds: ty::BuiltinBounds)
    -> ty::Region
1821
{
1822 1823
    let tcx = this.tcx();

1824
    debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
1825 1826 1827 1828 1829 1830
           principal_trait_ref={}, builtin_bounds={})",
           explicit_region_bounds,
           principal_trait_ref.repr(tcx),
           builtin_bounds.repr(tcx));

    if explicit_region_bounds.len() > 1 {
B
Brian Anderson 已提交
1831 1832
        span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
            "only a single explicit lifetime bound is permitted");
1833 1834
    }

1835
    if explicit_region_bounds.len() != 0 {
1836
        // Explicitly specified region bound. Use that.
1837
        let r = explicit_region_bounds[0];
1838
        return ast_region_to_region(tcx, r);
1839 1840 1841 1842 1843
    }

    // No explicit region bound specified. Therefore, examine trait
    // bounds and see if we can derive region bounds from those.
    let derived_region_bounds =
1844
        object_region_bounds(tcx, &principal_trait_ref, builtin_bounds);
1845 1846 1847 1848

    // If there are no derived region bounds, then report back that we
    // can find no region bound.
    if derived_region_bounds.len() == 0 {
1849 1850 1851 1852 1853 1854 1855 1856 1857
        match rscope.object_lifetime_default(span) {
            Some(r) => { return r; }
            None => {
                span_err!(this.tcx().sess, span, E0228,
                          "the lifetime bound for this object type cannot be deduced \
                           from context; please supply an explicit bound");
                return ty::ReStatic;
            }
        }
1858 1859 1860 1861 1862
    }

    // If any of the derived region bounds are 'static, that is always
    // the best choice.
    if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
1863
        return ty::ReStatic;
1864 1865 1866 1867 1868
    }

    // Determine whether there is exactly one unique region in the set
    // of derived region bounds. If so, use that. Otherwise, report an
    // error.
1869
    let r = derived_region_bounds[0];
A
Aaron Turon 已提交
1870
    if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
B
Brian Anderson 已提交
1871
        span_err!(tcx.sess, span, E0227,
1872
                  "ambiguous lifetime bound, explicit lifetime bound required");
1873
    }
1874
    return r;
1875 1876
}

N
Niko Matsakis 已提交
1877 1878 1879 1880 1881 1882
/// Given an object type like `SomeTrait+Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `ty::required_region_bounds`, see that for more information.
1883 1884 1885 1886 1887
pub fn object_region_bounds<'tcx>(
    tcx: &ty::ctxt<'tcx>,
    principal: &ty::PolyTraitRef<'tcx>,
    others: ty::BuiltinBounds)
    -> Vec<ty::Region>
1888
{
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    // Since we don't actually *know* the self type for an object,
    // this "open(err)" serves as a kind of dummy standin -- basically
    // a skolemized type.
    let open_ty = ty::mk_infer(tcx, ty::FreshTy(0));

    // Note that we preserve the overall binding levels here.
    assert!(!open_ty.has_escaping_regions());
    let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
    let trait_refs = vec!(ty::Binder(Rc::new(ty::TraitRef::new(principal.0.def_id, substs))));

    let param_bounds = ty::ParamBounds {
        region_bounds: Vec::new(),
        builtin_bounds: others,
        trait_bounds: trait_refs,
        projection_bounds: Vec::new(), // not relevant to computing region bounds
    };

    let predicates = ty::predicates(tcx, open_ty, &param_bounds);
    ty::required_region_bounds(tcx, open_ty, predicates)
1908 1909 1910 1911
}

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
1912
    pub trait_bounds: Vec<&'a ast::PolyTraitRef>,
1913 1914 1915
    pub region_bounds: Vec<&'a ast::Lifetime>,
}

S
Steve Klabnik 已提交
1916 1917
/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
1918 1919
pub fn partition_bounds<'a>(tcx: &ty::ctxt,
                            _span: Span,
1920
                            ast_bounds: &'a [ast::TyParamBound])
1921 1922 1923 1924 1925
                            -> PartitionedBounds<'a>
{
    let mut builtin_bounds = ty::empty_builtin_bounds();
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
1926
    let mut trait_def_ids = DefIdMap();
1927
    for ast_bound in ast_bounds {
1928
        match *ast_bound {
N
Nick Cameron 已提交
1929
            ast::TraitTyParamBound(ref b, ast::TraitBoundModifier::None) => {
1930
                match ::lookup_full_def(tcx, b.trait_ref.path.span, b.trait_ref.ref_id) {
1931
                    def::DefTrait(trait_did) => {
1932
                        match trait_def_ids.get(&trait_did) {
1933 1934 1935 1936 1937
                            // Already seen this trait. We forbid
                            // duplicates in the list (for some
                            // reason).
                            Some(span) => {
                                span_err!(
1938
                                    tcx.sess, b.trait_ref.path.span, E0127,
1939 1940
                                    "trait `{}` already appears in the \
                                     list of bounds",
1941
                                    b.trait_ref.path.user_string(tcx));
1942 1943 1944 1945 1946
                                tcx.sess.span_note(
                                    *span,
                                    "previous appearance is here");

                                continue;
1947
                            }
1948 1949

                            None => { }
1950
                        }
1951

1952
                        trait_def_ids.insert(trait_did, b.trait_ref.path.span);
1953 1954 1955 1956

                        if ty::try_add_builtin_trait(tcx,
                                                     trait_did,
                                                     &mut builtin_bounds) {
1957 1958
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
1959 1960 1961 1962 1963 1964 1965
                            if parameters.types().len() > 0 {
                                check_type_argument_count(tcx, b.trait_ref.path.span,
                                                          parameters.types().len(), 0, 0);
                            }
                            if parameters.lifetimes().len() > 0{
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
1966
                            }
1967
                            continue; // success
1968 1969
                        }
                    }
1970 1971 1972 1973
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
1974
                }
1975 1976
                trait_bounds.push(b);
            }
N
Nick Cameron 已提交
1977
            ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {}
1978 1979 1980
            ast::RegionTyParamBound(ref l) => {
                region_bounds.push(l);
            }
1981
        }
1982 1983 1984 1985 1986 1987
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
1988 1989
    }
}
1990 1991 1992 1993 1994

fn prohibit_projections<'tcx>(tcx: &ty::ctxt<'tcx>,
                              bindings: &[ConvertedBinding<'tcx>])
{
    for binding in bindings.iter().take(1) {
B
Brian Anderson 已提交
1995
        span_err!(tcx.sess, binding.span, E0229,
1996 1997 1998
            "associated type bindings are not allowed here");
    }
}
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

fn check_type_argument_count(tcx: &ty::ctxt, span: Span, supplied: usize,
                             required: usize, accepted: usize) {
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0243,
                  "wrong number of type arguments: {} {}, found {}",
                  expected, required, supplied);
    } else if supplied > accepted {
        let expected = if required < accepted {
            "expected at most"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0244,
                  "wrong number of type arguments: {} {}, found {}",
                  expected,
                  accepted,
                  supplied);
    }
}

fn report_lifetime_number_error(tcx: &ty::ctxt, span: Span, number: usize, expected: usize) {
    span_err!(tcx.sess, span, E0107,
              "wrong number of lifetime parameters: expected {}, found {}",
              expected, number);
}