inode.c 144.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237 238
	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
				    ext4_blocks_for_truncate(inode)+3);
239
	if (IS_ERR(handle)) {
240
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 242 243 244 245
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
246
		ext4_orphan_del(NULL, inode);
247
		sb_end_intwrite(inode->i_sb);
248 249 250 251
		goto no_delete;
	}

	if (IS_SYNC(inode))
252
		ext4_handle_sync(handle);
253
	inode->i_size = 0;
254 255
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
256
		ext4_warning(inode->i_sb,
257 258 259
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
260
	if (inode->i_blocks)
261
		ext4_truncate(inode);
262 263 264 265 266 267 268

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
269
	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 271 272 273
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
274
			ext4_warning(inode->i_sb,
275 276 277
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
278
			ext4_orphan_del(NULL, inode);
279
			sb_end_intwrite(inode->i_sb);
280 281 282 283
			goto no_delete;
		}
	}

284
	/*
285
	 * Kill off the orphan record which ext4_truncate created.
286
	 * AKPM: I think this can be inside the above `if'.
287
	 * Note that ext4_orphan_del() has to be able to cope with the
288
	 * deletion of a non-existent orphan - this is because we don't
289
	 * know if ext4_truncate() actually created an orphan record.
290 291
	 * (Well, we could do this if we need to, but heck - it works)
	 */
292 293
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
294 295 296 297 298 299 300 301

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
302
	if (ext4_mark_inode_dirty(handle, inode))
303
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
304
		ext4_clear_inode(inode);
305
	else
306 307
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
308
	sb_end_intwrite(inode->i_sb);
309 310
	return;
no_delete:
A
Al Viro 已提交
311
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 313
}

314 315
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
316
{
317
	return &EXT4_I(inode)->i_reserved_quota;
318
}
319
#endif
320

321 322
/*
 * Calculate the number of metadata blocks need to reserve
323
 * to allocate a block located at @lblock
324
 */
325
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326
{
327
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328
		return ext4_ext_calc_metadata_amount(inode, lblock);
329

330
	return ext4_ind_calc_metadata_amount(inode, lblock);
331 332
}

333 334 335 336
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
337 338
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
339 340
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 342 343
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
344
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
346
		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347
			 "with only %d reserved data blocks",
348 349 350 351 352
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
353

354
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 356 357 358 359 360
		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
			"with only %d reserved metadata blocks "
			"(releasing %d blocks with reserved %d data blocks)",
			inode->i_ino, ei->i_allocated_meta_blocks,
			     ei->i_reserved_meta_blocks, used,
			     ei->i_reserved_data_blocks);
361 362 363 364
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

365 366 367
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369
			   used + ei->i_allocated_meta_blocks);
370
	ei->i_allocated_meta_blocks = 0;
371

372 373 374 375 376 377
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
378
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379
				   ei->i_reserved_meta_blocks);
380
		ei->i_reserved_meta_blocks = 0;
381
		ei->i_da_metadata_calc_len = 0;
382
	}
383
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384

385 386
	/* Update quota subsystem for data blocks */
	if (quota_claim)
387
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
388
	else {
389 390 391
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
392
		 * not re-claim the quota for fallocated blocks.
393
		 */
394
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395
	}
396 397 398 399 400 401

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
402 403
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
404
		ext4_discard_preallocations(inode);
405 406
}

407
static int __check_block_validity(struct inode *inode, const char *func,
408 409
				unsigned int line,
				struct ext4_map_blocks *map)
410
{
411 412
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
413 414 415 416
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
417 418 419 420 421
		return -EIO;
	}
	return 0;
}

422
#define check_block_validity(inode, map)	\
423
	__check_block_validity((inode), __func__, __LINE__, (map))
424

425
/*
426 427
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
461 462 463 464 465 466 467 468 469
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
470 471 472 473 474
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
475 476
			if (num >= max_pages) {
				done = 1;
477
				break;
478
			}
479 480 481 482 483 484
		}
		pagevec_release(&pvec);
	}
	return num;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
				       struct inode *inode,
				       struct ext4_map_blocks *es_map,
				       struct ext4_map_blocks *map,
				       int flags)
{
	int retval;

	map->m_flags = 0;
	/*
	 * There is a race window that the result is not the same.
	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
	 * is that we lookup a block mapping in extent status tree with
	 * out taking i_data_sem.  So at the time the unwritten extent
	 * could be converted.
	 */
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	} else {
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
	}
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
	/*
	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
	 * because it shouldn't be marked in es_map->m_flags.
	 */
	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);

	/*
	 * We don't check m_len because extent will be collpased in status
	 * tree.  So the m_len might not equal.
	 */
	if (es_map->m_lblk != map->m_lblk ||
	    es_map->m_flags != map->m_flags ||
	    es_map->m_pblk != map->m_pblk) {
		printk("ES cache assertation failed for inode: %lu "
		       "es_cached ex [%d/%d/%llu/%x] != "
		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
		       inode->i_ino, es_map->m_lblk, es_map->m_len,
		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
		       map->m_len, map->m_pblk, map->m_flags,
		       retval, flags);
	}
}
#endif /* ES_AGGRESSIVE_TEST */

537
/*
538
 * The ext4_map_blocks() function tries to look up the requested blocks,
539
 * and returns if the blocks are already mapped.
540 541 542 543 544
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
545 546
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547 548 549 550 551 552 553 554
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
555
 * that case, buffer head is unmapped
556 557 558
 *
 * It returns the error in case of allocation failure.
 */
559 560
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
561
{
562
	struct extent_status es;
563
	int retval;
564 565 566 567 568
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
569

570 571 572 573
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
			map->m_pblk = ext4_es_pblock(&es) +
					map->m_lblk - es.es_lblk;
			map->m_flags |= ext4_es_is_written(&es) ?
					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
			retval = es.es_len - (map->m_lblk - es.es_lblk);
			if (retval > map->m_len)
				retval = map->m_len;
			map->m_len = retval;
		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
			retval = 0;
		} else {
			BUG_ON(1);
		}
591 592 593 594
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(handle, inode, map,
					   &orig_map, flags);
#endif
595 596 597
		goto found;
	}

598
	/*
599 600
	 * Try to see if we can get the block without requesting a new
	 * file system block.
601
	 */
602 603
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
604
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605 606
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
607
	} else {
608 609
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
610
	}
611 612 613 614
	if (retval > 0) {
		int ret;
		unsigned long long status;

615 616 617 618 619 620 621 622 623
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

624 625 626 627 628 629 630 631 632 633 634
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk,
					    map->m_len, map->m_pblk, status);
		if (ret < 0)
			retval = ret;
	}
635 636
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
637

638
found:
639
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640
		int ret = check_block_validity(inode, map);
641 642 643 644
		if (ret != 0)
			return ret;
	}

645
	/* If it is only a block(s) look up */
646
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647 648 649 650 651 652
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
653
	 * ext4_ext_get_block() returns the create = 0
654 655
	 * with buffer head unmapped.
	 */
656
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657 658
		return retval;

659
	/*
660 661
	 * Here we clear m_flags because after allocating an new extent,
	 * it will be set again.
662
	 */
663
	map->m_flags &= ~EXT4_MAP_FLAGS;
664

665
	/*
666 667 668 669
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
670 671
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
672 673 674 675 676 677 678

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
679
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681 682 683 684
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
685
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
687
	} else {
688
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
689

690
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691 692 693 694 695
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
696
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697
		}
698

699 700 701 702 703 704 705
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
706
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707 708
			ext4_da_update_reserve_space(inode, retval, 1);
	}
709
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711

712 713 714 715
	if (retval > 0) {
		int ret;
		unsigned long long status;

716 717 718 719 720 721 722 723 724
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (allocation)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

725 726 727 728 729 730 731 732 733
		/*
		 * If the extent has been zeroed out, we don't need to update
		 * extent status tree.
		 */
		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
			if (ext4_es_is_written(&es))
				goto has_zeroout;
		}
734 735 736 737 738 739 740 741 742 743
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
		    ext4_find_delalloc_range(inode, map->m_lblk,
					     map->m_lblk + map->m_len - 1))
			status |= EXTENT_STATUS_DELAYED;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret < 0)
			retval = ret;
744 745
	}

746
has_zeroout:
747
	up_write((&EXT4_I(inode)->i_data_sem));
748
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749
		int ret = check_block_validity(inode, map);
750 751 752
		if (ret != 0)
			return ret;
	}
753 754 755
	return retval;
}

756 757 758
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

759 760
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
761
{
762
	handle_t *handle = ext4_journal_current_handle();
763
	struct ext4_map_blocks map;
J
Jan Kara 已提交
764
	int ret = 0, started = 0;
765
	int dio_credits;
766

T
Tao Ma 已提交
767 768 769
	if (ext4_has_inline_data(inode))
		return -ERANGE;

770 771 772
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

773
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
774
		/* Direct IO write... */
775 776 777
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778 779
		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
					    dio_credits);
J
Jan Kara 已提交
780
		if (IS_ERR(handle)) {
781
			ret = PTR_ERR(handle);
782
			return ret;
783
		}
J
Jan Kara 已提交
784
		started = 1;
785 786
	}

787
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
788
	if (ret > 0) {
789 790 791
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
792
		ret = 0;
793
	}
J
Jan Kara 已提交
794 795
	if (started)
		ext4_journal_stop(handle);
796 797 798
	return ret;
}

799 800 801 802 803 804 805
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

806 807 808
/*
 * `handle' can be NULL if create is zero
 */
809
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
810
				ext4_lblk_t block, int create, int *errp)
811
{
812 813
	struct ext4_map_blocks map;
	struct buffer_head *bh;
814 815 816 817
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

818 819 820 821
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
822

823 824 825
	/* ensure we send some value back into *errp */
	*errp = 0;

826 827
	if (create && err == 0)
		err = -ENOSPC;	/* should never happen */
828 829 830 831 832 833
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
834
	if (unlikely(!bh)) {
835
		*errp = -ENOMEM;
836
		return NULL;
837
	}
838 839 840
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
841

842 843 844 845 846 847 848 849 850 851 852 853 854
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
855
		}
856 857 858 859 860 861 862
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
863
	}
864 865 866 867 868 869
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
870 871
}

872
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
873
			       ext4_lblk_t block, int create, int *err)
874
{
875
	struct buffer_head *bh;
876

877
	bh = ext4_getblk(handle, inode, block, create, err);
878 879 880 881
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
882
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883 884 885 886 887 888 889 890
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

891 892 893 894 895 896 897
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
898 899 900 901 902 903 904
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

905 906
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
907
	     block_start = block_end, bh = next) {
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
925
 * close off a transaction and start a new one between the ext4_get_block()
926
 * and the commit_write().  So doing the jbd2_journal_start at the start of
927 928
 * prepare_write() is the right place.
 *
929 930 931 932
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
933
 *
934
 * By accident, ext4 can be reentered when a transaction is open via
935 936 937 938 939 940
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
941
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942 943 944 945
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
946 947
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
948
{
949 950 951
	int dirty = buffer_dirty(bh);
	int ret;

952 953
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
954
	/*
C
Christoph Hellwig 已提交
955
	 * __block_write_begin() could have dirtied some buffers. Clean
956 957
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
958
	 * by __block_write_begin() isn't a real problem here as we clear
959 960 961 962 963 964 965 966 967
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
968 969
}

970 971
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
972
static int ext4_write_begin(struct file *file, struct address_space *mapping,
973 974
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
975
{
976
	struct inode *inode = mapping->host;
977
	int ret, needed_blocks;
978 979
	handle_t *handle;
	int retries = 0;
980
	struct page *page;
981
	pgoff_t index;
982
	unsigned from, to;
N
Nick Piggin 已提交
983

984
	trace_ext4_write_begin(inode, pos, len, flags);
985 986 987 988 989
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990
	index = pos >> PAGE_CACHE_SHIFT;
991 992
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
993

994 995 996 997
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
998 999 1000
			return ret;
		if (ret == 1)
			return 0;
1001 1002
	}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

retry_journal:
1017
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018
	if (IS_ERR(handle)) {
1019 1020
		page_cache_release(page);
		return PTR_ERR(handle);
1021
	}
1022

1023 1024 1025 1026 1027
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
1028
		ext4_journal_stop(handle);
1029
		goto retry_grab;
1030
	}
1031
	wait_on_page_writeback(page);
1032

1033
	if (ext4_should_dioread_nolock(inode))
1034
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035
	else
1036
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1037 1038

	if (!ret && ext4_should_journal_data(inode)) {
1039 1040 1041
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
1042
	}
N
Nick Piggin 已提交
1043 1044

	if (ret) {
1045
		unlock_page(page);
1046
		/*
1047
		 * __block_write_begin may have instantiated a few blocks
1048 1049
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1050 1051 1052
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1053
		 */
1054
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055 1056 1057 1058
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1059
			ext4_truncate_failed_write(inode);
1060
			/*
1061
			 * If truncate failed early the inode might
1062 1063 1064 1065 1066 1067 1068
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1069

1070 1071 1072 1073 1074 1075 1076
		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;
		page_cache_release(page);
		return ret;
	}
	*pagep = page;
1077 1078 1079
	return ret;
}

N
Nick Piggin 已提交
1080 1081
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 1083 1084 1085
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1086
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 1088
}

1089
static int ext4_generic_write_end(struct file *file,
1090 1091 1092
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1093 1094 1095 1096 1097
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

1098 1099 1100 1101 1102 1103
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1140 1141 1142 1143
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1144
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1145 1146
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1147
static int ext4_ordered_write_end(struct file *file,
1148 1149 1150
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1151
{
1152
	handle_t *handle = ext4_journal_current_handle();
1153
	struct inode *inode = mapping->host;
1154 1155
	int ret = 0, ret2;

1156
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1157
	ret = ext4_jbd2_file_inode(handle, inode);
1158 1159

	if (ret == 0) {
1160
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1161
							page, fsdata);
1162
		copied = ret2;
1163
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 1165 1166 1167 1168
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1169 1170
		if (ret2 < 0)
			ret = ret2;
1171 1172 1173
	} else {
		unlock_page(page);
		page_cache_release(page);
1174
	}
1175

1176
	ret2 = ext4_journal_stop(handle);
1177 1178
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1179

1180
	if (pos + len > inode->i_size) {
1181
		ext4_truncate_failed_write(inode);
1182
		/*
1183
		 * If truncate failed early the inode might still be
1184 1185 1186 1187 1188 1189 1190 1191
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1192
	return ret ? ret : copied;
1193 1194
}

N
Nick Piggin 已提交
1195
static int ext4_writeback_write_end(struct file *file,
1196 1197 1198
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1199
{
1200
	handle_t *handle = ext4_journal_current_handle();
1201
	struct inode *inode = mapping->host;
1202 1203
	int ret = 0, ret2;

1204
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1205
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1206
							page, fsdata);
1207
	copied = ret2;
1208
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1209 1210 1211 1212 1213 1214
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1215 1216
	if (ret2 < 0)
		ret = ret2;
1217

1218
	ret2 = ext4_journal_stop(handle);
1219 1220
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1221

1222
	if (pos + len > inode->i_size) {
1223
		ext4_truncate_failed_write(inode);
1224
		/*
1225
		 * If truncate failed early the inode might still be
1226 1227 1228 1229 1230 1231 1232
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1233
	return ret ? ret : copied;
1234 1235
}

N
Nick Piggin 已提交
1236
static int ext4_journalled_write_end(struct file *file,
1237 1238 1239
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1240
{
1241
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1242
	struct inode *inode = mapping->host;
1243 1244
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1245
	unsigned from, to;
1246
	loff_t new_i_size;
1247

1248
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1249 1250 1251
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1252 1253
	BUG_ON(!ext4_handle_valid(handle));

1254 1255 1256 1257 1258 1259 1260 1261 1262
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1263

1264 1265 1266 1267 1268
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1269 1270
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1271
		i_size_write(inode, pos+copied);
1272
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1273
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1274 1275
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1276
		ret2 = ext4_mark_inode_dirty(handle, inode);
1277 1278 1279
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1280

1281
	unlock_page(page);
1282
	page_cache_release(page);
1283
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1284 1285 1286 1287 1288 1289
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1290
	ret2 = ext4_journal_stop(handle);
1291 1292
	if (!ret)
		ret = ret2;
1293
	if (pos + len > inode->i_size) {
1294
		ext4_truncate_failed_write(inode);
1295
		/*
1296
		 * If truncate failed early the inode might still be
1297 1298 1299 1300 1301 1302
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1303 1304

	return ret ? ret : copied;
1305
}
1306

1307
/*
1308
 * Reserve a single cluster located at lblock
1309
 */
1310
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311
{
A
Aneesh Kumar K.V 已提交
1312
	int retries = 0;
1313
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314
	struct ext4_inode_info *ei = EXT4_I(inode);
1315
	unsigned int md_needed;
1316
	int ret;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1328 1329 1330 1331 1332 1333

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1334
repeat:
1335
	spin_lock(&ei->i_block_reservation_lock);
1336 1337 1338 1339 1340 1341
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342 1343
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1344
	trace_ext4_da_reserve_space(inode, md_needed);
1345

1346 1347 1348 1349
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1350
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351 1352 1353
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1354
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
L
Lukas Czerner 已提交
1355
			cond_resched();
A
Aneesh Kumar K.V 已提交
1356 1357
			goto repeat;
		}
1358
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359 1360
		return -ENOSPC;
	}
1361
	ei->i_reserved_data_blocks++;
1362 1363
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1364

1365 1366 1367
	return 0;       /* success */
}

1368
static void ext4_da_release_space(struct inode *inode, int to_free)
1369 1370
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371
	struct ext4_inode_info *ei = EXT4_I(inode);
1372

1373 1374 1375
	if (!to_free)
		return;		/* Nothing to release, exit */

1376
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377

L
Li Zefan 已提交
1378
	trace_ext4_da_release_space(inode, to_free);
1379
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380
		/*
1381 1382 1383 1384
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1385
		 */
1386
		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387
			 "ino %lu, to_free %d with only %d reserved "
1388
			 "data blocks", inode->i_ino, to_free,
1389 1390 1391
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1392
	}
1393
	ei->i_reserved_data_blocks -= to_free;
1394

1395 1396 1397 1398 1399
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1400 1401
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1402
		 */
1403
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404
				   ei->i_reserved_meta_blocks);
1405
		ei->i_reserved_meta_blocks = 0;
1406
		ei->i_da_metadata_calc_len = 0;
1407
	}
1408

1409
	/* update fs dirty data blocks counter */
1410
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411 1412

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413

1414
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 1416 1417
}

static void ext4_da_page_release_reservation(struct page *page,
1418
					     unsigned long offset)
1419 1420 1421 1422
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1423 1424 1425
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1426
	ext4_fsblk_t lblk;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1439

1440 1441 1442 1443 1444
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1445 1446 1447 1448 1449 1450 1451
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1452
		    !ext4_find_delalloc_cluster(inode, lblk))
1453 1454 1455 1456
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1457
}
1458

1459 1460 1461 1462 1463 1464
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1465
 * them with writepage() call back
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1476 1477
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1478
{
1479 1480 1481 1482 1483
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1484
	loff_t size = i_size_read(inode);
1485 1486
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1487
	sector_t pblock = 0, cur_logical = 0;
1488
	struct ext4_io_submit io_submit;
1489 1490

	BUG_ON(mpd->next_page <= mpd->first_page);
1491
	memset(&io_submit, 0, sizeof(io_submit));
1492 1493 1494
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1495
	 * If we look at mpd->b_blocknr we would only be looking
1496 1497
	 * at the currently mapped buffer_heads.
	 */
1498 1499 1500
	index = mpd->first_page;
	end = mpd->next_page - 1;

1501
	pagevec_init(&pvec, 0);
1502
	while (index <= end) {
1503
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1504 1505 1506
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1507
			int skip_page = 0;
1508 1509
			struct page *page = pvec.pages[i];

1510 1511 1512
			index = page->index;
			if (index > end)
				break;
1513 1514 1515 1516 1517

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1518 1519 1520 1521 1522 1523
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1524 1525 1526 1527 1528
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1529 1530
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1531
			do {
1532 1533 1534
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1535 1536 1537 1538
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1539 1540 1541 1542 1543 1544 1545
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1546

1547 1548 1549 1550 1551
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1552
					skip_page = 1;
1553 1554
				bh = bh->b_this_page;
				block_start += bh->b_size;
1555 1556
				cur_logical++;
				pblock++;
1557 1558
			} while (bh != page_bufs);

1559 1560 1561 1562
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1563

1564
			clear_page_dirty_for_io(page);
1565 1566
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1567
			if (!err)
1568
				mpd->pages_written++;
1569 1570 1571 1572 1573 1574 1575 1576 1577
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1578
	ext4_io_submit(&io_submit);
1579 1580 1581
	return ret;
}

1582
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1583 1584 1585 1586 1587 1588
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1589
	ext4_lblk_t start, last;
1590

1591 1592
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1593 1594 1595 1596 1597

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1598
	pagevec_init(&pvec, 0);
1599 1600 1601 1602 1603 1604
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1605
			if (page->index > end)
1606 1607 1608 1609 1610 1611 1612
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1613 1614
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1615 1616 1617 1618
	}
	return;
}

1619 1620 1621
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622 1623 1624
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1625 1626
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1627 1628
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1629 1630
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1631
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1632 1633
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1634 1635 1636 1637
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1638
	       EXT4_I(inode)->i_reserved_meta_blocks);
1639 1640 1641
	return;
}

1642
/*
1643 1644
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1645
 *
1646
 * @mpd - bh describing space
1647 1648 1649 1650
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1651
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1652
{
1653
	int err, blks, get_blocks_flags;
1654
	struct ext4_map_blocks map, *mapp = NULL;
1655 1656 1657 1658
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1659 1660

	/*
1661 1662
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1663
	 */
1664 1665 1666 1667 1668
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1669 1670 1671 1672

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1673
	/*
1674
	 * Call ext4_map_blocks() to allocate any delayed allocation
1675 1676 1677 1678 1679 1680 1681 1682
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1683
	 * want to change *many* call functions, so ext4_map_blocks()
1684
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1685 1686 1687 1688 1689
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1690
	 */
1691 1692
	map.m_lblk = next;
	map.m_len = max_blocks;
1693
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1694 1695
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1696
	if (mpd->b_state & (1 << BH_Delay))
1697 1698
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1699
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1700
	if (blks < 0) {
1701 1702
		struct super_block *sb = mpd->inode->i_sb;

1703
		err = blks;
1704
		/*
1705
		 * If get block returns EAGAIN or ENOSPC and there
1706 1707
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1708 1709
		 */
		if (err == -EAGAIN)
1710
			goto submit_io;
1711

1712
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1713
			mpd->retval = err;
1714
			goto submit_io;
1715 1716
		}

1717
		/*
1718 1719 1720 1721 1722
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1723
		 */
1724 1725 1726 1727 1728 1729 1730 1731
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
1732
				"This should not happen!! Data will be lost");
1733 1734
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1735
		}
1736
		/* invalidate all the pages */
1737
		ext4_da_block_invalidatepages(mpd);
1738 1739 1740

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1741
		return;
1742
	}
1743 1744
	BUG_ON(blks == 0);

1745
	mapp = &map;
1746 1747 1748
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1749

1750 1751
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1752 1753 1754
	}

	/*
1755
	 * Update on-disk size along with block allocation.
1756 1757 1758 1759 1760 1761
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1762 1763 1764 1765 1766
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1767 1768
	}

1769
submit_io:
1770
	mpage_da_submit_io(mpd, mapp);
1771
	mpd->io_done = 1;
1772 1773
}

1774 1775
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1776 1777 1778 1779 1780 1781

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1782
 * @b_state - b_state of the buffer head added
1783 1784 1785
 *
 * the function is used to collect contig. blocks in same state
 */
1786
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1787
				   unsigned long b_state)
1788 1789
{
	sector_t next;
1790 1791
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1792

1793 1794 1795 1796
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1797
	 * ext4_map_blocks() multiple times in a loop
1798
	 */
1799
	if (nrblocks >= (8*1024*1024 >> blkbits))
1800 1801
		goto flush_it;

1802 1803
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1814 1815 1816
	/*
	 * First block in the extent
	 */
1817 1818
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1819
		mpd->b_size = 1 << blkbits;
1820
		mpd->b_state = b_state & BH_FLAGS;
1821 1822 1823
		return;
	}

1824
	next = mpd->b_blocknr + nrblocks;
1825 1826 1827
	/*
	 * Can we merge the block to our big extent?
	 */
1828
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1829
		mpd->b_size += 1 << blkbits;
1830 1831 1832
		return;
	}

1833
flush_it:
1834 1835 1836 1837
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1838
	mpage_da_map_and_submit(mpd);
1839
	return;
1840 1841
}

1842
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1843
{
1844
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
1857
	struct extent_status es;
1858 1859
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);
1860 1861 1862 1863 1864
#ifdef ES_AGGRESSIVE_TEST
	struct ext4_map_blocks orig_map;

	memcpy(&orig_map, map, sizeof(*map));
#endif
1865 1866 1867 1868 1869 1870 1871 1872

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	/* Lookup extent status tree firstly */
	if (ext4_es_lookup_extent(inode, iblock, &es)) {

		if (ext4_es_is_hole(&es)) {
			retval = 0;
			down_read((&EXT4_I(inode)->i_data_sem));
			goto add_delayed;
		}

		/*
		 * Delayed extent could be allocated by fallocate.
		 * So we need to check it.
		 */
		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
			map_bh(bh, inode->i_sb, invalid_block);
			set_buffer_new(bh);
			set_buffer_delay(bh);
			return 0;
		}

		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
		retval = es.es_len - (iblock - es.es_lblk);
		if (retval > map->m_len)
			retval = map->m_len;
		map->m_len = retval;
		if (ext4_es_is_written(&es))
			map->m_flags |= EXT4_MAP_MAPPED;
		else if (ext4_es_is_unwritten(&es))
			map->m_flags |= EXT4_MAP_UNWRITTEN;
		else
			BUG_ON(1);

1906 1907 1908
#ifdef ES_AGGRESSIVE_TEST
		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
1909 1910 1911
		return retval;
	}

1912 1913 1914 1915 1916
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1930 1931
		retval = ext4_ext_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1932
	else
1933 1934
		retval = ext4_ind_map_blocks(NULL, inode, map,
					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1935

1936
add_delayed:
1937
	if (retval == 0) {
1938
		int ret;
1939 1940 1941 1942 1943 1944 1945
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1946 1947
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret) {
1948
				/* not enough space to reserve */
1949
				retval = ret;
1950
				goto out_unlock;
1951
			}
1952 1953
		}

1954 1955 1956 1957
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    ~0, EXTENT_STATUS_DELAYED);
		if (ret) {
			retval = ret;
1958
			goto out_unlock;
1959
		}
1960

1961 1962 1963 1964 1965 1966 1967 1968
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
1969 1970 1971 1972
	} else if (retval > 0) {
		int ret;
		unsigned long long status;

1973 1974 1975 1976 1977 1978 1979 1980 1981
#ifdef ES_AGGRESSIVE_TEST
		if (retval != map->m_len) {
			printk("ES len assertation failed for inode: %lu "
			       "retval %d != map->m_len %d "
			       "in %s (lookup)\n", inode->i_ino, retval,
			       map->m_len, __func__);
		}
#endif

1982 1983 1984 1985 1986 1987
		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
					    map->m_pblk, status);
		if (ret != 0)
			retval = ret;
1988 1989 1990 1991 1992 1993 1994 1995
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1996
/*
1997 1998 1999
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2000 2001 2002 2003 2004 2005 2006
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2007
 */
2008 2009
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
2010
{
2011
	struct ext4_map_blocks map;
2012 2013 2014
	int ret = 0;

	BUG_ON(create == 0);
2015 2016 2017 2018
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2019 2020 2021 2022 2023 2024

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2025 2026
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
2027
		return ret;
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
2040
		set_buffer_mapped(bh);
2041 2042
	}
	return 0;
2043
}
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
2062
	struct buffer_head *page_bufs = NULL;
2063
	handle_t *handle = NULL;
2064 2065 2066
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
2067

2068
	ClearPageChecked(page);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
2085 2086 2087 2088
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

2089 2090
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
2091 2092 2093 2094 2095
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

2096 2097
	BUG_ON(!ext4_handle_valid(handle));

2098 2099
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
2110 2111
	if (ret == 0)
		ret = err;
2112
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2113 2114 2115 2116
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

2117 2118 2119
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
2120
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2121
out:
2122
	brelse(inode_bh);
2123 2124 2125
	return ret;
}

2126
/*
2127 2128 2129 2130
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
2131
 * we are writing back data modified via mmap(), no one guarantees in which
2132 2133 2134 2135
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2136 2137 2138
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
2139
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2140
 *   - grab_page_cache when doing write_begin (have journal handle)
2141 2142 2143 2144 2145 2146 2147 2148 2149
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
2150
 * but other buffer_heads would be unmapped but dirty (dirty done via the
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2166
 */
2167
static int ext4_writepage(struct page *page,
2168
			  struct writeback_control *wbc)
2169
{
2170
	int ret = 0;
2171
	loff_t size;
2172
	unsigned int len;
2173
	struct buffer_head *page_bufs = NULL;
2174
	struct inode *inode = page->mapping->host;
2175
	struct ext4_io_submit io_submit;
2176

L
Lukas Czerner 已提交
2177
	trace_ext4_writepage(page);
2178 2179 2180 2181 2182
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2183

T
Theodore Ts'o 已提交
2184
	page_bufs = page_buffers(page);
2185 2186 2187 2188 2189 2190 2191
	/*
	 * We cannot do block allocation or other extent handling in this
	 * function. If there are buffers needing that, we have to redirty
	 * the page. But we may reach here when we do a journal commit via
	 * journal_submit_inode_data_buffers() and in that case we must write
	 * allocated buffers to achieve data=ordered mode guarantees.
	 */
2192 2193
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
2194
		redirty_page_for_writepage(wbc, page);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
		if (current->flags & PF_MEMALLOC) {
			/*
			 * For memory cleaning there's no point in writing only
			 * some buffers. So just bail out. Warn if we came here
			 * from direct reclaim.
			 */
			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
							== PF_MEMALLOC);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2206
	}
2207

2208
	if (PageChecked(page) && ext4_should_journal_data(inode))
2209 2210 2211 2212
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2213
		return __ext4_journalled_writepage(page, len);
2214

2215 2216 2217
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2218 2219 2220
	return ret;
}

2221
/*
2222
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2223
 * calculate the total number of credits to reserve to fit
2224 2225 2226
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2227
 */
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2239
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2240 2241 2242 2243 2244
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2245

2246 2247
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2248
 * address space and accumulate pages that need writing, and call
2249 2250
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2251
 */
2252 2253
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2254
				struct writeback_control *wbc,
2255 2256
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2257
{
2258
	struct buffer_head	*bh, *head;
2259
	struct inode		*inode = mapping->host;
2260 2261 2262 2263 2264 2265
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2266

2267 2268 2269
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2270 2271 2272 2273
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2274
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2275 2276 2277 2278
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2279
	*done_index = index;
2280
	while (index <= end) {
2281
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2282 2283
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2284
			return 0;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2296 2297
			if (page->index > end)
				goto out;
2298

2299 2300
			*done_index = page->index + 1;

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2311 2312 2313
			lock_page(page);

			/*
2314 2315 2316 2317 2318 2319
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2320
			 */
2321 2322 2323 2324
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2325 2326 2327 2328
				unlock_page(page);
				continue;
			}

2329
			wait_on_page_writeback(page);
2330 2331
			BUG_ON(PageWriteback(page));

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2343
			if (mpd->next_page != page->index)
2344 2345 2346 2347 2348
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2349 2350 2351 2352 2353
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2354
				/*
2355 2356 2357
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2358
				 */
2359 2360 2361 2362 2363 2364 2365
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2366
					/*
2367 2368 2369 2370 2371 2372 2373
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2374
					 */
2375 2376 2377 2378 2379 2380
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2381 2382 2383 2384

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2385
				    wbc->sync_mode == WB_SYNC_NONE)
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2396
					goto out;
2397 2398 2399 2400 2401
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2402 2403 2404
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2405 2406 2407
out:
	pagevec_release(&pvec);
	cond_resched();
2408 2409 2410 2411
	return ret;
}


2412
static int ext4_da_writepages(struct address_space *mapping,
2413
			      struct writeback_control *wbc)
2414
{
2415 2416
	pgoff_t	index;
	int range_whole = 0;
2417
	handle_t *handle = NULL;
2418
	struct mpage_da_data mpd;
2419
	struct inode *inode = mapping->host;
2420
	int pages_written = 0;
2421
	unsigned int max_pages;
2422
	int range_cyclic, cycled = 1, io_done = 0;
2423 2424
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2425
	loff_t range_start = wbc->range_start;
2426
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2427
	pgoff_t done_index = 0;
2428
	pgoff_t end;
S
Shaohua Li 已提交
2429
	struct blk_plug plug;
2430

2431
	trace_ext4_da_writepages(inode, wbc);
2432

2433 2434 2435 2436 2437
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2438
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2439
		return 0;
2440 2441 2442 2443 2444

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2445
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2446 2447 2448 2449 2450
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2451
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2452 2453
		return -EROFS;

2454 2455
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2456

2457 2458
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2459
		index = mapping->writeback_index;
2460 2461 2462 2463 2464
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2465 2466
		end = -1;
	} else {
2467
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2468 2469
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2470

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2488 2489 2490 2491 2492 2493
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2504
retry:
2505
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2506 2507
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2508
	blk_start_plug(&plug);
2509
	while (!ret && wbc->nr_to_write > 0) {
2510 2511 2512 2513 2514 2515 2516 2517

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2518
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2519

2520
		/* start a new transaction*/
2521 2522
		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
					    needed_blocks);
2523 2524
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2525
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2526
			       "%ld pages, ino %lu; err %d", __func__,
2527
				wbc->nr_to_write, inode->i_ino, ret);
2528
			blk_finish_plug(&plug);
2529 2530
			goto out_writepages;
		}
2531 2532

		/*
2533
		 * Now call write_cache_pages_da() to find the next
2534
		 * contiguous region of logical blocks that need
2535
		 * blocks to be allocated by ext4 and submit them.
2536
		 */
2537 2538
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2539
		/*
2540
		 * If we have a contiguous extent of pages and we
2541 2542 2543 2544
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2545
			mpage_da_map_and_submit(&mpd);
2546 2547
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2548
		trace_ext4_da_write_pages(inode, &mpd);
2549
		wbc->nr_to_write -= mpd.pages_written;
2550

2551
		ext4_journal_stop(handle);
2552

2553
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2554 2555 2556 2557
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2558
			jbd2_journal_force_commit_nested(sbi->s_journal);
2559 2560
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2561
			/*
2562 2563 2564
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2565
			 */
2566
			pages_written += mpd.pages_written;
2567
			ret = mpd.retval;
2568
			io_done = 1;
2569
		} else if (wbc->nr_to_write)
2570 2571 2572 2573 2574 2575
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2576
	}
S
Shaohua Li 已提交
2577
	blk_finish_plug(&plug);
2578 2579 2580 2581 2582 2583 2584
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2585 2586

	/* Update index */
2587
	wbc->range_cyclic = range_cyclic;
2588 2589 2590 2591 2592
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2593
		mapping->writeback_index = done_index;
2594

2595
out_writepages:
2596
	wbc->nr_to_write -= nr_to_writebump;
2597
	wbc->range_start = range_start;
2598
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2599
	return ret;
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2610
	 * counters can get slightly wrong with percpu_counter_batch getting
2611 2612 2613 2614
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2615 2616 2617
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2628
	if (2 * free_blocks < 3 * dirty_blocks ||
2629
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2630
		/*
2631 2632
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2633 2634 2635 2636 2637 2638
		 */
		return 1;
	}
	return 0;
}

2639
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640 2641
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2642
{
2643
	int ret, retries = 0;
2644 2645 2646 2647 2648 2649
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2650 2651 2652 2653 2654 2655 2656

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2657
	trace_ext4_da_write_begin(inode, pos, len, flags);
2658 2659 2660 2661 2662 2663

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
2664 2665 2666
			return ret;
		if (ret == 1)
			return 0;
2667 2668
	}

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	/*
	 * grab_cache_page_write_begin() can take a long time if the
	 * system is thrashing due to memory pressure, or if the page
	 * is being written back.  So grab it first before we start
	 * the transaction handle.  This also allows us to allocate
	 * the page (if needed) without using GFP_NOFS.
	 */
retry_grab:
	page = grab_cache_page_write_begin(mapping, index, flags);
	if (!page)
		return -ENOMEM;
	unlock_page(page);

2682 2683 2684 2685 2686 2687
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
2688
retry_journal:
2689
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690
	if (IS_ERR(handle)) {
2691 2692
		page_cache_release(page);
		return PTR_ERR(handle);
2693 2694
	}

2695 2696 2697 2698 2699
	lock_page(page);
	if (page->mapping != mapping) {
		/* The page got truncated from under us */
		unlock_page(page);
		page_cache_release(page);
2700
		ext4_journal_stop(handle);
2701
		goto retry_grab;
2702
	}
2703 2704
	/* In case writeback began while the page was unlocked */
	wait_on_page_writeback(page);
2705

2706
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707 2708 2709
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
2710 2711 2712 2713 2714 2715
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2716
			ext4_truncate_failed_write(inode);
2717 2718 2719 2720 2721 2722 2723

		if (ret == -ENOSPC &&
		    ext4_should_retry_alloc(inode->i_sb, &retries))
			goto retry_journal;

		page_cache_release(page);
		return ret;
2724 2725
	}

2726
	*pagep = page;
2727 2728 2729
	return ret;
}

2730 2731 2732 2733 2734
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2735
					    unsigned long offset)
2736 2737 2738 2739 2740 2741 2742 2743 2744
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2745
	for (i = 0; i < idx; i++)
2746 2747
		bh = bh->b_this_page;

2748
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749 2750 2751 2752
		return 0;
	return 1;
}

2753
static int ext4_da_write_end(struct file *file,
2754 2755 2756
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2757 2758 2759 2760 2761
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2762
	unsigned long start, end;
2763 2764 2765
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2766 2767
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2768 2769
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2770
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2771 2772
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2773
		default:
2774 2775 2776
			BUG();
		}
	}
2777

2778
	trace_ext4_da_write_end(inode, pos, len, copied);
2779
	start = pos & (PAGE_CACHE_SIZE - 1);
2780
	end = start + copied - 1;
2781 2782 2783 2784 2785 2786 2787

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2788
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2789 2790
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2791
			down_write(&EXT4_I(inode)->i_data_sem);
2792
			if (new_i_size > EXT4_I(inode)->i_disksize)
2793 2794
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2795 2796 2797 2798 2799
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2800
		}
2801
	}
2802 2803 2804 2805 2806 2807 2808 2809

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2810
							page, fsdata);
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2831
	ext4_da_page_release_reservation(page, offset);
2832 2833 2834 2835 2836 2837 2838

out:
	ext4_invalidatepage(page, offset);

	return;
}

2839 2840 2841 2842 2843
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2844 2845
	trace_ext4_alloc_da_blocks(inode);

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2856
	 *
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2869
	 * the pages by calling redirty_page_for_writepage() but that
2870 2871
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2872
	 * simplifying them because we wouldn't actually intend to
2873 2874 2875
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2876
	 *
2877 2878 2879 2880 2881 2882
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2883

2884 2885 2886 2887 2888
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2889
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2890 2891 2892 2893 2894 2895 2896 2897
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2898
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2899 2900 2901 2902 2903
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2904 2905 2906 2907 2908 2909
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2920 2921
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2933
		 * NB. EXT4_STATE_JDATA is not set on files other than
2934 2935 2936 2937 2938 2939
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2940
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2941
		journal = EXT4_JOURNAL(inode);
2942 2943 2944
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2945 2946 2947 2948 2949

		if (err)
			return 0;
	}

2950
	return generic_block_bmap(mapping, block, ext4_get_block);
2951 2952
}

2953
static int ext4_readpage(struct file *file, struct page *page)
2954
{
T
Tao Ma 已提交
2955 2956 2957
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2958
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2959 2960 2961 2962 2963 2964 2965 2966

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2967 2968 2969
}

static int
2970
ext4_readpages(struct file *file, struct address_space *mapping,
2971 2972
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2973 2974 2975 2976 2977 2978
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2979
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 2981
}

2982
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2983
{
2984 2985
	trace_ext4_invalidatepage(page, offset);

2986 2987 2988 2989 2990 2991
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2992 2993
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2994 2995 2996 2997 2998
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2999 3000 3001 3002 3003 3004
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3005 3006 3007 3008 3009 3010 3011 3012
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3013 3014
}

3015
static int ext4_releasepage(struct page *page, gfp_t wait)
3016
{
3017
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3018

3019 3020
	trace_ext4_releasepage(page);

3021 3022
	/* Page has dirty journalled data -> cannot release */
	if (PageChecked(page))
3023
		return 0;
3024 3025 3026 3027
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3028 3029
}

3030 3031 3032 3033 3034
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3035
int ext4_get_block_write(struct inode *inode, sector_t iblock,
3036 3037
		   struct buffer_head *bh_result, int create)
{
3038
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3039
		   inode->i_ino, create);
3040 3041
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3042 3043
}

3044
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3045
		   struct buffer_head *bh_result, int create)
3046
{
3047 3048 3049 3050
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
3051 3052
}

3053
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3054 3055
			    ssize_t size, void *private, int ret,
			    bool is_async)
3056
{
3057
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3058 3059
        ext4_io_end_t *io_end = iocb->private;

3060 3061
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3062
		goto out;
3063

3064
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3065
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3066 3067 3068
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

3069 3070
	iocb->private = NULL;

3071
	/* if not aio dio with unwritten extents, just free io and return */
3072
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3073
		ext4_free_io_end(io_end);
3074
out:
3075
		inode_dio_done(inode);
3076 3077 3078
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3079 3080
	}

3081 3082
	io_end->offset = offset;
	io_end->size = size;
3083 3084 3085 3086
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3087

3088
	ext4_add_complete_io(io_end);
3089
}
3090

3091 3092 3093 3094 3095
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
3096
 * For holes, we fallocate those blocks, mark them as uninitialized
3097
 * If those blocks were preallocated, we mark sure they are split, but
3098
 * still keep the range to write as uninitialized.
3099
 *
3100
 * The unwritten extents will be converted to written when DIO is completed.
3101
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3102
 * set up an end_io call back function, which will do the conversion
3103
 * when async direct IO completed.
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
3118 3119 3120
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
3121
	loff_t final_size = offset + count;
3122

3123 3124 3125
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3126

3127
	BUG_ON(iocb->private == NULL);
3128

3129 3130
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
3131

3132 3133 3134 3135 3136
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
3137

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
3164
		}
3165 3166
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
3167
		/*
3168 3169 3170 3171
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
3172
		 */
3173 3174
		ext4_inode_aio_set(inode, io_end);
	}
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
3222

3223 3224 3225 3226 3227 3228
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3229
	}
3230

3231
	return ret;
3232 3233 3234 3235 3236 3237 3238 3239
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3240
	ssize_t ret;
3241

3242 3243 3244 3245 3246 3247
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3248 3249 3250 3251
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3252
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3253
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3254 3255 3256 3257 3258 3259
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3260 3261
}

3262
/*
3263
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3275
static int ext4_journalled_set_page_dirty(struct page *page)
3276 3277 3278 3279 3280
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3281
static const struct address_space_operations ext4_ordered_aops = {
3282 3283
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3284
	.writepage		= ext4_writepage,
3285 3286 3287 3288 3289 3290 3291 3292
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3293
	.error_remove_page	= generic_error_remove_page,
3294 3295
};

3296
static const struct address_space_operations ext4_writeback_aops = {
3297 3298
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3299
	.writepage		= ext4_writepage,
3300 3301 3302 3303 3304 3305 3306 3307
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3308
	.error_remove_page	= generic_error_remove_page,
3309 3310
};

3311
static const struct address_space_operations ext4_journalled_aops = {
3312 3313
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3314
	.writepage		= ext4_writepage,
3315 3316 3317 3318
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3319
	.invalidatepage		= ext4_journalled_invalidatepage,
3320
	.releasepage		= ext4_releasepage,
3321
	.direct_IO		= ext4_direct_IO,
3322
	.is_partially_uptodate  = block_is_partially_uptodate,
3323
	.error_remove_page	= generic_error_remove_page,
3324 3325
};

3326
static const struct address_space_operations ext4_da_aops = {
3327 3328
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3329
	.writepage		= ext4_writepage,
3330 3331 3332 3333 3334 3335 3336 3337 3338
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3339
	.error_remove_page	= generic_error_remove_page,
3340 3341
};

3342
void ext4_set_aops(struct inode *inode)
3343
{
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3358
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3359 3360 3361 3362
		break;
	default:
		BUG();
	}
3363 3364
}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3385
		return -ENOMEM;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3414
 * from:   The starting byte offset (from the beginning of the file)
3415 3416 3417 3418 3419 3420 3421
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3422
 *         for updating the contents of a page whose blocks may
3423 3424 3425
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3426
 * Returns zero on success or negative on failure.
3427
 */
E
Eric Sandeen 已提交
3428
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3454 3455
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3468 3469
		unsigned int end_of_block, range_to_discard;

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3555
		} else
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3579 3580 3581 3582 3583 3584 3585 3586
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3587
 * Returns: 0 on success or negative on failure
3588 3589 3590 3591 3592 3593
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3594
		return -EOPNOTSUPP;
3595

3596 3597
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3598

3599 3600
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3601
		return -EOPNOTSUPP;
3602 3603
	}

3604 3605
	trace_ext4_punch_hole(inode, offset, length);

3606 3607 3608
	return ext4_ext_punch_hole(file, offset, length);
}

3609
/*
3610
 * ext4_truncate()
3611
 *
3612 3613
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3614 3615
 * simultaneously on behalf of the same inode.
 *
3616
 * As we work through the truncate and commit bits of it to the journal there
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3630
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3631
 * that this inode's truncate did not complete and it will again call
3632 3633
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3634
 * that's fine - as long as they are linked from the inode, the post-crash
3635
 * ext4_truncate() run will find them and release them.
3636
 */
3637
void ext4_truncate(struct inode *inode)
3638
{
3639 3640
	trace_ext4_truncate_enter(inode);

3641
	if (!ext4_can_truncate(inode))
3642 3643
		return;

3644
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3645

3646
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3647
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3648

3649 3650 3651 3652 3653 3654 3655 3656
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3657
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3658
		ext4_ext_truncate(inode);
3659 3660
	else
		ext4_ind_truncate(inode);
3661

3662
	trace_ext4_truncate_exit(inode);
3663 3664 3665
}

/*
3666
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3667 3668 3669 3670
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3671 3672
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3673
{
3674 3675 3676 3677 3678 3679
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3680
	iloc->bh = NULL;
3681 3682
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3683

3684 3685 3686
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3687 3688
		return -EIO;

3689 3690 3691
	/*
	 * Figure out the offset within the block group inode table
	 */
3692
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3693 3694 3695 3696 3697 3698
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3699
	if (unlikely(!bh))
3700
		return -ENOMEM;
3701 3702
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3726
			int i, start;
3727

3728
			start = inode_offset & ~(inodes_per_block - 1);
3729

3730 3731
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3732
			if (unlikely(!bitmap_bh))
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3744
			for (i = start; i < start + inodes_per_block; i++) {
3745 3746
				if (i == inode_offset)
					continue;
3747
				if (ext4_test_bit(i, bitmap_bh->b_data))
3748 3749 3750
					break;
			}
			brelse(bitmap_bh);
3751
			if (i == start + inodes_per_block) {
3752 3753 3754 3755 3756 3757 3758 3759 3760
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3761 3762 3763 3764 3765 3766 3767 3768 3769
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3770
			/* s_inode_readahead_blks is always a power of 2 */
3771 3772 3773 3774 3775
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3776
			if (ext4_has_group_desc_csum(sb))
3777
				num -= ext4_itable_unused_count(sb, gdp);
3778 3779 3780 3781 3782 3783 3784
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3785 3786 3787 3788 3789
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3790
		trace_ext4_load_inode(inode);
3791 3792
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3793
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3794 3795
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3796 3797
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3798 3799 3800 3801 3802 3803 3804 3805 3806
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3807
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3808 3809
{
	/* We have all inode data except xattrs in memory here. */
3810
	return __ext4_get_inode_loc(inode, iloc,
3811
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3812 3813
}

3814
void ext4_set_inode_flags(struct inode *inode)
3815
{
3816
	unsigned int flags = EXT4_I(inode)->i_flags;
3817 3818

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3819
	if (flags & EXT4_SYNC_FL)
3820
		inode->i_flags |= S_SYNC;
3821
	if (flags & EXT4_APPEND_FL)
3822
		inode->i_flags |= S_APPEND;
3823
	if (flags & EXT4_IMMUTABLE_FL)
3824
		inode->i_flags |= S_IMMUTABLE;
3825
	if (flags & EXT4_NOATIME_FL)
3826
		inode->i_flags |= S_NOATIME;
3827
	if (flags & EXT4_DIRSYNC_FL)
3828 3829 3830
		inode->i_flags |= S_DIRSYNC;
}

3831 3832 3833
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3854
}
3855

3856
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3857
				  struct ext4_inode_info *ei)
3858 3859
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3860 3861
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3862 3863 3864 3865 3866 3867

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3868
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3869 3870 3871 3872 3873
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3874 3875 3876 3877
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3878

3879 3880 3881 3882 3883 3884
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3885
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3886
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3887
		ext4_find_inline_data_nolock(inode);
3888 3889
	} else
		EXT4_I(inode)->i_inline_off = 0;
3890 3891
}

3892
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3893
{
3894 3895
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3896 3897
	struct ext4_inode_info *ei;
	struct inode *inode;
3898
	journal_t *journal = EXT4_SB(sb)->s_journal;
3899
	long ret;
3900
	int block;
3901 3902
	uid_t i_uid;
	gid_t i_gid;
3903

3904 3905 3906 3907 3908 3909 3910
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3911
	iloc.bh = NULL;
3912

3913 3914
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3915
		goto bad_inode;
3916
	raw_inode = ext4_raw_inode(&iloc);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3950
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3951 3952
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3953
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3954 3955
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3956
	}
3957 3958
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3959
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3960

3961
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3962
	ei->i_inline_off = 0;
3963 3964 3965 3966 3967 3968 3969 3970 3971
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3972
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3973
			/* this inode is deleted */
3974
			ret = -ESTALE;
3975 3976 3977 3978 3979 3980 3981 3982
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3983
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3984
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3985
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3986 3987
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3988
	inode->i_size = ext4_isize(raw_inode);
3989
	ei->i_disksize = inode->i_size;
3990 3991 3992
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3993 3994
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3995
	ei->i_last_alloc_group = ~0;
3996 3997 3998 3999
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4000
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4001 4002 4003
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4015
		read_lock(&journal->j_state_lock);
4016 4017 4018 4019 4020 4021 4022 4023
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4024
		read_unlock(&journal->j_state_lock);
4025 4026 4027 4028
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4029
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4030 4031
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4032 4033
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4034
		} else {
4035
			ext4_iget_extra_inode(inode, raw_inode, ei);
4036
		}
4037
	}
4038

K
Kalpak Shah 已提交
4039 4040 4041 4042 4043
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4044 4045 4046 4047 4048 4049 4050
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4051
	ret = 0;
4052
	if (ei->i_file_acl &&
4053
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4054 4055
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4056 4057
		ret = -EIO;
		goto bad_inode;
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
4071
	}
4072
	if (ret)
4073
		goto bad_inode;
4074

4075
	if (S_ISREG(inode->i_mode)) {
4076 4077 4078
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
4079
	} else if (S_ISDIR(inode->i_mode)) {
4080 4081
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
4082
	} else if (S_ISLNK(inode->i_mode)) {
4083
		if (ext4_inode_is_fast_symlink(inode)) {
4084
			inode->i_op = &ext4_fast_symlink_inode_operations;
4085 4086 4087
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
4088 4089
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
4090
		}
4091 4092
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4093
		inode->i_op = &ext4_special_inode_operations;
4094 4095 4096 4097 4098 4099
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4100 4101
	} else {
		ret = -EIO;
4102
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4103
		goto bad_inode;
4104
	}
4105
	brelse(iloc.bh);
4106
	ext4_set_inode_flags(inode);
4107 4108
	unlock_new_inode(inode);
	return inode;
4109 4110

bad_inode:
4111
	brelse(iloc.bh);
4112 4113
	iget_failed(inode);
	return ERR_PTR(ret);
4114 4115
}

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
4126
		 * i_blocks can be represented in a 32 bit variable
4127 4128
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4129
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4130
		raw_inode->i_blocks_high = 0;
4131
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132 4133 4134 4135 4136 4137
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4138 4139 4140 4141
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4142
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4143
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4144
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4145
	} else {
4146
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4147 4148 4149 4150
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4151
	}
4152
	return 0;
4153 4154
}

4155 4156 4157 4158 4159 4160 4161
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4162
static int ext4_do_update_inode(handle_t *handle,
4163
				struct inode *inode,
4164
				struct ext4_iloc *iloc)
4165
{
4166 4167
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4168 4169
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4170
	int need_datasync = 0;
4171 4172
	uid_t i_uid;
	gid_t i_gid;
4173 4174 4175

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4176
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4177
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4178

4179
	ext4_get_inode_flags(ei);
4180
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4181 4182
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4183
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4184 4185
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4186 4187 4188 4189
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4190
		if (!ei->i_dtime) {
4191
			raw_inode->i_uid_high =
4192
				cpu_to_le16(high_16_bits(i_uid));
4193
			raw_inode->i_gid_high =
4194
				cpu_to_le16(high_16_bits(i_gid));
4195 4196 4197 4198 4199
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4200 4201
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4202 4203 4204 4205
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4206 4207 4208 4209 4210 4211

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4212 4213
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4214
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4215
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4216 4217
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4218 4219
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4220
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4221 4222 4223 4224
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4240
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4241
			ext4_handle_sync(handle);
4242
			err = ext4_handle_dirty_super(handle, sb);
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4257
	} else if (!ext4_has_inline_data(inode)) {
4258 4259
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4260
	}
4261

4262 4263 4264 4265 4266
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4267
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4268 4269
	}

4270 4271
	ext4_inode_csum_set(inode, raw_inode, ei);

4272
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4273
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4274 4275
	if (!err)
		err = rc;
4276
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4277

4278
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4279
out_brelse:
4280
	brelse(bh);
4281
	ext4_std_error(inode->i_sb, err);
4282 4283 4284 4285
	return err;
}

/*
4286
 * ext4_write_inode()
4287 4288 4289 4290 4291
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4292
 *   transaction to commit.
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4303
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4320
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4321
{
4322 4323
	int err;

4324 4325 4326
	if (current->flags & PF_MEMALLOC)
		return 0;

4327 4328 4329 4330 4331 4332
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4333

4334
		if (wbc->sync_mode != WB_SYNC_ALL)
4335 4336 4337 4338 4339
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4340

4341
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4342 4343
		if (err)
			return err;
4344
		if (wbc->sync_mode == WB_SYNC_ALL)
4345 4346
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4347 4348
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4349 4350
			err = -EIO;
		}
4351
		brelse(iloc.bh);
4352 4353
	}
	return err;
4354 4355
}

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4397
/*
4398
 * ext4_setattr()
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4412 4413 4414 4415 4416 4417 4418 4419
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4420
 */
4421
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4422 4423 4424
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4425
	int orphan = 0;
4426 4427 4428 4429 4430 4431
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4432
	if (is_quota_modification(inode, attr))
4433
		dquot_initialize(inode);
4434 4435
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4436 4437 4438 4439
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
4440 4441 4442
		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4443 4444 4445 4446
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4447
		error = dquot_transfer(inode, attr);
4448
		if (error) {
4449
			ext4_journal_stop(handle);
4450 4451 4452 4453 4454 4455 4456 4457
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4458 4459
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4460 4461
	}

4462
	if (attr->ia_valid & ATTR_SIZE) {
4463

4464
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4465 4466
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4467 4468
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4469 4470 4471
		}
	}

4472
	if (S_ISREG(inode->i_mode) &&
4473
	    attr->ia_valid & ATTR_SIZE &&
4474
	    (attr->ia_size < inode->i_size)) {
4475 4476
		handle_t *handle;

4477
		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4478 4479 4480 4481
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4482 4483 4484 4485
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4486 4487
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4488 4489
		if (!error)
			error = rc;
4490
		ext4_journal_stop(handle);
4491 4492 4493 4494 4495 4496

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
4497 4498
				handle = ext4_journal_start(inode,
							    EXT4_HT_INODE, 3);
4499 4500 4501 4502 4503
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4504
				orphan = 0;
4505 4506 4507 4508
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4509 4510
	}

4511
	if (attr->ia_valid & ATTR_SIZE) {
4512 4513 4514 4515 4516 4517 4518 4519 4520
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4521
			if (orphan) {
4522 4523 4524 4525 4526 4527
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4528
			}
4529 4530 4531 4532 4533
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4534
		}
4535
		ext4_truncate(inode);
4536
	}
4537

C
Christoph Hellwig 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4547
	if (orphan && inode->i_nlink)
4548
		ext4_orphan_del(NULL, inode);
4549 4550

	if (!rc && (ia_valid & ATTR_MODE))
4551
		rc = ext4_acl_chmod(inode);
4552 4553

err_out:
4554
	ext4_std_error(inode->i_sb, error);
4555 4556 4557 4558 4559
	if (!error)
		error = rc;
	return error;
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4579 4580
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4581 4582 4583 4584

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4585

4586 4587
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4588
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4589
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4590
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4591
}
4592

4593
/*
4594 4595 4596
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4597
 *
4598
 * If datablocks are discontiguous, they are possible to spread over
4599
 * different block groups too. If they are contiguous, with flexbg,
4600
 * they could still across block group boundary.
4601
 *
4602 4603
 * Also account for superblock, inode, quota and xattr blocks
 */
4604
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4605
{
4606 4607
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4634 4635
	if (groups > ngroups)
		groups = ngroups;
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4649
 * Calculate the total number of credits to reserve to fit
4650 4651
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4652
 *
4653
 * This could be called via ext4_write_begin()
4654
 *
4655
 * We need to consider the worse case, when
4656
 * one new block per extent.
4657
 */
A
Alex Tomas 已提交
4658
int ext4_writepage_trans_blocks(struct inode *inode)
4659
{
4660
	int bpp = ext4_journal_blocks_per_page(inode);
4661 4662
	int ret;

4663
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4664

4665
	/* Account for data blocks for journalled mode */
4666
	if (ext4_should_journal_data(inode))
4667
		ret += bpp;
4668 4669
	return ret;
}
4670 4671 4672 4673 4674

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4675
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4676 4677 4678 4679 4680 4681 4682 4683 4684
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4685
/*
4686
 * The caller must have previously called ext4_reserve_inode_write().
4687 4688
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4689
int ext4_mark_iloc_dirty(handle_t *handle,
4690
			 struct inode *inode, struct ext4_iloc *iloc)
4691 4692 4693
{
	int err = 0;

4694
	if (IS_I_VERSION(inode))
4695 4696
		inode_inc_iversion(inode);

4697 4698 4699
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4700
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4701
	err = ext4_do_update_inode(handle, inode, iloc);
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4712 4713
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4714
{
4715 4716 4717 4718 4719 4720 4721 4722 4723
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4724 4725
		}
	}
4726
	ext4_std_error(inode->i_sb, err);
4727 4728 4729
	return err;
}

4730 4731 4732 4733
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4734 4735 4736 4737
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4750 4751
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4776
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4777
{
4778
	struct ext4_iloc iloc;
4779 4780 4781
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4782 4783

	might_sleep();
4784
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4785
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4786 4787
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4788
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4802 4803
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4804 4805
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4806
					ext4_warning(inode->i_sb,
4807 4808 4809
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4810 4811
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4812 4813 4814 4815
				}
			}
		}
	}
4816
	if (!err)
4817
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4818 4819 4820 4821
	return err;
}

/*
4822
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4823 4824 4825 4826 4827
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4828
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4829 4830 4831 4832 4833 4834
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4835
void ext4_dirty_inode(struct inode *inode, int flags)
4836 4837 4838
{
	handle_t *handle;

4839
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4840 4841
	if (IS_ERR(handle))
		goto out;
4842 4843 4844

	ext4_mark_inode_dirty(handle, inode);

4845
	ext4_journal_stop(handle);
4846 4847 4848 4849 4850 4851 4852 4853
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4854
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4855 4856 4857
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4858
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4859
{
4860
	struct ext4_iloc iloc;
4861 4862 4863

	int err = 0;
	if (handle) {
4864
		err = ext4_get_inode_loc(inode, &iloc);
4865 4866
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4867
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4868
			if (!err)
4869
				err = ext4_handle_dirty_metadata(handle,
4870
								 NULL,
4871
								 iloc.bh);
4872 4873 4874
			brelse(iloc.bh);
		}
	}
4875
	ext4_std_error(inode->i_sb, err);
4876 4877 4878 4879
	return err;
}
#endif

4880
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4896
	journal = EXT4_JOURNAL(inode);
4897 4898
	if (!journal)
		return 0;
4899
	if (is_journal_aborted(journal))
4900
		return -EROFS;
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4912

4913 4914 4915 4916
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4917
	jbd2_journal_lock_updates(journal);
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4928
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4929 4930
	else {
		jbd2_journal_flush(journal);
4931
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4932
	}
4933
	ext4_set_aops(inode);
4934

4935
	jbd2_journal_unlock_updates(journal);
4936
	ext4_inode_resume_unlocked_dio(inode);
4937 4938 4939

	/* Finally we can mark the inode as dirty. */

4940
	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4941 4942 4943
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4944
	err = ext4_mark_inode_dirty(handle, inode);
4945
	ext4_handle_sync(handle);
4946 4947
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4948 4949 4950

	return err;
}
4951 4952 4953 4954 4955 4956

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4957
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4958
{
4959
	struct page *page = vmf->page;
4960 4961
	loff_t size;
	unsigned long len;
4962
	int ret;
4963 4964 4965
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4966 4967 4968
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4969

4970
	sb_start_pagefault(inode->i_sb);
4971
	file_update_time(vma->vm_file);
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4982
	}
4983 4984

	lock_page(page);
4985 4986 4987 4988 4989 4990
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4991
	}
4992 4993 4994 4995 4996

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4997
	/*
4998 4999
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
5000
	 */
5001
	if (page_has_buffers(page)) {
5002 5003 5004
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
5005 5006 5007 5008
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
5009
		}
5010
	}
5011
	unlock_page(page);
5012 5013 5014 5015 5016 5017
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
5018 5019
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
				    ext4_writepage_trans_blocks(inode));
5020
	if (IS_ERR(handle)) {
5021
		ret = VM_FAULT_SIGBUS;
5022 5023 5024 5025
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
5026
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5027 5028 5029
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
5030
			ext4_journal_stop(handle);
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
5041
	sb_end_pagefault(inode->i_sb);
5042 5043
	return ret;
}