sched.c 164.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264 265 266

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
275
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
276

277
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
300
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
301 302
};

303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

311 312 313 314 315 316 317 318 319
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
366 367
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
369 370 371 372
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
373 374
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
375 376 377 378 379 380

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

381 382 383 384 385 386 387 388 389
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;

390 391 392
	local_irq_save(flags);
	now = rq_clock(cpu_rq(cpu));
	local_irq_restore(flags);
393 394 395 396

	return now;
}

I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406 407 408
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
409
#ifndef prepare_arch_switch
410 411 412 413 414 415 416
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
417
static inline int task_running(struct rq *rq, struct task_struct *p)
418 419 420 421
{
	return rq->curr == p;
}

422
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
423 424 425
{
}

426
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
427
{
428 429 430 431
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
432 433 434 435 436 437 438
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

439 440 441 442
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
443
static inline int task_running(struct rq *rq, struct task_struct *p)
444 445 446 447 448 449 450 451
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

452
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

469
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
470 471 472 473 474 475 476 477 478 479 480 481
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
482
#endif
483 484
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
485

486 487 488 489
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
490
static inline struct rq *__task_rq_lock(struct task_struct *p)
491 492
	__acquires(rq->lock)
{
493
	struct rq *rq;
494 495 496 497 498 499 500 501 502 503 504

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
505 506 507 508 509
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
510
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
511 512
	__acquires(rq->lock)
{
513
	struct rq *rq;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523 524 525

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

526
static inline void __task_rq_unlock(struct rq *rq)
527 528 529 530 531
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

532
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
533 534 535 536 537 538
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
539
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
540
 */
541
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
542 543
	__acquires(rq->lock)
{
544
	struct rq *rq;
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

640
static unsigned long
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

660
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

681 682 683 684 685 686 687 688 689
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
690 691 692 693 694 695 696 697 698 699 700
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
701 702 703
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
704 705 706 707 708 709 710 711 712
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

713 714 715 716 717 718 719
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
720
static const u32 prio_to_wmult[40] = {
721 722 723 724 725 726 727 728
/* -20 */     48356,     60446,     75558,     94446,    118058,
/* -15 */    147573,    184467,    230589,    288233,    360285,
/* -10 */    450347,    562979,    703746,    879575,   1099582,
/*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443,
/*   0 */   4194304,   5244160,   6557201,   8196502,  10250518,
/*   5 */  12782640,  16025997,  19976592,  24970740,  31350126,
/*  10 */  39045157,  49367440,  61356675,  76695844,  95443717,
/*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
729
};
730

I
Ingo Molnar 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

static inline void
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
{
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
}

static inline void
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
{
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running++;
	inc_load(rq, p, now);
}

static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running--;
	dec_load(rq, p, now);
}

827 828
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
829 830 831
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

832
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
833 834 835 836
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
837

I
Ingo Molnar 已提交
838 839 840 841 842 843 844 845
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
846

I
Ingo Molnar 已提交
847 848
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 850
}

I
Ingo Molnar 已提交
851 852
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
853
{
I
Ingo Molnar 已提交
854 855 856
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
857 858
}

I
Ingo Molnar 已提交
859 860
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
861
{
I
Ingo Molnar 已提交
862 863
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
864 865
}

866
/*
I
Ingo Molnar 已提交
867
 * __normal_prio - return the priority that is based on the static prio
868 869 870
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
871
	return p->static_prio;
872 873
}

874 875 876 877 878 879 880
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
881
static inline int normal_prio(struct task_struct *p)
882 883 884
{
	int prio;

885
	if (task_has_rt_policy(p))
886 887 888 889 890 891 892 893 894 895 896 897 898
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
899
static int effective_prio(struct task_struct *p)
900 901 902 903 904 905 906 907 908 909 910 911
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
912
/*
I
Ingo Molnar 已提交
913
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
914
 */
I
Ingo Molnar 已提交
915
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
916
{
I
Ingo Molnar 已提交
917
	u64 now = rq_clock(rq);
918

I
Ingo Molnar 已提交
919 920
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
921

I
Ingo Molnar 已提交
922 923
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
924 925 926
}

/*
I
Ingo Molnar 已提交
927
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
928
 */
I
Ingo Molnar 已提交
929
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
930
{
I
Ingo Molnar 已提交
931
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
932

I
Ingo Molnar 已提交
933 934
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
935

I
Ingo Molnar 已提交
936 937
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
938 939 940 941 942
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
943
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
944
{
I
Ingo Molnar 已提交
945 946 947 948 949 950 951
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
952 953 954 955 956 957
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
958
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
959 960 961 962
{
	return cpu_curr(task_cpu(p)) == p;
}

963 964 965
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
966 967 968 969 970 971 972 973 974
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
975 976
}

L
Linus Torvalds 已提交
977
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
978

I
Ingo Molnar 已提交
979
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
980
{
I
Ingo Molnar 已提交
981 982 983 984 985
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
986 987
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
988 989
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
990 991 992 993 994 995
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
996 997 998 999
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1000
#endif
I
Ingo Molnar 已提交
1001 1002

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1003 1004
}

1005
struct migration_req {
L
Linus Torvalds 已提交
1006 1007
	struct list_head list;

1008
	struct task_struct *task;
L
Linus Torvalds 已提交
1009 1010 1011
	int dest_cpu;

	struct completion done;
1012
};
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1018
static int
1019
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1020
{
1021
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1027
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1028 1029 1030 1031 1032 1033 1034 1035
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1036

L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1049
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1050 1051
{
	unsigned long flags;
I
Ingo Molnar 已提交
1052
	int running, on_rq;
1053
	struct rq *rq;
L
Linus Torvalds 已提交
1054 1055

repeat:
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1083
	rq = task_rq_lock(p, &flags);
1084
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1085
	on_rq = p->se.on_rq;
1086 1087 1088 1089 1090 1091 1092 1093 1094
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1095 1096 1097
		cpu_relax();
		goto repeat;
	}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1108
	if (unlikely(on_rq)) {
1109 1110 1111 1112 1113 1114 1115 1116 1117
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1133
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1145 1146
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1147 1148 1149 1150
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1151
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1152
{
1153
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1154
	unsigned long total = weighted_cpuload(cpu);
1155

1156
	if (type == 0)
I
Ingo Molnar 已提交
1157
		return total;
1158

I
Ingo Molnar 已提交
1159
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1160 1161 1162
}

/*
1163 1164
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1165
 */
N
Nick Piggin 已提交
1166
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1167
{
1168
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1169
	unsigned long total = weighted_cpuload(cpu);
1170

N
Nick Piggin 已提交
1171
	if (type == 0)
I
Ingo Molnar 已提交
1172
		return total;
1173

I
Ingo Molnar 已提交
1174
	return max(rq->cpu_load[type-1], total);
1175 1176 1177 1178 1179 1180 1181
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1182
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1183
	unsigned long total = weighted_cpuload(cpu);
1184 1185
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1186
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1187 1188
}

N
Nick Piggin 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1206 1207 1208 1209
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1226 1227
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1228 1229 1230 1231 1232 1233 1234 1235

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1236
nextgroup:
N
Nick Piggin 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1246
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1247
 */
I
Ingo Molnar 已提交
1248 1249
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1250
{
1251
	cpumask_t tmp;
N
Nick Piggin 已提交
1252 1253 1254 1255
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1256 1257 1258 1259
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1260
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1286

1287
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1288 1289 1290
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1291 1292
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1293 1294
		if (tmp->flags & flag)
			sd = tmp;
1295
	}
N
Nick Piggin 已提交
1296 1297 1298 1299

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1300 1301 1302 1303 1304 1305
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1306 1307 1308

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1309 1310 1311 1312
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1313

1314
		new_cpu = find_idlest_cpu(group, t, cpu);
1315 1316 1317 1318 1319
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1320

1321
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1348
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1349 1350 1351 1352 1353
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1364 1365 1366 1367
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1368
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1369 1370 1371 1372
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1373
		} else {
N
Nick Piggin 已提交
1374
			break;
I
Ingo Molnar 已提交
1375
		}
L
Linus Torvalds 已提交
1376 1377 1378 1379
	}
	return cpu;
}
#else
1380
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1400
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1401 1402 1403 1404
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1405
	struct rq *rq;
L
Linus Torvalds 已提交
1406
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1407
	struct sched_domain *sd, *this_sd = NULL;
1408
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1409 1410 1411 1412 1413 1414 1415 1416
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1417
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1427 1428
	new_cpu = cpu;

L
Linus Torvalds 已提交
1429 1430 1431
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1432 1433 1434 1435 1436 1437 1438 1439
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1440 1441 1442
		}
	}

N
Nick Piggin 已提交
1443
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1444 1445 1446
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1447
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1448
	 */
N
Nick Piggin 已提交
1449 1450 1451
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1452

1453 1454
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1455 1456
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1457

N
Nick Piggin 已提交
1458 1459
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1460 1461
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1462 1463 1464
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1465

L
Linus Torvalds 已提交
1466
			/*
1467 1468 1469
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1470
			 */
1471
			if (sync)
I
Ingo Molnar 已提交
1472
				tl -= current->se.load.weight;
1473 1474

			if ((tl <= load &&
1475
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1476
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1510
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517 1518
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1519
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1528 1529
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1540
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1541 1542 1543 1544 1545 1546
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1547
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1548 1549 1550 1551 1552 1553 1554
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1567 1568 1569 1570
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1581
#endif
N
Nick Piggin 已提交
1582

I
Ingo Molnar 已提交
1583 1584
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1585

1586 1587 1588 1589
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1612 1613 1614 1615 1616 1617

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1618
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1619
	if (likely(sched_info_on()))
1620
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1621
#endif
1622
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1623 1624
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1625
#ifdef CONFIG_PREEMPT
1626
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1627
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1628
#endif
N
Nick Piggin 已提交
1629
	put_cpu();
L
Linus Torvalds 已提交
1630 1631
}

I
Ingo Molnar 已提交
1632 1633 1634 1635 1636 1637
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1645
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1646 1647
{
	unsigned long flags;
I
Ingo Molnar 已提交
1648 1649
	struct rq *rq;
	int this_cpu;
I
Ingo Molnar 已提交
1650
	u64 now;
L
Linus Torvalds 已提交
1651 1652

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1653
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1654
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1655
	now = rq_clock(rq);
L
Linus Torvalds 已提交
1656 1657 1658

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1659 1660 1661 1662
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1663
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1664 1665
	} else {
		/*
I
Ingo Molnar 已提交
1666 1667
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1668
		 */
I
Ingo Molnar 已提交
1669 1670
		p->sched_class->task_new(rq, p, now);
		inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1671
	}
I
Ingo Molnar 已提交
1672 1673
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1674 1675
}

1676 1677 1678
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1679 1680
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1681 1682 1683 1684 1685 1686 1687 1688 1689
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1690
 * @notifier: notifier struct to unregister
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1734 1735 1736
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1737
 * @prev: the current task that is being switched out
1738 1739 1740 1741 1742 1743 1744 1745 1746
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1747 1748 1749
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1750
{
1751
	fire_sched_out_preempt_notifiers(prev, next);
1752 1753 1754 1755
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1756 1757
/**
 * finish_task_switch - clean up after a task-switch
1758
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1759 1760
 * @prev: the thread we just switched away from.
 *
1761 1762 1763 1764
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769 1770
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1771
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1772 1773 1774
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1775
	long prev_state;
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1781
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1782 1783
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1784
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1790
	prev_state = prev->state;
1791 1792
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1793
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1794 1795
	if (mm)
		mmdrop(mm);
1796
	if (unlikely(prev_state == TASK_DEAD)) {
1797 1798 1799
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1800
		 */
1801
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1802
		put_task_struct(prev);
1803
	}
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1810
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1811 1812
	__releases(rq->lock)
{
1813 1814
	struct rq *rq = this_rq();

1815 1816 1817 1818 1819
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825 1826 1827
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1828
static inline void
1829
context_switch(struct rq *rq, struct task_struct *prev,
1830
	       struct task_struct *next)
L
Linus Torvalds 已提交
1831
{
I
Ingo Molnar 已提交
1832
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1833

1834
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1835 1836
	mm = next->mm;
	oldmm = prev->active_mm;
1837 1838 1839 1840 1841 1842 1843
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1844
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1851
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1852 1853 1854
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1855 1856 1857 1858 1859 1860 1861
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1862
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1863
#endif
L
Linus Torvalds 已提交
1864 1865 1866 1867

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1868 1869 1870 1871 1872 1873 1874
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1898
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1913 1914
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1915

1916
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1926
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1947
/*
I
Ingo Molnar 已提交
1948 1949
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1950
 */
I
Ingo Molnar 已提交
1951
static void update_cpu_load(struct rq *this_rq)
1952
{
I
Ingo Molnar 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2002 2003
}

I
Ingo Molnar 已提交
2004 2005
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2012
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2013 2014 2015
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2016
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2017 2018 2019 2020
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2021
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2037
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2051
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2052 2053 2054 2055
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2056 2057 2058 2059 2060
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2061
	if (unlikely(!spin_trylock(&busiest->lock))) {
2062
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2077
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2078
{
2079
	struct migration_req req;
L
Linus Torvalds 已提交
2080
	unsigned long flags;
2081
	struct rq *rq;
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2092

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2098

L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2106 2107
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2108 2109 2110 2111
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2112
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2113
	put_cpu();
N
Nick Piggin 已提交
2114 2115
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2122 2123
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2124
{
I
Ingo Molnar 已提交
2125
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2126
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2127
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2128 2129 2130 2131
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2132
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2138
static
2139
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2140
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2141
		     int *all_pinned)
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2151 2152 2153 2154
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2155 2156

	/*
I
Ingo Molnar 已提交
2157
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2158
	 */
I
Ingo Molnar 已提交
2159
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2165
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2166
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2167
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2168 2169 2170
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2171
{
I
Ingo Molnar 已提交
2172 2173 2174
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2175

2176
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2177 2178
		goto out;

2179 2180
	pinned = 1;

L
Linus Torvalds 已提交
2181
	/*
I
Ingo Molnar 已提交
2182
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2183
	 */
I
Ingo Molnar 已提交
2184 2185 2186
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2187
		goto out;
2188 2189 2190 2191 2192
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2193 2194 2195 2196
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2197
	if (skip_for_load ||
I
Ingo Molnar 已提交
2198
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2199

I
Ingo Molnar 已提交
2200 2201 2202
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2203 2204
	}

I
Ingo Molnar 已提交
2205
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2206
	pulled++;
I
Ingo Molnar 已提交
2207
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2208

2209 2210 2211 2212 2213
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2214 2215 2216 2217
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224 2225
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2226 2227 2228

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2229
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2230 2231 2232
	return pulled;
}

I
Ingo Molnar 已提交
2233
/*
P
Peter Williams 已提交
2234 2235 2236
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2237 2238 2239 2240
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2241
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2242 2243 2244 2245
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2246
	unsigned long total_load_moved = 0;
I
Ingo Molnar 已提交
2247 2248

	do {
P
Peter Williams 已提交
2249 2250 2251 2252
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
				sd, idle, all_pinned);
I
Ingo Molnar 已提交
2253
		class = class->next;
P
Peter Williams 已提交
2254
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2255

P
Peter Williams 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
					1, ULONG_MAX, sd, idle, NULL))
			return 1;

	return 0;
I
Ingo Molnar 已提交
2277 2278
}

L
Linus Torvalds 已提交
2279 2280
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2281 2282
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2283 2284 2285
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2286 2287
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2288 2289 2290
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2291
	unsigned long max_pull;
2292 2293
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2294
	int load_idx;
2295 2296 2297 2298 2299 2300
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2301 2302

	max_load = this_load = total_load = total_pwr = 0;
2303 2304
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2305
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2306
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2307
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2308 2309 2310
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2311 2312

	do {
2313
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2314 2315
		int local_group;
		int i;
2316
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2317
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2318 2319 2320

		local_group = cpu_isset(this_cpu, group->cpumask);

2321 2322 2323
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2324
		/* Tally up the load of all CPUs in the group */
2325
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2326 2327

		for_each_cpu_mask(i, group->cpumask) {
2328 2329 2330 2331 2332 2333
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2334

2335
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2336 2337
				*sd_idle = 0;

L
Linus Torvalds 已提交
2338
			/* Bias balancing toward cpus of our domain */
2339 2340 2341 2342 2343 2344
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2345
				load = target_load(i, load_idx);
2346
			} else
N
Nick Piggin 已提交
2347
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2348 2349

			avg_load += load;
2350
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2351
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2352 2353
		}

2354 2355 2356
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2357 2358
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2359
		 */
2360 2361
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2362 2363 2364 2365
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2366
		total_load += avg_load;
2367
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2368 2369

		/* Adjust by relative CPU power of the group */
2370 2371
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2372

2373
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2374

L
Linus Torvalds 已提交
2375 2376 2377
		if (local_group) {
			this_load = avg_load;
			this = group;
2378 2379 2380
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2381
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2382 2383
			max_load = avg_load;
			busiest = group;
2384 2385
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2386
		}
2387 2388 2389 2390 2391 2392

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2393 2394 2395
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2396 2397 2398 2399 2400 2401 2402 2403 2404

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2405
		/*
2406 2407
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2408 2409
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2410
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2411
			goto group_next;
2412

I
Ingo Molnar 已提交
2413
		/*
2414
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2415 2416 2417 2418 2419
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2420 2421
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2422 2423
			group_min = group;
			min_nr_running = sum_nr_running;
2424 2425
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2426
		}
2427

I
Ingo Molnar 已提交
2428
		/*
2429
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2441
		}
2442 2443
group_next:
#endif
L
Linus Torvalds 已提交
2444 2445 2446
		group = group->next;
	} while (group != sd->groups);

2447
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454 2455
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2456
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2480 2481

	/* Don't want to pull so many tasks that a group would go idle */
2482
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2483

L
Linus Torvalds 已提交
2484
	/* How much load to actually move to equalise the imbalance */
2485 2486
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2487 2488
			/ SCHED_LOAD_SCALE;

2489 2490 2491 2492 2493 2494
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2495
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2496
		unsigned long tmp, pwr_now, pwr_move;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2508

I
Ingo Molnar 已提交
2509 2510
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2511
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2521 2522 2523 2524
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2525 2526 2527
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2528 2529
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2530
		if (max_load > tmp)
2531
			pwr_move += busiest->__cpu_power *
2532
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2533 2534

		/* Amount of load we'd add */
2535
		if (max_load * busiest->__cpu_power <
2536
				busiest_load_per_task * SCHED_LOAD_SCALE)
2537 2538
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2539
		else
2540 2541 2542 2543
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548 2549
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2550
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555
	}

	return busiest;

out_balanced:
2556
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2557
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2558
		goto ret;
L
Linus Torvalds 已提交
2559

2560 2561 2562 2563 2564
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2565
ret:
L
Linus Torvalds 已提交
2566 2567 2568 2569 2570 2571 2572
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2573
static struct rq *
I
Ingo Molnar 已提交
2574
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2575
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2576
{
2577
	struct rq *busiest = NULL, *rq;
2578
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2579 2580 2581
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2582
		unsigned long wl;
2583 2584 2585 2586

		if (!cpu_isset(i, *cpus))
			continue;

2587
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2588
		wl = weighted_cpuload(i);
2589

I
Ingo Molnar 已提交
2590
		if (rq->nr_running == 1 && wl > imbalance)
2591
			continue;
L
Linus Torvalds 已提交
2592

I
Ingo Molnar 已提交
2593 2594
		if (wl > max_load) {
			max_load = wl;
2595
			busiest = rq;
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601
		}
	}

	return busiest;
}

2602 2603 2604 2605 2606 2607
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2608 2609 2610 2611
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2612
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2613
			struct sched_domain *sd, enum cpu_idle_type idle,
2614
			int *balance)
L
Linus Torvalds 已提交
2615
{
P
Peter Williams 已提交
2616
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2617 2618
	struct sched_group *group;
	unsigned long imbalance;
2619
	struct rq *busiest;
2620
	cpumask_t cpus = CPU_MASK_ALL;
2621
	unsigned long flags;
N
Nick Piggin 已提交
2622

2623 2624 2625
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2626
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2627
	 * portraying it as CPU_NOT_IDLE.
2628
	 */
I
Ingo Molnar 已提交
2629
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2630
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2631
		sd_idle = 1;
L
Linus Torvalds 已提交
2632 2633 2634

	schedstat_inc(sd, lb_cnt[idle]);

2635 2636
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2637 2638
				   &cpus, balance);

2639
	if (*balance == 0)
2640 2641
		goto out_balanced;

L
Linus Torvalds 已提交
2642 2643 2644 2645 2646
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2647
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2653
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2654 2655 2656

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2657
	ld_moved = 0;
L
Linus Torvalds 已提交
2658 2659 2660 2661
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2662
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2663 2664
		 * correctly treated as an imbalance.
		 */
2665
		local_irq_save(flags);
N
Nick Piggin 已提交
2666
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2667
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2668
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2669
		double_rq_unlock(this_rq, busiest);
2670
		local_irq_restore(flags);
2671

2672 2673 2674
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2675
		if (ld_moved && this_cpu != smp_processor_id())
2676 2677
			resched_cpu(this_cpu);

2678
		/* All tasks on this runqueue were pinned by CPU affinity */
2679 2680 2681 2682
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2683
			goto out_balanced;
2684
		}
L
Linus Torvalds 已提交
2685
	}
2686

P
Peter Williams 已提交
2687
	if (!ld_moved) {
L
Linus Torvalds 已提交
2688 2689 2690 2691 2692
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2693
			spin_lock_irqsave(&busiest->lock, flags);
2694 2695 2696 2697 2698

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2699
				spin_unlock_irqrestore(&busiest->lock, flags);
2700 2701 2702 2703
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2704 2705 2706
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2707
				active_balance = 1;
L
Linus Torvalds 已提交
2708
			}
2709
			spin_unlock_irqrestore(&busiest->lock, flags);
2710
			if (active_balance)
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2717
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2718
		}
2719
	} else
L
Linus Torvalds 已提交
2720 2721
		sd->nr_balance_failed = 0;

2722
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2723 2724
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2725 2726 2727 2728 2729 2730 2731 2732 2733
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2734 2735
	}

P
Peter Williams 已提交
2736
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2737
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2738
		return -1;
P
Peter Williams 已提交
2739
	return ld_moved;
L
Linus Torvalds 已提交
2740 2741 2742 2743

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2744
	sd->nr_balance_failed = 0;
2745 2746

out_one_pinned:
L
Linus Torvalds 已提交
2747
	/* tune up the balancing interval */
2748 2749
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2750 2751
		sd->balance_interval *= 2;

2752
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2753
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2754
		return -1;
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760 2761
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2762
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2763 2764
 * this_rq is locked.
 */
2765
static int
2766
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2767 2768
{
	struct sched_group *group;
2769
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2770
	unsigned long imbalance;
P
Peter Williams 已提交
2771
	int ld_moved = 0;
N
Nick Piggin 已提交
2772
	int sd_idle = 0;
2773
	int all_pinned = 0;
2774
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2775

2776 2777 2778 2779
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2780
	 * portraying it as CPU_NOT_IDLE.
2781 2782 2783
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2784
		sd_idle = 1;
L
Linus Torvalds 已提交
2785

I
Ingo Molnar 已提交
2786
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2787
redo:
I
Ingo Molnar 已提交
2788
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2789
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2790
	if (!group) {
I
Ingo Molnar 已提交
2791
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2792
		goto out_balanced;
L
Linus Torvalds 已提交
2793 2794
	}

I
Ingo Molnar 已提交
2795
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2796
				&cpus);
N
Nick Piggin 已提交
2797
	if (!busiest) {
I
Ingo Molnar 已提交
2798
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2799
		goto out_balanced;
L
Linus Torvalds 已提交
2800 2801
	}

N
Nick Piggin 已提交
2802 2803
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2804
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2805

P
Peter Williams 已提交
2806
	ld_moved = 0;
2807 2808 2809
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
P
Peter Williams 已提交
2810
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2811 2812
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2813
		spin_unlock(&busiest->lock);
2814

2815
		if (unlikely(all_pinned)) {
2816 2817 2818 2819
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2820 2821
	}

P
Peter Williams 已提交
2822
	if (!ld_moved) {
I
Ingo Molnar 已提交
2823
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2824 2825
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2826 2827
			return -1;
	} else
2828
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2829

P
Peter Williams 已提交
2830
	return ld_moved;
2831 2832

out_balanced:
I
Ingo Molnar 已提交
2833
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2834
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2835
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2836
		return -1;
2837
	sd->nr_balance_failed = 0;
2838

2839
	return 0;
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844 2845
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2846
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2847 2848
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2849 2850
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2851 2852

	for_each_domain(this_cpu, sd) {
2853 2854 2855 2856 2857 2858
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2859
			/* If we've pulled tasks over stop searching: */
2860
			pulled_task = load_balance_newidle(this_cpu,
2861 2862 2863 2864 2865 2866 2867
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2868
	}
I
Ingo Molnar 已提交
2869
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2870 2871 2872 2873 2874
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2875
	}
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2886
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2887
{
2888
	int target_cpu = busiest_rq->push_cpu;
2889 2890
	struct sched_domain *sd;
	struct rq *target_rq;
2891

2892
	/* Is there any task to move? */
2893 2894 2895 2896
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2897 2898

	/*
2899 2900 2901
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2902
	 */
2903
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2904

2905 2906 2907 2908
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2909
	for_each_domain(target_cpu, sd) {
2910
		if ((sd->flags & SD_LOAD_BALANCE) &&
2911
		    cpu_isset(busiest_cpu, sd->span))
2912
				break;
2913
	}
2914

2915 2916
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2917

P
Peter Williams 已提交
2918 2919
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2920 2921 2922 2923
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2924
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2925 2926
}

2927 2928 2929 2930 2931 2932 2933 2934 2935
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2936
/*
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2947
 *
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3004 3005 3006 3007 3008
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3009
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3010
{
3011 3012
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3013 3014
	unsigned long interval;
	struct sched_domain *sd;
3015
	/* Earliest time when we have to do rebalance again */
3016
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3017

3018
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3019 3020 3021 3022
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3023
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3030 3031 3032
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3033

3034 3035 3036 3037 3038
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3039
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3040
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3041 3042
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3043 3044 3045
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3046
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3047
			}
3048
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3049
		}
3050 3051 3052
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3053 3054
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3055 3056 3057 3058 3059 3060 3061 3062

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3063
	}
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3074 3075 3076 3077
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3078

I
Ingo Molnar 已提交
3079
	rebalance_domains(this_cpu, idle);
3080 3081 3082 3083 3084 3085 3086

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3087 3088
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3089 3090 3091 3092
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3093
		cpu_clear(this_cpu, cpus);
3094 3095 3096 3097 3098 3099 3100 3101 3102
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3103
			rebalance_domains(balance_cpu, SCHED_IDLE);
3104 3105

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3106 3107
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3120
static inline void trigger_load_balance(struct rq *rq, int cpu)
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3172
}
I
Ingo Molnar 已提交
3173 3174 3175

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3176 3177 3178
/*
 * on UP we do not need to balance between CPUs:
 */
3179
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3180 3181
{
}
I
Ingo Molnar 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3196 3197 3198 3199 3200 3201 3202
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3203 3204
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3205
 */
3206
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3207 3208
{
	unsigned long flags;
3209 3210
	u64 ns, delta_exec;
	struct rq *rq;
3211

3212 3213 3214 3215 3216 3217 3218 3219
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3220

L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3285
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3308 3309 3310
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
3311
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3312 3313 3314
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3315

3316
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3317 3318
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3319
#endif
L
Linus Torvalds 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3329 3330
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3331 3332 3333 3334
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3335 3336
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3337 3338 3339 3340 3341 3342 3343 3344
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3345 3346
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3347 3348 3349
	/*
	 * Is the spinlock portion underflowing?
	 */
3350 3351 3352 3353
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3354 3355 3356 3357 3358 3359 3360
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3361
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3362
 */
I
Ingo Molnar 已提交
3363
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3364
{
I
Ingo Molnar 已提交
3365 3366 3367 3368 3369 3370 3371
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3372

I
Ingo Molnar 已提交
3373 3374 3375 3376 3377
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3378 3379 3380 3381 3382
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3383 3384 3385
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3386 3387
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3399 3400

	/*
I
Ingo Molnar 已提交
3401 3402
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3403
	 */
I
Ingo Molnar 已提交
3404 3405 3406 3407
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3408 3409
	}

I
Ingo Molnar 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3422

I
Ingo Molnar 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3446 3447

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3448
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3449 3450 3451

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3452
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3453
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3454 3455
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3456
		}
I
Ingo Molnar 已提交
3457
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3458 3459
	}

I
Ingo Molnar 已提交
3460
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3461 3462
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3463 3464 3465
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3466 3467

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3468

L
Linus Torvalds 已提交
3469 3470 3471 3472 3473
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3474
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3475 3476 3477
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3478 3479 3480
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3481
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3482
	}
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488 3489 3490
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3491
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3506
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3534
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3546
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3576 3577
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3578
{
3579
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3598 3599 3600
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3601
		if (curr->func(curr, mode, sync, key) &&
3602
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3612
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3613 3614
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3615
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3634
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3646 3647
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3691

L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3810 3811 3812 3813 3814
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3815
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3816
}
L
Linus Torvalds 已提交
3817

I
Ingo Molnar 已提交
3818 3819 3820 3821 3822 3823 3824
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3825

I
Ingo Molnar 已提交
3826
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3827
{
I
Ingo Molnar 已提交
3828 3829 3830 3831
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3832 3833 3834

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3835
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3836
	schedule();
I
Ingo Molnar 已提交
3837
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3838 3839 3840
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3841
long __sched
I
Ingo Molnar 已提交
3842
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3843
{
I
Ingo Molnar 已提交
3844 3845 3846 3847
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3848 3849 3850

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3851
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3852
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3853
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3854 3855 3856 3857 3858

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3859
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3860
{
I
Ingo Molnar 已提交
3861 3862 3863 3864
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3865 3866 3867

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3868
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3869
	schedule();
I
Ingo Molnar 已提交
3870
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3871 3872 3873
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3874
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3875
{
I
Ingo Molnar 已提交
3876 3877 3878 3879
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3880 3881 3882

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3883
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3884
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3885
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3903
void rt_mutex_setprio(struct task_struct *p, int prio)
3904 3905
{
	unsigned long flags;
I
Ingo Molnar 已提交
3906
	int oldprio, on_rq;
3907
	struct rq *rq;
I
Ingo Molnar 已提交
3908
	u64 now;
3909 3910 3911 3912

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3913
	now = rq_clock(rq);
3914

3915
	oldprio = p->prio;
I
Ingo Molnar 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3925 3926
	p->prio = prio;

I
Ingo Molnar 已提交
3927 3928
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3929 3930
		/*
		 * Reschedule if we are currently running on this runqueue and
3931 3932
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3933
		 */
3934 3935 3936
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3937 3938 3939
		} else {
			check_preempt_curr(rq, p);
		}
3940 3941 3942 3943 3944 3945
	}
	task_rq_unlock(rq, &flags);
}

#endif

3946
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3947
{
I
Ingo Molnar 已提交
3948
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3949
	unsigned long flags;
3950
	struct rq *rq;
I
Ingo Molnar 已提交
3951
	u64 now;
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956 3957 3958 3959

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3960
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3961 3962 3963 3964
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3965
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3966
	 */
3967
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3968 3969 3970
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3971 3972 3973 3974
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3975
	}
L
Linus Torvalds 已提交
3976 3977

	p->static_prio = NICE_TO_PRIO(nice);
3978
	set_load_weight(p);
3979 3980 3981
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3982

I
Ingo Molnar 已提交
3983 3984 3985
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3986
		/*
3987 3988
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3989
		 */
3990
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996 3997
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3998 3999 4000 4001 4002
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4003
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4004
{
4005 4006
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4007

M
Matt Mackall 已提交
4008 4009 4010 4011
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4023
	long nice, retval;
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4030 4031
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4041 4042 4043
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4062
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4071
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4090
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096 4097 4098
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4099
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4105 4106
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4107
{
I
Ingo Molnar 已提交
4108
	BUG_ON(p->se.on_rq);
4109

L
Linus Torvalds 已提交
4110
	p->policy = policy;
I
Ingo Molnar 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4123
	p->rt_priority = prio;
4124 4125 4126
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4127
	set_load_weight(p);
L
Linus Torvalds 已提交
4128 4129 4130
}

/**
4131
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4132 4133 4134
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4135
 *
4136
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4137
 */
I
Ingo Molnar 已提交
4138 4139
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4140
{
I
Ingo Molnar 已提交
4141
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4142
	unsigned long flags;
4143
	struct rq *rq;
L
Linus Torvalds 已提交
4144

4145 4146
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4152 4153
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4154
		return -EINVAL;
L
Linus Torvalds 已提交
4155 4156
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4157 4158
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4159 4160
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4161
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4162
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4163
		return -EINVAL;
4164
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4165 4166
		return -EINVAL;

4167 4168 4169 4170
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4171
		if (rt_policy(policy)) {
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4188 4189 4190 4191 4192 4193
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4194

4195 4196 4197 4198 4199
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4200 4201 4202 4203

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4204 4205 4206 4207 4208
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4209 4210 4211 4212
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4213
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4214 4215 4216
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4217 4218
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4219 4220
		goto recheck;
	}
I
Ingo Molnar 已提交
4221 4222 4223
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4224
	oldprio = p->prio;
I
Ingo Molnar 已提交
4225 4226 4227
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4228 4229
		/*
		 * Reschedule if we are currently running on this runqueue and
4230 4231
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4232
		 */
4233 4234 4235
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4236 4237 4238
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4239
	}
4240 4241 4242
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4243 4244
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4245 4246 4247 4248
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4249 4250
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4251 4252 4253
{
	struct sched_param lparam;
	struct task_struct *p;
4254
	int retval;
L
Linus Torvalds 已提交
4255 4256 4257 4258 4259

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4260 4261 4262

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4263
	p = find_process_by_pid(pid);
4264 4265 4266
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4267

L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4280 4281 4282 4283
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4303
	struct task_struct *p;
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4331
	struct task_struct *p;
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4366 4367
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4368

4369
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4370 4371 4372 4373 4374
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4375
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4392 4393 4394 4395
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4402
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4443
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4444 4445 4446
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4447
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4448 4449
EXPORT_SYMBOL(cpu_online_map);

4450
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4451
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4452 4453 4454 4455
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4456
	struct task_struct *p;
L
Linus Torvalds 已提交
4457 4458
	int retval;

4459
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4467 4468 4469 4470
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4471
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4472 4473 4474

out_unlock:
	read_unlock(&tasklist_lock);
4475
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4476

4477
	return retval;
L
Linus Torvalds 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4508 4509
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4510 4511 4512
 */
asmlinkage long sys_sched_yield(void)
{
4513
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4514 4515

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4516
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4517
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4518 4519
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4526
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532 4533 4534
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4535
static void __cond_resched(void)
L
Linus Torvalds 已提交
4536
{
4537 4538 4539
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4540 4541 4542 4543 4544
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4554 4555
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4571
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4572
{
J
Jan Kara 已提交
4573 4574
	int ret = 0;

L
Linus Torvalds 已提交
4575 4576 4577
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4578
		ret = 1;
L
Linus Torvalds 已提交
4579 4580
		spin_lock(lock);
	}
4581
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4582
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4583 4584 4585
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4586
		ret = 1;
L
Linus Torvalds 已提交
4587 4588
		spin_lock(lock);
	}
J
Jan Kara 已提交
4589
	return ret;
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595 4596
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4597
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4598
		local_bh_enable();
L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4610
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4629
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4630

4631
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4632 4633 4634
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4635
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4641
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4642 4643
	long ret;

4644
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4645 4646 4647
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4648
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4669
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4670
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4694
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4695
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4712
	struct task_struct *p;
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4729
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4730
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4731 4732 4733 4734 4735 4736 4737 4738 4739
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4740
static const char stat_nam[] = "RSDTtZX";
4741 4742

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4743 4744
{
	unsigned long free = 0;
4745
	unsigned state;
L
Linus Torvalds 已提交
4746 4747

	state = p->state ? __ffs(p->state) + 1 : 0;
4748 4749
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4750
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4751
	if (state == TASK_RUNNING)
4752
		printk(" running  ");
L
Linus Torvalds 已提交
4753
	else
4754
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4755 4756
#else
	if (state == TASK_RUNNING)
4757
		printk("  running task    ");
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4763
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4764 4765
		while (!*n)
			n++;
4766
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4767 4768
	}
#endif
4769
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4775
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4776
{
4777
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4778

4779 4780 4781
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4782
#else
4783 4784
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4785 4786 4787 4788 4789 4790 4791 4792
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4793
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4794
			show_task(p);
L
Linus Torvalds 已提交
4795 4796
	} while_each_thread(g, p);

4797 4798
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4799 4800 4801
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4802
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4803 4804 4805 4806 4807
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4808 4809
}

I
Ingo Molnar 已提交
4810 4811
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4812
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4813 4814
}

4815 4816 4817 4818 4819 4820 4821 4822
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4823
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4824
{
4825
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4826 4827
	unsigned long flags;

I
Ingo Molnar 已提交
4828 4829 4830
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4831
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4832
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4833
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4834 4835 4836

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4837 4838 4839
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4840 4841 4842 4843
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4844
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4845
#else
A
Al Viro 已提交
4846
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4847
#endif
I
Ingo Molnar 已提交
4848 4849 4850 4851
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4875
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4885 4886 4887 4888
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4889
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4911
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4912
{
4913
	struct migration_req req;
L
Linus Torvalds 已提交
4914
	unsigned long flags;
4915
	struct rq *rq;
4916
	int ret = 0;
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4939

L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4952 4953
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4954
 */
4955
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4956
{
4957
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4958
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4959 4960

	if (unlikely(cpu_is_offline(dest_cpu)))
4961
		return ret;
L
Linus Torvalds 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4974 4975 4976
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4977
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4978 4979 4980
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4981
	}
4982
	ret = 1;
L
Linus Torvalds 已提交
4983 4984
out:
	double_rq_unlock(rq_src, rq_dest);
4985
	return ret;
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4993
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4994 4995
{
	int cpu = (long)data;
4996
	struct rq *rq;
L
Linus Torvalds 已提交
4997 4998 4999 5000 5001 5002

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5003
		struct migration_req *req;
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5026
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5027 5028
		list_del_init(head->next);

N
Nick Piggin 已提交
5029 5030 5031
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5050 5051 5052 5053
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5054
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5055
{
5056
	unsigned long flags;
L
Linus Torvalds 已提交
5057
	cpumask_t mask;
5058 5059
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5060

5061
restart:
L
Linus Torvalds 已提交
5062 5063
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5064
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5065 5066 5067 5068
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5069
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5070 5071 5072

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5073 5074 5075
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5076
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5083
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5084 5085
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5086
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5087
	}
5088
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5089
		goto restart;
L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5099
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5100
{
5101
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5115
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5116 5117 5118

	write_lock_irq(&tasklist_lock);

5119 5120
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5121 5122
			continue;

5123 5124 5125
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5126 5127 5128 5129

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5130 5131
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5132
 * It does so by boosting its priority to highest possible and adding it to
5133
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5134 5135 5136
 */
void sched_idle_next(void)
{
5137
	int this_cpu = smp_processor_id();
5138
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5139 5140 5141 5142
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5143
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5144

5145 5146 5147
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5148 5149 5150
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5151
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5152 5153

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5154
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5155 5156 5157 5158

	spin_unlock_irqrestore(&rq->lock, flags);
}

5159 5160
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5174
/* called under rq->lock with disabled interrupts */
5175
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5176
{
5177
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5178 5179

	/* Must be exiting, otherwise would be on tasklist. */
5180
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5181 5182

	/* Cannot have done final schedule yet: would have vanished. */
5183
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5184

5185
	get_task_struct(p);
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5191
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5192
	 */
5193
	spin_unlock(&rq->lock);
5194
	move_task_off_dead_cpu(dead_cpu, p);
5195
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5196

5197
	put_task_struct(p);
L
Linus Torvalds 已提交
5198 5199 5200 5201 5202
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5203
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5204
	struct task_struct *next;
5205

I
Ingo Molnar 已提交
5206 5207 5208 5209 5210 5211 5212
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5213

L
Linus Torvalds 已提交
5214 5215 5216 5217
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
	{CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
	{CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
set_table_entry(struct ctl_table *entry, int ctl_name,
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->ctl_name = ctl_name;
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

	set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
		sizeof(long), 0644, proc_doulongvec_minmax);
	set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
		sizeof(long), 0644, proc_doulongvec_minmax);
	set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[10], 11, "cache_nice_tries",
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
	set_table_entry(&table[12], 13, "flags", &sd->flags,
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->ctl_name = i + 1;
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->ctl_name = i + 1;
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5334 5335 5336 5337
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5338 5339
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5340 5341
{
	struct task_struct *p;
5342
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5343
	unsigned long flags;
5344
	struct rq *rq;
L
Linus Torvalds 已提交
5345 5346

	switch (action) {
5347 5348 5349 5350
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5351
	case CPU_UP_PREPARE:
5352
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5353
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5359
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5360 5361 5362
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5363

L
Linus Torvalds 已提交
5364
	case CPU_ONLINE:
5365
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5366 5367 5368
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5369

L
Linus Torvalds 已提交
5370 5371
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5372
	case CPU_UP_CANCELED_FROZEN:
5373 5374
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5375
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5376 5377
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5378 5379 5380
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5381

L
Linus Torvalds 已提交
5382
	case CPU_DEAD:
5383
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5390
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5391
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5392 5393
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5394 5395 5396 5397 5398 5399
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5400
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5401 5402 5403
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5404 5405
			struct migration_req *req;

L
Linus Torvalds 已提交
5406
			req = list_entry(rq->migration_queue.next,
5407
					 struct migration_req, list);
L
Linus Torvalds 已提交
5408 5409 5410 5411 5412 5413
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5414 5415 5416
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421 5422 5423
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5424
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5432
	int err;
5433 5434

	/* Start one for the boot CPU: */
5435 5436
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5437 5438
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5439

L
Linus Torvalds 已提交
5440 5441 5442 5443 5444
	return 0;
}
#endif

#ifdef CONFIG_SMP
5445 5446 5447 5448 5449

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5450
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5451 5452 5453 5454 5455
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5456 5457 5458 5459 5460
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5480 5481
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5482 5483 5484 5485 5486 5487
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5488 5489
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5490
		if (!cpu_isset(cpu, group->cpumask))
5491 5492
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5505
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5506
				printk("\n");
5507 5508
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5531 5532
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5533 5534 5535

		level++;
		sd = sd->parent;
5536 5537
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5538

5539 5540 5541
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5542 5543 5544 5545

	} while (sd);
}
#else
5546
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5547 5548
#endif

5549
static int sd_degenerate(struct sched_domain *sd)
5550 5551 5552 5553 5554 5555 5556 5557
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5558 5559 5560
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5574 5575
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5594 5595 5596
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5597 5598 5599 5600 5601 5602 5603
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5604 5605 5606 5607
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5608
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5609
{
5610
	struct rq *rq = cpu_rq(cpu);
5611 5612 5613 5614 5615 5616 5617
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5618
		if (sd_parent_degenerate(tmp, parent)) {
5619
			tmp->parent = parent->parent;
5620 5621 5622
			if (parent->parent)
				parent->parent->child = tmp;
		}
5623 5624
	}

5625
	if (sd && sd_degenerate(sd)) {
5626
		sd = sd->parent;
5627 5628 5629
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5630 5631 5632

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5633
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5634 5635 5636
}

/* cpus with isolated domains */
5637
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5655 5656 5657 5658
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5659 5660 5661 5662 5663
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5664
static void
5665 5666 5667
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5668 5669 5670 5671 5672 5673
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5674 5675
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5676 5677 5678 5679 5680 5681
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5682
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5683 5684

		for_each_cpu_mask(j, span) {
5685
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5700
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5701

5702
#ifdef CONFIG_NUMA
5703

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5756 5757
	cpumask_t span, nodemask;
	int i;
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5768

5769 5770 5771 5772 5773 5774 5775 5776
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5777
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5778

5779
/*
5780
 * SMT sched-domains:
5781
 */
L
Linus Torvalds 已提交
5782 5783
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5784
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5785

5786 5787
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5788
{
5789 5790
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5791 5792 5793 5794
	return cpu;
}
#endif

5795 5796 5797
/*
 * multi-core sched-domains:
 */
5798 5799
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5800
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5801 5802 5803
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5804 5805
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5806
{
5807
	int group;
5808 5809
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5810 5811 5812 5813
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5814 5815
}
#elif defined(CONFIG_SCHED_MC)
5816 5817
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5818
{
5819 5820
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5821 5822 5823 5824
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5825
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5826
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5827

5828 5829
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5830
{
5831
	int group;
5832
#ifdef CONFIG_SCHED_MC
5833
	cpumask_t mask = cpu_coregroup_map(cpu);
5834
	cpus_and(mask, mask, *cpu_map);
5835
	group = first_cpu(mask);
5836
#elif defined(CONFIG_SCHED_SMT)
5837 5838
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5839
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5840
#else
5841
	group = cpu;
L
Linus Torvalds 已提交
5842
#endif
5843 5844 5845
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5846 5847 5848 5849
}

#ifdef CONFIG_NUMA
/*
5850 5851 5852
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5853
 */
5854
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5855
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5856

5857
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5858
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5859

5860 5861
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5862
{
5863 5864 5865 5866 5867 5868 5869 5870 5871
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5872
}
5873

5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5894
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5895 5896 5897 5898 5899
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5900 5901
#endif

5902
#ifdef CONFIG_NUMA
5903 5904 5905
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5906
	int cpu, i;
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5937 5938 5939 5940 5941
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5942

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5969 5970
	sd->groups->__cpu_power = 0;

5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5981
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5982 5983 5984 5985 5986 5987 5988 5989
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5990
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5991 5992 5993 5994
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5995
/*
5996 5997
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5998
 */
5999
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6000 6001
{
	int i;
6002 6003
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6004
	int sd_allnodes = 0;
6005 6006 6007 6008

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6009
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6010
					   GFP_KERNEL);
6011 6012
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6013
		return -ENOMEM;
6014 6015 6016
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6017 6018

	/*
6019
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6020
	 */
6021
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6022 6023 6024
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6025
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6026 6027

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6028 6029
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6030 6031 6032
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6033
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6034
			p = sd;
6035
			sd_allnodes = 1;
6036 6037 6038
		} else
			p = NULL;

L
Linus Torvalds 已提交
6039 6040
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6041 6042
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6043 6044
		if (p)
			p->child = sd;
6045
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6046 6047 6048 6049 6050 6051 6052
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6053 6054
		if (p)
			p->child = sd;
6055
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6056

6057 6058 6059 6060 6061 6062 6063
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6064
		p->child = sd;
6065
		cpu_to_core_group(i, cpu_map, &sd->groups);
6066 6067
#endif

L
Linus Torvalds 已提交
6068 6069 6070 6071 6072
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6073
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6074
		sd->parent = p;
6075
		p->child = sd;
6076
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6077 6078 6079 6080 6081
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6082
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6083
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6084
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6085 6086 6087
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6088 6089
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6090 6091 6092
	}
#endif

6093 6094 6095 6096 6097 6098 6099
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6100 6101
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6102 6103 6104
	}
#endif

L
Linus Torvalds 已提交
6105 6106 6107 6108
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6109
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6110 6111 6112
		if (cpus_empty(nodemask))
			continue;

6113
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6114 6115 6116 6117
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6118
	if (sd_allnodes)
I
Ingo Molnar 已提交
6119 6120
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6131 6132
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6133
			continue;
6134
		}
6135 6136 6137 6138

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6139
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6140 6141 6142 6143 6144
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6145 6146 6147
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6148

6149 6150 6151
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6152
		sg->__cpu_power = 0;
6153
		sg->cpumask = nodemask;
6154
		sg->next = sg;
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6173 6174
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6175 6176 6177
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6178
				goto error;
6179
			}
6180
			sg->__cpu_power = 0;
6181
			sg->cpumask = tmp;
6182
			sg->next = prev->next;
6183 6184 6185 6186 6187
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6188 6189 6190
#endif

	/* Calculate CPU power for physical packages and nodes */
6191
#ifdef CONFIG_SCHED_SMT
6192
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6193 6194
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6195
		init_sched_groups_power(i, sd);
6196
	}
L
Linus Torvalds 已提交
6197
#endif
6198
#ifdef CONFIG_SCHED_MC
6199
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6200 6201
		struct sched_domain *sd = &per_cpu(core_domains, i);

6202
		init_sched_groups_power(i, sd);
6203 6204
	}
#endif
6205

6206
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6207 6208
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6209
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6210 6211
	}

6212
#ifdef CONFIG_NUMA
6213 6214
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6215

6216 6217
	if (sd_allnodes) {
		struct sched_group *sg;
6218

6219
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6220 6221
		init_numa_sched_groups_power(sg);
	}
6222 6223
#endif

L
Linus Torvalds 已提交
6224
	/* Attach the domains */
6225
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6226 6227 6228
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6229 6230
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6231 6232 6233 6234 6235
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6236 6237 6238

	return 0;

6239
#ifdef CONFIG_NUMA
6240 6241 6242
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6243
#endif
L
Linus Torvalds 已提交
6244
}
6245 6246 6247
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6248
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6249 6250
{
	cpumask_t cpu_default_map;
6251
	int err;
L
Linus Torvalds 已提交
6252

6253 6254 6255 6256 6257 6258 6259
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6260 6261 6262
	err = build_sched_domains(&cpu_default_map);

	return err;
6263 6264 6265
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6266
{
6267
	free_sched_groups(cpu_map);
6268
}
L
Linus Torvalds 已提交
6269

6270 6271 6272 6273
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6274
static void detach_destroy_domains(const cpumask_t *cpu_map)
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6292
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6293 6294
{
	cpumask_t change_map;
6295
	int err = 0;
6296 6297 6298 6299 6300 6301 6302 6303

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6304 6305 6306 6307 6308
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6309 6310
}

6311 6312 6313 6314 6315
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6316
	mutex_lock(&sched_hotcpu_mutex);
6317 6318
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6319
	mutex_unlock(&sched_hotcpu_mutex);
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6344

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6364 6365
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6378 6379
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6380 6381 6382 6383 6384 6385 6386
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6387 6388 6389
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6390
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6391 6392 6393 6394 6395 6396 6397
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6398
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6399
	case CPU_DOWN_PREPARE:
6400
	case CPU_DOWN_PREPARE_FROZEN:
6401
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6402 6403 6404
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6405
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6406
	case CPU_DOWN_FAILED:
6407
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6408
	case CPU_ONLINE:
6409
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6410
	case CPU_DEAD:
6411
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6421
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6422 6423 6424 6425 6426 6427

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6428 6429
	cpumask_t non_isolated_cpus;

6430
	mutex_lock(&sched_hotcpu_mutex);
6431
	arch_init_sched_domains(&cpu_online_map);
6432
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6433 6434
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6435
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6436 6437
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6438

6439 6440
	init_sched_domain_sysctl();

6441 6442 6443
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6444
	sched_init_granularity();
L
Linus Torvalds 已提交
6445 6446 6447 6448
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6449
	sched_init_granularity();
L
Linus Torvalds 已提交
6450 6451 6452 6453 6454 6455 6456
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6457

L
Linus Torvalds 已提交
6458 6459 6460 6461 6462
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6463 6464 6465 6466 6467 6468 6469 6470 6471
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6472 6473
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6474
	u64 now = sched_clock();
6475
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6476 6477 6478 6479 6480 6481 6482 6483
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6484

6485
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6486
		struct rt_prio_array *array;
6487
		struct rq *rq;
L
Linus Torvalds 已提交
6488 6489 6490

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6491
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6492
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6493 6494 6495 6496 6497 6498 6499 6500
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6501

I
Ingo Molnar 已提交
6502 6503
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6504
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6505
		rq->sd = NULL;
L
Linus Torvalds 已提交
6506
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6507
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6508
		rq->push_cpu = 0;
6509
		rq->cpu = i;
L
Linus Torvalds 已提交
6510 6511 6512 6513 6514
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6515 6516 6517 6518
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6519
		}
6520
		highest_cpu = i;
I
Ingo Molnar 已提交
6521 6522
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6523 6524
	}

6525
	set_load_weight(&init_task);
6526

6527 6528 6529 6530
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6531
#ifdef CONFIG_SMP
6532
	nr_cpu_ids = highest_cpu + 1;
6533 6534 6535
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6536 6537 6538 6539
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6553 6554 6555 6556
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6557 6558 6559 6560 6561
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6562
#ifdef in_atomic
L
Linus Torvalds 已提交
6563 6564 6565 6566 6567 6568 6569
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6570
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6571 6572 6573
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6574
		debug_show_held_locks(current);
6575 6576
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6587
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6588
	unsigned long flags;
6589
	struct rq *rq;
I
Ingo Molnar 已提交
6590
	int on_rq;
L
Linus Torvalds 已提交
6591 6592

	read_lock_irq(&tasklist_lock);
6593
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6594 6595
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6596
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6597
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6598 6599
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6600 6601 6602
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6603
#endif
I
Ingo Molnar 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6614
			continue;
I
Ingo Molnar 已提交
6615
		}
L
Linus Torvalds 已提交
6616

6617 6618
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6619 6620 6621 6622 6623 6624 6625
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6626

I
Ingo Molnar 已提交
6627 6628 6629 6630 6631 6632
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6633 6634
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6635 6636 6637
#ifdef CONFIG_SMP
 out_unlock:
#endif
6638 6639
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6640 6641
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6642 6643 6644 6645
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6664
struct task_struct *curr_task(int cpu)
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6684
void set_curr_task(int cpu, struct task_struct *p)
6685 6686 6687 6688 6689
{
	cpu_curr(cpu) = p;
}

#endif