mod.rs 103.8 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use infer::canonical::{Canonical, Canonicalize};
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
29
use mir::interpret::GlobalId;
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32
use traits::{self, Reveal};
33
use ty;
34
use ty::subst::{Subst, Substs};
O
Oliver Schneider 已提交
35
use ty::util::{IntTypeExt, Discr};
36
use ty::walk::TypeWalker;
37
use util::captures::Captures;
38
use util::nodemap::{NodeSet, DefIdMap, FxHashMap};
39

40
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
41
use std::cell::RefCell;
42
use std::cmp;
43
use std::fmt;
44
use std::hash::{Hash, Hasher};
45
use std::ops::Deref;
46
use rustc_data_structures::sync::Lrc;
47
use std::slice;
48
use std::vec::IntoIter;
49
use std::mem;
J
Jeffrey Seyfried 已提交
50
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
51
use syntax::attr;
52
use syntax::ext::hygiene::Mark;
53
use syntax::symbol::{Symbol, LocalInternedString, InternedString};
54
use syntax_pos::{DUMMY_SP, Span};
55

56
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
57 58
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
59

60
use hir;
61

62
pub use self::sty::{Binder, CanonicalVar, DebruijnIndex};
J
John Kåre Alsaker 已提交
63
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
64
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
65
pub use self::sty::{ClosureSubsts, GeneratorSubsts, UpvarSubsts, TypeAndMut};
66
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
67
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
68
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
69
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
70
pub use self::sty::RegionKind;
71
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
72 73
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
74
pub use self::sty::RegionKind::*;
75 76
pub use self::sty::TypeVariants::*;

77 78 79
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

80
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
81
pub use self::context::{Lift, TypeckTables, InterpretInterner};
82

83 84
pub use self::instance::{Instance, InstanceDef};

85
pub use self::trait_def::TraitDef;
86

87 88
pub use self::maps::queries;

89
pub mod adjustment;
90
pub mod binding;
91
pub mod cast;
92
#[macro_use]
93
pub mod codec;
94
pub mod error;
95
mod erase_regions;
96 97
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
98
pub mod inhabitedness;
99
pub mod item_path;
100
pub mod layout;
101
pub mod _match;
102
pub mod maps;
103 104
pub mod outlives;
pub mod relate;
105
pub mod steal;
106
pub mod subst;
107
pub mod trait_def;
108 109
pub mod walk;
pub mod wf;
110
pub mod util;
111

112 113
mod context;
mod flags;
114
mod instance;
115 116 117
mod structural_impls;
mod sty;

118
// Data types
119

120 121
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
122 123 124
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
125
#[derive(Clone)]
126
pub struct CrateAnalysis {
127
    pub access_levels: Lrc<AccessLevels>,
128
    pub name: String,
129
    pub glob_map: Option<hir::GlobMap>,
130 131
}

132 133 134 135 136
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
137
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
138
    pub export_map: ExportMap,
139 140
}

141
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
142
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
143 144
    TraitContainer(DefId),
    ImplContainer(DefId),
145 146
}

147
impl AssociatedItemContainer {
148 149 150 151 152 153 154 155 156
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
157
    pub fn id(&self) -> DefId {
158 159 160 161 162 163 164
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
165 166 167 168 169 170 171 172 173 174 175
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
176
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
177 178 179 180 181 182 183
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
184

185 186 187 188
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
189

190
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
191 192 193 194 195
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
196

197 198 199 200 201 202
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
203 204
        }
    }
A
Andrew Cann 已提交
205 206 207 208 209 210 211

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
212
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
213 214 215
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
216 217 218 219 220 221 222 223

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
224
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
225 226 227 228 229 230 231
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
232 233
}

234
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
235 236 237 238
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
239
    Restricted(DefId),
240
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
241
    Invisible,
242 243
}

244 245
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
260 261
}

262 263 264
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
265 266 267
    }
}

268
impl Visibility {
269
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
270 271
        match *visibility {
            hir::Public => Visibility::Public,
272
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
273
            hir::Visibility::Restricted { ref path, .. } => match path.def {
274 275
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
276
                Def::Err => Visibility::Public,
277
                def => Visibility::Restricted(def.def_id()),
278
            },
279
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
280
                Visibility::Restricted(tcx.hir.get_module_parent(id))
281
            }
282 283
        }
    }
284 285

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
286
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
287 288 289 290
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
291
            Visibility::Invisible => return false,
292
            // Restricted items are visible in an arbitrary local module.
293
            Visibility::Restricted(other) if other.krate != module.krate => return false,
294 295 296
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
297
        tree.is_descendant_of(module, restriction)
298
    }
299 300

    /// Returns true if this visibility is at least as accessible as the given visibility
301
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
302 303
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
304
            Visibility::Invisible => return true,
305 306 307
            Visibility::Restricted(module) => module,
        };

308
        self.is_accessible_from(vis_restriction, tree)
309
    }
310 311 312 313 314 315 316 317 318

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
319 320
}

321
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
322
pub enum Variance {
323 324 325 326
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
327
}
328

329 330 331 332
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
333
/// `tcx.variances_of()` to get the variance for a *particular*
334 335 336 337 338
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
339
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
340 341

    /// An empty vector, useful for cloning.
342
    pub empty_variance: Lrc<Vec<ty::Variance>>,
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

405 406 407
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
408
pub struct CReaderCacheKey {
409 410 411 412
    pub cnum: CrateNum,
    pub pos: usize,
}

413 414 415 416
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
417
bitflags! {
418 419 420 421 422 423
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
424 425 426 427 428

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
429
        const HAS_RE_EARLY_BOUND = 1 << 5;
430 431 432

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
433
        const HAS_FREE_REGIONS   = 1 << 6;
434 435

        /// Is an error type reachable?
436 437
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
438 439

        // FIXME: Rename this to the actual property since it's used for generators too
440
        const HAS_TY_CLOSURE     = 1 << 9;
441 442 443

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
444
        const HAS_LOCAL_NAMES    = 1 << 10;
445

446 447
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
448
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
449

450 451
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
452
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
453

454 455 456 457
        // Set if this includes a "canonical" type or region var --
        // ought to be true only for the results of canonicalization.
        const HAS_CANONICAL_VARS = 1 << 13;

458 459
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
460
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
461 462

        // Flags representing the nominal content of a type,
463 464
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
465 466 467 468
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
469
                                  TypeFlags::HAS_RE_SKOL.bits |
470 471
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
472
                                  TypeFlags::HAS_TY_ERR.bits |
473
                                  TypeFlags::HAS_PROJECTION.bits |
474
                                  TypeFlags::HAS_TY_CLOSURE.bits |
475
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
476 477
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits |
                                  TypeFlags::HAS_CANONICAL_VARS.bits;
478
    }
479 480
}

481
pub struct TyS<'tcx> {
482
    pub sty: TypeVariants<'tcx>,
483
    pub flags: TypeFlags,
484 485

    // the maximal depth of any bound regions appearing in this type.
486
    region_depth: u32,
487 488
}

489
impl<'tcx> PartialEq for TyS<'tcx> {
490
    #[inline]
491 492 493 494 495
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
496
impl<'tcx> Eq for TyS<'tcx> {}
497

A
Alex Crichton 已提交
498 499
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
500
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
501 502
    }
}
503

G
Guillaume Gomez 已提交
504 505 506 507 508 509 510 511 512 513 514 515
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
516
            TypeVariants::TyRef(_, x, _) => x.is_primitive_ty(),
G
Guillaume Gomez 已提交
517 518 519
            _ => false,
        }
    }
520 521 522 523 524 525 526 527

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
528
            TypeVariants::TyInfer(..) |
529 530 531 532
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
533 534
}

535
impl<'a, 'gcx> HashStable<StableHashingContext<'a>> for ty::TyS<'gcx> {
536
    fn hash_stable<W: StableHasherResult>(&self,
537
                                          hcx: &mut StableHashingContext<'a>,
538 539 540 541 542 543 544 545 546 547 548 549 550 551
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

552
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
553

554 555
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
556

557 558 559 560 561 562 563 564 565 566 567
pub type CanonicalTy<'gcx> = Canonical<'gcx, Ty<'gcx>>;

impl <'gcx: 'tcx, 'tcx> Canonicalize<'gcx, 'tcx> for Ty<'tcx> {
    type Canonicalized = CanonicalTy<'gcx>;

    fn intern(_gcx: TyCtxt<'_, 'gcx, 'gcx>,
              value: Canonical<'gcx, Self::Lifted>) -> Self::Canonicalized {
        value
    }
}

A
Adam Perry 已提交
568
/// A wrapper for slices with the additional invariant
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

607 608 609 610 611 612 613 614
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
615 616 617
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
618
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
619
pub struct UpvarId {
620
    pub var_id: hir::HirId,
621
    pub closure_expr_id: LocalDefId,
622 623
}

J
Jorge Aparicio 已提交
624
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
625 626 627 628 629 630
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
631
    /// implicit closure bindings. It is needed when the closure
632 633
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
634
    ///    let x: &mut isize = ...;
635 636 637 638 639
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
640 641
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
642 643 644 645 646 647 648
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
649 650
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

670 671
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
672
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
673
pub enum UpvarCapture<'tcx> {
674 675 676 677 678 679
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
680
    ByRef(UpvarBorrow<'tcx>),
681 682
}

683
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
684
pub struct UpvarBorrow<'tcx> {
685 686 687
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
688
    pub kind: BorrowKind,
689 690

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
691
    pub region: ty::Region<'tcx>,
692 693
}

694
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
695

696 697
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
698
    pub def: Def,
699 700 701 702
    pub span: Span,
    pub ty: Ty<'tcx>,
}

703
#[derive(Clone, Copy, PartialEq, Eq)]
704
pub enum IntVarValue {
705 706
    IntType(ast::IntTy),
    UintType(ast::UintTy),
707 708
}

709 710 711
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

712 713
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
714
    pub name: InternedString,
N
Niko Matsakis 已提交
715
    pub def_id: DefId,
716
    pub index: u32,
717 718
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
719 720 721 722 723

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
724 725

    pub synthetic: Option<hir::SyntheticTyParamKind>,
726 727
}

728 729
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
730
    pub name: InternedString,
N
Niko Matsakis 已提交
731
    pub def_id: DefId,
732
    pub index: u32,
733 734 735 736 737

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
738 739
}

740
impl RegionParameterDef {
741 742
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
743
            def_id: self.def_id,
744 745
            index: self.index,
            name: self.name,
746
        }
747
    }
748

749 750 751 752 753 754
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
755
    pub fn to_bound_region(&self) -> ty::BoundRegion {
756
        ty::BoundRegion::BrNamed(self.def_id, self.name)
757
    }
758 759
}

V
varkor 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub enum GenericParameterDef {
    Lifetime(RegionParameterDef),
    Type(TypeParameterDef),
}

impl GenericParameterDef {
    pub fn index(&self) -> u32 {
        match self {
            GenericParameterDef::Lifetime(lt) => lt.index,
            GenericParameterDef::Type(ty)     => ty.index,
        }
    }
}

775
/// Information about the formal type/lifetime parameters associated
776
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
777 778 779 780 781 782 783
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
784
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
785
pub struct Generics {
786
    pub parent: Option<DefId>,
V
varkor 已提交
787
    pub parent_count: usize,
V
varkor 已提交
788
    pub parameters: Vec<GenericParameterDef>,
789

790 791
    /// Reverse map to each `TypeParameterDef`'s `index` field
    pub type_param_to_index: FxHashMap<DefId, u32>,
792

793
    pub has_self: bool,
794
    pub has_late_bound_regions: Option<Span>,
795 796
}

797
impl<'a, 'gcx, 'tcx> Generics {
798
    pub fn own_count(&self) -> usize {
V
varkor 已提交
799
        self.parameters.len()
800 801 802
    }

    pub fn count(&self) -> usize {
V
varkor 已提交
803
        self.parent_count + self.own_count()
804
    }
805

V
varkor 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    pub fn lifetimes(&self) -> Vec<&RegionParameterDef> {
        self.parameters.iter().filter_map(|p| {
            if let GenericParameterDef::Lifetime(lt) = p {
                Some(lt)
            } else {
                None
            }
        }).collect()
    }

    pub fn types(&self) -> Vec<&TypeParameterDef> {
        self.parameters.iter().filter_map(|p| {
            if let GenericParameterDef::Type(ty) = p {
                Some(ty)
            } else {
                None
            }
        }).collect()
    }

V
varkor 已提交
826 827 828 829 830 831 832 833 834 835
    pub fn has_type_parameters(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        if self.types().len() != 0 {
            return true;
        }
        if let Some(parent_def_id) = self.parent {
            let parent = tcx.generics_of(parent_def_id);
            parent.has_type_parameters(tcx)
        } else {
            false
        }
V
varkor 已提交
836 837
    }

838 839 840 841 842
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
V
varkor 已提交
843
        if let Some(index) = param.index.checked_sub(self.parent_count as u32) {
V
varkor 已提交
844 845 846 847 848
            // We're currently assuming that lifetimes precede other generic parameters.
            match self.parameters[index as usize - self.has_self as usize] {
                ty::GenericParameterDef::Lifetime(ref lt) => lt,
                _ => bug!("expected region parameter, but found another generic parameter")
            }
849 850 851 852
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
853 854
    }

A
Ariel Ben-Yehuda 已提交
855
    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
856 857
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
858
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
A
Ariel Ben-Yehuda 已提交
859
                      -> &TypeParameterDef {
V
varkor 已提交
860
        if let Some(idx) = param.idx.checked_sub(self.parent_count as u32) {
A
Ariel Ben-Yehuda 已提交
861 862
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
863
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
864 865
            // for the regions:
            //
866 867 868 869 870 871 872 873 874 875 876
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
877 878 879 880 881 882 883
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
884 885 886 887
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
V
varkor 已提交
888
            let type_param_offset = self.lifetimes().len();
889 890 891 892

            let has_self = self.has_self && self.parent.is_none();
            let is_separated_self = type_param_offset != 0 && idx == 0 && has_self;

V
varkor 已提交
893
            if let Some(_) = (idx as usize).checked_sub(type_param_offset) {
894
                assert!(!is_separated_self, "found a Self after type_param_offset");
V
varkor 已提交
895 896 897 898
                match self.parameters[idx as usize] {
                    ty::GenericParameterDef::Type(ref ty) => ty,
                    _ => bug!("expected type parameter, but found another generic parameter")
                }
A
Ariel Ben-Yehuda 已提交
899
            } else {
900
                assert!(is_separated_self, "non-Self param before type_param_offset");
V
varkor 已提交
901 902 903 904
                match self.parameters[type_param_offset] {
                    ty::GenericParameterDef::Type(ref ty) => ty,
                    _ => bug!("expected type parameter, but found another generic parameter")
                }
A
Ariel Ben-Yehuda 已提交
905
            }
906 907 908 909
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
910
    }
911 912
}

913
/// Bounds on generics.
914
#[derive(Clone, Default)]
915
pub struct GenericPredicates<'tcx> {
916
    pub parent: Option<DefId>,
917
    pub predicates: Vec<Predicate<'tcx>>,
918 919
}

920 921 922
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

923 924
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
925
                       -> InstantiatedPredicates<'tcx> {
926 927 928 929 930 931
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
932
        InstantiatedPredicates {
933 934 935 936 937 938 939 940
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
941
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
942
        }
943
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
944
    }
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

961
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
962 963 964
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
965
        assert_eq!(self.parent, None);
966
        InstantiatedPredicates {
967
            predicates: self.predicates.iter().map(|pred| {
968
                pred.subst_supertrait(tcx, poly_trait_ref)
969
            }).collect()
970 971
        }
    }
972 973
}

974
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
975
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
976 977
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
978
    /// would be the type parameters.
979
    Trait(PolyTraitPredicate<'tcx>),
980 981

    /// where 'a : 'b
982
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
983 984

    /// where T : 'a
985
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
986

N
Niko Matsakis 已提交
987 988
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
989
    Projection(PolyProjectionPredicate<'tcx>),
990 991 992 993 994

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
995
    ObjectSafe(DefId),
996

997 998 999
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
1000
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
1001 1002 1003

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
1004 1005 1006

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
1007 1008
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/// The crate outlives map is computed during typeck and contains the
/// outlives of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
/// item.
pub struct CratePredicatesMap<'tcx> {
    /// For each struct with outlive bounds, maps to a vector of the
    /// predicate of its outlive bounds. If an item has no outlives
    /// bounds, it will have no entry.
    pub predicates: FxHashMap<DefId, Lrc<Vec<ty::Predicate<'tcx>>>>,

    /// An empty vector, useful for cloning.
    pub empty_predicate: Lrc<Vec<ty::Predicate<'tcx>>>,
}

1025 1026 1027 1028 1029 1030
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

1031
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
1032
    /// Performs a substitution suitable for going from a
1033 1034 1035 1036
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
1037
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

1101
        let substs = &trait_ref.skip_binder().substs;
1102
        match *self {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            Predicate::Trait(ref binder) =>
                Predicate::Trait(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Subtype(ref binder) =>
                Predicate::Subtype(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::RegionOutlives(ref binder) =>
                Predicate::RegionOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::TypeOutlives(ref binder) =>
                Predicate::TypeOutlives(binder.map_bound(|data| data.subst(tcx, substs))),
            Predicate::Projection(ref binder) =>
                Predicate::Projection(binder.map_bound(|data| data.subst(tcx, substs))),
1113 1114 1115 1116
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1117 1118
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1119 1120
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1121 1122 1123 1124
        }
    }
}

1125
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1126
pub struct TraitPredicate<'tcx> {
1127
    pub trait_ref: TraitRef<'tcx>
1128 1129 1130 1131
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1132
    pub fn def_id(&self) -> DefId {
1133 1134 1135
        self.trait_ref.def_id
    }

1136
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1137
        self.trait_ref.input_types()
1138 1139 1140 1141 1142 1143 1144 1145
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1146
    pub fn def_id(&self) -> DefId {
1147
        // ok to skip binder since trait def-id does not care about regions
1148
        self.skip_binder().def_id()
1149
    }
1150 1151
}

1152
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1153 1154
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
S
scalexm 已提交
1155 1156 1157 1158 1159 1160
pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>,
                                                           ty::Region<'tcx>>;
pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>,
                                                         ty::Region<'tcx>>;
pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<RegionOutlivesPredicate<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<TypeOutlivesPredicate<'tcx>>;
1161

1162
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1163 1164 1165 1166 1167 1168 1169
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1170 1171 1172 1173 1174 1175 1176 1177 1178
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1179 1180
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1181
/// instances to normalize the LHS.
1182
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1183 1184 1185 1186 1187 1188 1189
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1190
impl<'tcx> PolyProjectionPredicate<'tcx> {
1191 1192 1193 1194 1195
    /// Returns the def-id of the associated item being projected.
    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().projection_ty.item_def_id
    }

1196 1197 1198 1199 1200 1201
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
1202
        self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx))
1203
    }
1204 1205

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        self.map_bound(|predicate| predicate.ty)
    }

    /// The DefId of the TraitItem for the associated type.
    ///
    /// Note that this is not the DefId of the TraitRef containing this
    /// associated type, which is in tcx.associated_item(projection_def_id()).container.
    pub fn projection_def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.skip_binder().projection_ty.item_def_id
1216
    }
1217 1218
}

1219 1220 1221 1222
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1223
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1224
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1225
        ty::Binder::dummy(self.clone())
1226 1227 1228 1229 1230
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1231
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1232 1233 1234
    }
}

1235 1236
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1237 1238
}

1239 1240
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1241
        ty::Predicate::Trait(ty::Binder::dummy(ty::TraitPredicate {
1242 1243 1244 1245 1246
            trait_ref: self.clone()
        }))
    }
}

1247 1248
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1249
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1250 1251 1252
    }
}

1253
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1254
    fn to_predicate(&self) -> Predicate<'tcx> {
1255 1256 1257 1258
        Predicate::RegionOutlives(self.clone())
    }
}

1259 1260
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1261 1262
        Predicate::TypeOutlives(self.clone())
    }
1263 1264
}

1265 1266
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1267 1268 1269 1270
        Predicate::Projection(self.clone())
    }
}

1271
impl<'tcx> Predicate<'tcx> {
1272 1273 1274 1275 1276 1277
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1278
                data.skip_binder().input_types().collect()
1279
            }
1280 1281
            ty::Predicate::Subtype(binder) => {
                let SubtypePredicate { a, b, a_is_expected: _ } = binder.skip_binder();
N
Niko Matsakis 已提交
1282 1283
                vec![a, b]
            }
1284 1285
            ty::Predicate::TypeOutlives(binder) => {
                vec![binder.skip_binder().0]
1286 1287 1288 1289 1290
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1291 1292
                let inner = data.skip_binder();
                inner.projection_ty.substs.types().chain(Some(inner.ty)).collect()
1293
            }
1294 1295 1296 1297 1298 1299
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1300 1301
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1302
            }
1303 1304 1305
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1316
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1317 1318
        match *self {
            Predicate::Trait(ref t) => {
1319
                Some(t.to_poly_trait_ref())
1320
            }
1321
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1322
            Predicate::Subtype(..) |
1323
            Predicate::RegionOutlives(..) |
1324 1325
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1326
            Predicate::ClosureKind(..) |
1327 1328
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1329 1330
                None
            }
1331 1332
        }
    }
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1351 1352
}

S
Steve Klabnik 已提交
1353 1354
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1355 1356 1357 1358 1359
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1360 1361 1362 1363 1364 1365 1366 1367
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1368
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1369
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1370 1371
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1372
#[derive(Clone)]
1373
pub struct InstantiatedPredicates<'tcx> {
1374
    pub predicates: Vec<Predicate<'tcx>>,
1375 1376
}

1377 1378
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1379
        InstantiatedPredicates { predicates: vec![] }
1380 1381
    }

1382 1383
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1384
    }
1385 1386
}

N
Niko Matsakis 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1423
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1424 1425 1426 1427 1428
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1429
    pub const ROOT: Self = UniverseIndex(0);
N
Niko Matsakis 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
    }
}

impl From<u32> for UniverseIndex {
    fn from(index: u32) -> Self {
        UniverseIndex(index)
1458
    }
N
Niko Matsakis 已提交
1459 1460
}

1461
/// When type checking, we use the `ParamEnv` to track
1462 1463 1464
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1465
pub struct ParamEnv<'tcx> {
1466 1467
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1468
    /// into Obligations, and elaborated and normalized.
1469
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1470 1471 1472 1473 1474

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1475
}
1476

1477
impl<'tcx> ParamEnv<'tcx> {
1478 1479 1480 1481 1482
    /// Construct a trait environment suitable for contexts where
    /// there are no where clauses in scope. Hidden types (like `impl
    /// Trait`) are left hidden, so this is suitable for ordinary
    /// type-checking.
    pub fn empty() -> Self {
S
Sean Griffin 已提交
1483
        Self::new(ty::Slice::empty(), Reveal::UserFacing)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    }

    /// Construct a trait environment with no where clauses in scope
    /// where the values of all `impl Trait` and other hidden types
    /// are revealed. This is suitable for monomorphized, post-typeck
    /// environments like trans or doing optimizations.
    ///
    /// NB. If you want to have predicates in scope, use `ParamEnv::new`,
    /// or invoke `param_env.with_reveal_all()`.
    pub fn reveal_all() -> Self {
S
Sean Griffin 已提交
1494
        Self::new(ty::Slice::empty(), Reveal::All)
1495 1496 1497 1498
    }

    /// Construct a trait environment with the given set of predicates.
    pub fn new(caller_bounds: &'tcx ty::Slice<ty::Predicate<'tcx>>,
S
Sean Griffin 已提交
1499
               reveal: Reveal)
1500
               -> Self {
S
Sean Griffin 已提交
1501
        ty::ParamEnv { caller_bounds, reveal }
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    }

    /// Returns a new parameter environment with the same clauses, but
    /// which "reveals" the true results of projections in all cases
    /// (even for associated types that are specializable).  This is
    /// the desired behavior during trans and certain other special
    /// contexts; normally though we want to use `Reveal::UserFacing`,
    /// which is the default.
    pub fn with_reveal_all(self) -> Self {
        ty::ParamEnv { reveal: Reveal::All, ..self }
    }

    /// Returns this same environment but with no caller bounds.
    pub fn without_caller_bounds(self) -> Self {
        ty::ParamEnv { caller_bounds: ty::Slice::empty(), ..self }
    }

1519
    /// Creates a suitable environment in which to perform trait
1520 1521 1522 1523 1524
    /// queries on the given value. When type-checking, this is simply
    /// the pair of the environment plus value. But when reveal is set to
    /// All, then if `value` does not reference any type parameters, we will
    /// pair it with the empty environment. This improves caching and is generally
    /// invisible.
1525
    ///
1526 1527
    /// NB: We preserve the environment when type-checking because it
    /// is possible for the user to have wacky where-clauses like
1528
    /// `where Box<u32>: Copy`, which are clearly never
1529 1530
    /// satisfiable. We generally want to behave as if they were true,
    /// although the surrounding function is never reachable.
1531
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1532 1533 1534 1535 1536 1537
        match self.reveal {
            Reveal::UserFacing => {
                ParamEnvAnd {
                    param_env: self,
                    value,
                }
1538
            }
1539 1540

            Reveal::All => {
1541 1542 1543 1544 1545
                if value.has_skol()
                    || value.needs_infer()
                    || value.has_param_types()
                    || value.has_self_ty()
                {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
                    ParamEnvAnd {
                        param_env: self,
                        value,
                    }
                } else {
                    ParamEnvAnd {
                        param_env: self.without_caller_bounds(),
                        value,
                    }
                }
1556
            }
1557 1558 1559
        }
    }
}
1560

1561
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1562 1563
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1564
    pub value: T,
1565 1566
}

1567 1568
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1569
        (self.param_env, self.value)
1570
    }
1571 1572
}

1573 1574
impl<'a, 'gcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'a>>
1575 1576
{
    fn hash_stable<W: StableHasherResult>(&self,
1577
                                          hcx: &mut StableHashingContext<'a>,
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1589 1590 1591 1592 1593 1594
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1595
bitflags! {
1596 1597 1598 1599 1600 1601 1602
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1603 1604 1605 1606
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1607
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1608
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1609 1610 1611
    }
}

1612
#[derive(Debug)]
1613
pub struct VariantDef {
1614 1615
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1616 1617
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1618
    pub discr: VariantDiscr,
1619
    pub fields: Vec<FieldDef>,
1620
    pub ctor_kind: CtorKind,
1621 1622
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1636
#[derive(Debug)]
1637
pub struct FieldDef {
1638
    pub did: DefId,
1639
    pub name: Name,
1640
    pub vis: Visibility,
1641 1642
}

A
Ariel Ben-Yehuda 已提交
1643 1644 1645 1646
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1647
pub struct AdtDef {
1648
    pub did: DefId,
1649
    pub variants: Vec<VariantDef>,
1650
    flags: AdtFlags,
1651
    pub repr: ReprOptions,
1652 1653
}

1654 1655
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1656 1657 1658 1659
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1660
impl Eq for AdtDef {}
1661

1662
impl Hash for AdtDef {
1663 1664
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1665
        (self as *const AdtDef).hash(s)
1666 1667 1668
    }
}

1669
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1670
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1671 1672 1673 1674
        self.did.encode(s)
    }
}

1675
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1676

1677

1678
impl<'a> HashStable<StableHashingContext<'a>> for AdtDef {
1679
    fn hash_stable<W: StableHasherResult>(&self,
1680
                                          hcx: &mut StableHashingContext<'a>,
1681
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1682 1683 1684 1685
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1686

W
Wesley Wiser 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1708 1709 1710
    }
}

1711
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1712
pub enum AdtKind { Struct, Union, Enum }
1713

1714 1715
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1716 1717
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
1718 1719
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
1720
        // Internal only for now. If true, don't reorder fields.
1721
        const IS_LINEAR          = 1 << 3;
1722 1723 1724 1725

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_SIMD.bits |
1726
                                   ReprFlags::IS_LINEAR.bits;
1727 1728 1729 1730 1731 1732 1733 1734 1735
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1736 1737 1738 1739
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1740
    pub align: u32,
1741
    pub pack: u32,
1742
    pub flags: ReprFlags,
1743 1744
}

1745
impl_stable_hash_for!(struct ReprOptions {
1746
    align,
1747
    pack,
1748
    int,
1749
    flags
1750 1751
});

1752
impl ReprOptions {
1753
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1754 1755
        let mut flags = ReprFlags::empty();
        let mut size = None;
1756
        let mut max_align = 0;
1757
        let mut min_pack = 0;
1758 1759
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1760
                flags.insert(match r {
1761
                    attr::ReprC => ReprFlags::IS_C,
1762 1763 1764 1765 1766 1767 1768 1769
                    attr::ReprPacked(pack) => {
                        min_pack = if min_pack > 0 {
                            cmp::min(pack, min_pack)
                        } else {
                            pack
                        };
                        ReprFlags::empty()
                    },
R
Robin Kruppe 已提交
1770
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1771 1772 1773 1774 1775
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1776 1777 1778 1779
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1780
                });
1781 1782
            }
        }
1783

1784
        // This is here instead of layout because the choice must make it into metadata.
1785 1786 1787
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1788
        ReprOptions { int: size, align: max_align, pack: min_pack, flags: flags }
1789
    }
1790

1791 1792 1793 1794 1795
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
1796
    pub fn packed(&self) -> bool { self.pack > 0 }
1797
    #[inline]
R
Robin Kruppe 已提交
1798 1799
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1800 1801
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1802
    pub fn discr_type(&self) -> attr::IntType {
1803
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1804
    }
1805 1806 1807 1808 1809

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1810
        self.c() || self.int.is_some()
1811
    }
1812 1813 1814 1815 1816 1817

    /// Returns true if this `#[repr()]` should inhibit struct field reordering
    /// optimizations, such as with repr(C) or repr(packed(1)).
    pub fn inhibit_struct_field_reordering_opt(&self) -> bool {
        !(self.flags & ReprFlags::IS_UNOPTIMISABLE).is_empty() || (self.pack == 1)
    }
1818 1819
}

1820
impl<'a, 'gcx, 'tcx> AdtDef {
1821
    fn new(tcx: TyCtxt,
1822
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1823
           kind: AdtKind,
1824 1825
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1826
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1827
        let attrs = tcx.get_attrs(did);
1828
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1829
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1830
        }
1831
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1832
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1833
        }
1834
        if Some(did) == tcx.lang_items().owned_box() {
1835 1836
            flags = flags | AdtFlags::IS_BOX;
        }
1837 1838 1839
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1840 1841 1842 1843
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1844
        }
1845
        AdtDef {
1846 1847 1848 1849
            did,
            variants,
            flags,
            repr,
1850 1851 1852
        }
    }

1853 1854 1855 1856 1857 1858 1859
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1860
        self.flags.intersects(AdtFlags::IS_UNION)
1861 1862 1863 1864
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1865
        self.flags.intersects(AdtFlags::IS_ENUM)
1866 1867
    }

1868 1869 1870 1871 1872
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1873
    /// Returns the kind of the ADT - Struct or Enum.
1874
    #[inline]
A
Ariel Ben-Yehuda 已提交
1875
    pub fn adt_kind(&self) -> AdtKind {
1876
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1877
            AdtKind::Enum
1878
        } else if self.is_union() {
1879
            AdtKind::Union
1880
        } else {
A
Ariel Ben-Yehuda 已提交
1881
            AdtKind::Struct
1882 1883 1884
        }
    }

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1901 1902
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1903 1904
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1905
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1906 1907
    }

A
Ariel Ben-Yehuda 已提交
1908
    /// Returns true if this is PhantomData<T>.
1909 1910
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1911
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1912 1913
    }

1914 1915 1916
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1917
        self.flags.intersects(AdtFlags::IS_BOX)
1918 1919
    }

A
Ariel Ben-Yehuda 已提交
1920
    /// Returns whether this type has a destructor.
1921 1922
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1923 1924
    }

1925 1926 1927
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1928
        &self.variants[0]
1929 1930 1931
    }

    #[inline]
1932
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1933
        tcx.predicates_of(self.did)
1934
    }
1935

A
Ariel Ben-Yehuda 已提交
1936 1937
    /// Returns an iterator over all fields contained
    /// by this ADT.
1938
    #[inline]
1939 1940
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1941 1942 1943 1944 1945 1946 1947
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1948
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1949 1950 1951 1952 1953 1954
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1955 1956 1957 1958 1959 1960 1961
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1962
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1963
        match def {
1964 1965
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1966
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1967
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1968 1969
        }
    }
1970

O
Oliver Schneider 已提交
1971
    #[inline]
1972
    pub fn eval_explicit_discr(
O
Oliver Schneider 已提交
1973 1974 1975 1976
        &self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
        expr_did: DefId,
    ) -> Option<Discr<'tcx>> {
1977
        let param_env = ParamEnv::empty();
O
Oliver Schneider 已提交
1978 1979 1980 1981 1982 1983 1984 1985
        let repr_type = self.repr.discr_type();
        let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
        let instance = ty::Instance::new(expr_did, substs);
        let cid = GlobalId {
            instance,
            promoted: None
        };
        match tcx.const_eval(param_env.and(cid)) {
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
            Ok(val) => {
                // FIXME: Find the right type and use it instead of `val.ty` here
                if let Some(b) = val.assert_bits(val.ty) {
                    trace!("discriminants: {} ({:?})", b, repr_type);
                    Some(Discr {
                        val: b,
                        ty: val.ty,
                    })
                } else {
                    info!("invalid enum discriminant: {:#?}", val);
                    ::middle::const_val::struct_error(
                        tcx,
                        tcx.def_span(expr_did),
                        "constant evaluation of enum discriminant resulted in non-integer",
                    ).emit();
                    None
                }
O
Oliver Schneider 已提交
2003
            }
2004 2005
            Err(err) => {
                err.report(tcx, tcx.def_span(expr_did), "enum discriminant");
O
Oliver Schneider 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
                if !expr_did.is_local() {
                    span_bug!(tcx.def_span(expr_did),
                        "variant discriminant evaluation succeeded \
                            in its crate but failed locally");
                }
                None
            }
        }
    }

2016
    #[inline]
2017 2018 2019 2020
    pub fn discriminants(
        &'a self,
        tcx: TyCtxt<'a, 'gcx, 'tcx>,
    ) -> impl Iterator<Item=Discr<'tcx>> + Captures<'gcx> + 'a {
2021
        let repr_type = self.repr.discr_type();
2022
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
O
Oliver Schneider 已提交
2023
        let mut prev_discr = None::<Discr<'tcx>>;
2024
        self.variants.iter().map(move |v| {
O
Oliver Schneider 已提交
2025
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
2026
            if let VariantDiscr::Explicit(expr_did) = v.discr {
O
Oliver Schneider 已提交
2027 2028
                if let Some(new_discr) = self.eval_explicit_discr(tcx, expr_did) {
                    discr = new_discr;
2029 2030 2031 2032 2033 2034 2035 2036
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

2037 2038 2039 2040 2041 2042 2043 2044
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
O
Oliver Schneider 已提交
2045
                                    -> Discr<'tcx> {
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
        let (val, offset) = self.discriminant_def_for_variant(variant_index);
        let explicit_value = val
            .and_then(|expr_did| self.eval_explicit_discr(tcx, expr_did))
            .unwrap_or_else(|| self.repr.discr_type().initial_discriminant(tcx.global_tcx()));
        explicit_value.checked_add(tcx, offset as u128).0
    }

    /// Yields a DefId for the discriminant and an offset to add to it
    /// Alternatively, if there is no explicit discriminant, returns the
    /// inferred discriminant directly
    pub fn discriminant_def_for_variant(
        &self,
        variant_index: usize,
    ) -> (Option<DefId>, usize) {
2060
        let mut explicit_index = variant_index;
2061
        let expr_did;
2062 2063
        loop {
            match self.variants[explicit_index].discr {
2064 2065 2066 2067
                ty::VariantDiscr::Relative(0) => {
                    expr_did = None;
                    break;
                },
2068 2069 2070
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
2071 2072 2073
                ty::VariantDiscr::Explicit(did) => {
                    expr_did = Some(did);
                    break;
2074 2075 2076
                }
            }
        }
2077
        (expr_did, variant_index - explicit_index)
2078 2079
    }

2080
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
2081
        tcx.adt_destructor(self.did)
2082 2083
    }

2084
    /// Returns a list of types such that `Self: Sized` if and only
2085
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
2086 2087 2088 2089 2090 2091 2092 2093
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
2094
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
2095
        match tcx.try_get_query::<queries::adt_sized_constraint>(DUMMY_SP, self.did) {
2096
            Ok(tys) => tys,
2097
            Err(mut bug) => {
2098 2099 2100 2101
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
2102 2103 2104 2105
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
2106
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
2107
            }
2108 2109
        }
    }
2110

2111 2112 2113 2114
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
2115 2116
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
2117
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
2118
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
2119
                vec![]
2120 2121
            }

2122 2123 2124 2125 2126 2127
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
2128
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
2129
                vec![ty]
2130 2131
            }

A
Andrew Cann 已提交
2132
            TyTuple(ref tys) => {
2133 2134
                match tys.last() {
                    None => vec![],
2135
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
2136
                }
2137 2138
            }

2139
            TyAdt(adt, substs) => {
2140
                // recursive case
2141
                let adt_tys = adt.sized_constraint(tcx);
2142
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
2143 2144 2145 2146 2147
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2148 2149
            }

2150
            TyProjection(..) | TyAnon(..) => {
2151 2152
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2153
                vec![ty]
2154 2155 2156
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2157 2158 2159 2160
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2161
                let sized_trait = match tcx.lang_items().sized_trait() {
2162
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2163
                    _ => return vec![ty]
2164
                };
2165
                let sized_predicate = Binder::dummy(TraitRef {
2166
                    def_id: sized_trait,
2167
                    substs: tcx.mk_substs_trait(ty, &[])
2168
                }).to_predicate();
2169
                let predicates = tcx.predicates_of(self.did).predicates;
2170
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2171
                    vec![]
2172
                } else {
A
Ariel Ben-Yehuda 已提交
2173
                    vec![ty]
2174 2175 2176
                }
            }

A
Ariel Ben-Yehuda 已提交
2177
            TyInfer(..) => {
2178 2179 2180 2181 2182 2183 2184
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2185 2186
}

2187
impl<'a, 'gcx, 'tcx> FieldDef {
2188
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2189
        tcx.type_of(self.did).subst(tcx, subst)
2190
    }
2191 2192
}

2193 2194 2195 2196 2197 2198
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2199
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2200
pub enum ClosureKind {
2201 2202 2203
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2204 2205 2206
    Fn,
    FnMut,
    FnOnce,
2207 2208
}

2209
impl<'a, 'tcx> ClosureKind {
2210 2211 2212
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2213
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2214 2215
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2216
            ClosureKind::FnMut => {
2217
                tcx.require_lang_item(FnMutTraitLangItem)
2218
            }
2219
            ClosureKind::FnOnce => {
2220
                tcx.require_lang_item(FnOnceTraitLangItem)
2221 2222 2223
            }
        }
    }
2224 2225 2226 2227 2228

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2229 2230 2231 2232 2233 2234
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2235 2236 2237
            _ => false,
        }
    }
2238 2239 2240 2241 2242 2243 2244 2245 2246

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2247
    }
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2263 2264
    }

2265 2266 2267
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2268
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2269
        walk::walk_shallow(self)
2270 2271
    }

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2286
    }
2287
}
2288

2289
impl BorrowKind {
2290
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2291
        match m {
2292 2293
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2294 2295
        }
    }
2296

2297 2298 2299 2300
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2301
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2302
        match self {
2303 2304
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2305 2306 2307 2308

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2309
            UniqueImmBorrow => hir::MutMutable,
2310
        }
2311
    }
2312

2313 2314 2315 2316 2317 2318
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2319 2320 2321
    }
}

2322 2323
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2324
    Owned(Lrc<[ast::Attribute]>),
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2339
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2340
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2341
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2342 2343
    }

N
Niko Matsakis 已提交
2344 2345 2346
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
2347 2348 2349
    pub fn body_owners(
        self,
    ) -> impl Iterator<Item = DefId> + Captures<'tcx> + Captures<'gcx> + 'a {
N
Niko Matsakis 已提交
2350 2351 2352 2353 2354 2355
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2356
    pub fn expr_span(self, id: NodeId) -> Span {
2357
        match self.hir.find(id) {
2358
            Some(hir_map::NodeExpr(e)) => {
2359 2360 2361
                e.span
            }
            Some(f) => {
2362
                bug!("Node id {} is not an expr: {:?}", id, f);
2363 2364
            }
            None => {
2365
                bug!("Node id {} is not present in the node map", id);
2366
            }
2367
        }
2368 2369
    }

2370 2371
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2372
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2373
            .collect()
2374 2375
    }

A
Andrew Cann 已提交
2376 2377 2378 2379 2380 2381
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2382 2383 2384 2385 2386 2387 2388
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2389
            match self.describe_def(def_id).expect("no def for def-id") {
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2402 2403
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2404
                                           parent_vis: &hir::Visibility,
2405
                                           trait_item_ref: &hir::TraitItemRef)
2406
                                           -> AssociatedItem {
2407
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2408 2409 2410 2411
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2412
            }
2413
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2414 2415 2416
        };

        AssociatedItem {
2417
            name: trait_item_ref.name,
2418
            kind,
2419 2420
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2421
            defaultness: trait_item_ref.defaultness,
2422
            def_id,
2423 2424 2425 2426 2427 2428 2429 2430 2431
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2432
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2443
            kind,
2444 2445
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2446
            defaultness: impl_item_ref.defaultness,
2447
            def_id,
2448 2449 2450 2451 2452
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
    pub fn field_index(self, node_id: NodeId, tables: &TypeckTables) -> usize {
        let hir_id = self.hir.node_to_hir_id(node_id);
        tables.field_indices().get(hir_id).cloned().expect("no index for a field")
    }

    pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> {
        variant.fields.iter().position(|field| {
            self.adjust_ident(ident.modern(), variant.did, DUMMY_NODE_ID).0 == field.name.to_ident()
        })
    }

2464 2465 2466 2467
    pub fn associated_items(
        self,
        def_id: DefId,
    ) -> impl Iterator<Item = ty::AssociatedItem> + 'a {
2468
        let def_ids = self.associated_item_def_ids(def_id);
2469 2470
        Box::new((0..def_ids.len()).map(move |i| self.associated_item(def_ids[i])))
            as Box<dyn Iterator<Item = ty::AssociatedItem> + 'a>
2471 2472
    }

2473 2474 2475
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2476
        if !self.features().overlapping_marker_traits {
2477 2478
            return false;
        }
2479 2480 2481 2482 2483 2484 2485 2486
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2487
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2488 2489
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2490 2491
    }

2492 2493
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2494
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2495
        match def {
2496
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2497
                let enum_did = self.parent_def_id(did).unwrap();
2498
                self.adt_def(enum_did).variant_with_id(did)
2499
            }
2500
            Def::Struct(did) | Def::Union(did) => {
2501
                self.adt_def(did).non_enum_variant()
2502 2503 2504
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2505
                self.adt_def(did).non_enum_variant()
2506 2507 2508 2509 2510
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2525
    pub fn item_name(self, id: DefId) -> InternedString {
2526
        if id.index == CRATE_DEF_INDEX {
2527
            self.original_crate_name(id.krate).as_interned_str()
2528
        } else {
2529
            let def_key = self.def_key(id);
2530
            // The name of a StructCtor is that of its struct parent.
2531
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2532 2533 2534 2535 2536 2537 2538 2539 2540
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2541 2542 2543
        }
    }

2544 2545
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2546
                        -> &'gcx Mir<'gcx>
2547 2548
    {
        match instance {
N
Niko Matsakis 已提交
2549
            ty::InstanceDef::Item(did) => {
2550
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2551 2552 2553 2554 2555
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2556
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2557
            ty::InstanceDef::CloneShim(..) => {
2558
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2559
            }
2560 2561 2562
        }
    }

2563 2564
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2565 2566 2567 2568 2569
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2570 2571 2572
        }
    }

2573
    /// Get the attributes of a definition.
2574
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2575
        if let Some(id) = self.hir.as_local_node_id(did) {
2576
            Attributes::Borrowed(self.hir.attrs(id))
2577
        } else {
A
achernyak 已提交
2578
            Attributes::Owned(self.item_attrs(did))
2579
        }
2580 2581
    }

2582
    /// Determine whether an item is annotated with an attribute
2583
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2584
        attr::contains_name(&self.get_attrs(did), attr)
2585
    }
2586

2587 2588
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2589
        self.trait_def(trait_def_id).has_auto_impl
2590
    }
2591

J
John Kåre Alsaker 已提交
2592 2593 2594 2595
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2596 2597
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2598
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2599
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2600
    }
2601 2602 2603

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2604
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2605
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2606
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2607 2608 2609 2610 2611
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2612
            self.opt_associated_item(def_id)
2613 2614 2615
        };

        match item {
2616
            Some(trait_item) => {
2617
                match trait_item.container {
2618 2619 2620
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2621
            }
2622
            None => None
2623 2624 2625
        }
    }

2626 2627
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2628
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2629
        if impl_did.is_local() {
2630 2631
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2632
        } else {
2633
            Err(self.crate_name(impl_did.krate))
2634 2635
        }
    }
J
Jeffrey Seyfried 已提交
2636

2637 2638 2639 2640 2641 2642 2643
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
2653
        let scope = match ident.span.adjust(expansion) {
J
Jeffrey Seyfried 已提交
2654
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2655
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2656 2657 2658 2659
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2660
}
2661

2662
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2663
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2664
        F: FnOnce(&[hir::Freevar]) -> T,
2665
    {
A
Alex Crichton 已提交
2666 2667
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2668
            None => f(&[]),
2669
            Some(d) => f(&d),
2670 2671
        }
    }
2672
}
2673 2674 2675 2676 2677 2678 2679 2680 2681

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2682
        hir::ItemImpl(.., ref impl_item_refs) => {
2683
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2684 2685
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2686 2687
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2688 2689 2690 2691
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2692
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2693 2694 2695
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2696 2697
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2698 2699 2700
            }
        }

2701
        _ => { }
2702
    }
2703 2704 2705 2706

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2707 2708
}

2709 2710
/// Calculates the Sized-constraint.
///
2711
/// In fact, there are only a few options for the types in the constraint:
2712 2713 2714 2715 2716 2717 2718 2719
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2720
                                  -> &'tcx [Ty<'tcx>] {
2721
    let def = tcx.adt_def(def_id);
2722

2723
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2724 2725
        v.fields.last()
    }).flat_map(|f| {
2726
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2727
    }).collect::<Vec<_>>());
2728

2729
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2730

2731
    result
2732 2733
}

2734 2735
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2736
                                     -> Lrc<Vec<DefId>> {
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2752
        hir::ItemTraitAlias(..) => vec![],
2753 2754
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2755
    Lrc::new(vec)
2756 2757
}

A
achernyak 已提交
2758
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2759
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2760 2761
}

A
achernyak 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2775
/// See `ParamEnv` struct def'n for details.
2776
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2777 2778
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2796
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2797
                                             traits::Reveal::UserFacing);
2798 2799 2800 2801 2802 2803 2804

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2805

2806
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2807
                                 crate_num: CrateNum) -> CrateDisambiguator {
2808 2809 2810 2811
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2812 2813 2814 2815 2816 2817
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2818 2819 2820 2821 2822 2823 2824
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2825 2826 2827 2828
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2829 2830 2831
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2832 2833
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2834
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2835 2836 2837 2838
        _ => 1
    }
}

2839
pub fn provide(providers: &mut ty::maps::Providers) {
2840
    context::provide(providers);
2841
    erase_regions::provide(providers);
2842 2843
    layout::provide(providers);
    util::provide(providers);
2844 2845
    *providers = ty::maps::Providers {
        associated_item,
2846
        associated_item_def_ids,
2847
        adt_sized_constraint,
A
achernyak 已提交
2848
        def_span,
2849
        param_env,
A
achernyak 已提交
2850
        trait_of_item,
2851
        crate_disambiguator,
2852
        original_crate_name,
2853
        crate_hash,
2854
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2855
        instance_def_size_estimate,
2856 2857 2858 2859
        ..*providers
    };
}

2860 2861 2862
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2863 2864
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2865 2866
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2867
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2868
}
A
Ariel Ben-Yehuda 已提交
2869

2870
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2871 2872 2873 2874 2875 2876
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2877 2878 2879 2880
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2881 2882 2883
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
2884
            name: Symbol::intern(name).as_interned_str()
2885 2886
        }
    }
2887

2888 2889 2890
    pub fn as_str(&self) -> LocalInternedString {
        self.name.as_str()
    }
2891 2892 2893 2894 2895 2896 2897
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2898 2899 2900 2901 2902 2903

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}