inode.c 174.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62 63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64 65 66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 71 72 73 74 75 76 77 78 79 80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
81
	ext4_lblk_t needed;
82 83 84 85 86 87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89 90 91 92 93 94 95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96 97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 118 119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121 122 123 124 125 126 127 128 129 130 131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132 133 134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 138 139 140 141 142 143 144 145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149 150 151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153 154 155 156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159 160 161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163 164

	return ret;
165 166 167 168 169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
170
void ext4_evict_inode(struct inode *inode)
171 172
{
	handle_t *handle;
173
	int err;
174

A
Al Viro 已提交
175 176 177 178 179
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

180
	if (!is_bad_inode(inode))
181
		dquot_initialize(inode);
182

183 184
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
185 186 187 188 189
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

190
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
191
	if (IS_ERR(handle)) {
192
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
193 194 195 196 197
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
198
		ext4_orphan_del(NULL, inode);
199 200 201 202
		goto no_delete;
	}

	if (IS_SYNC(inode))
203
		ext4_handle_sync(handle);
204
	inode->i_size = 0;
205 206
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
207
		ext4_warning(inode->i_sb,
208 209 210
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
211
	if (inode->i_blocks)
212
		ext4_truncate(inode);
213 214 215 216 217 218 219

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
220
	if (!ext4_handle_has_enough_credits(handle, 3)) {
221 222 223 224
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
225
			ext4_warning(inode->i_sb,
226 227 228
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
229
			ext4_orphan_del(NULL, inode);
230 231 232 233
			goto no_delete;
		}
	}

234
	/*
235
	 * Kill off the orphan record which ext4_truncate created.
236
	 * AKPM: I think this can be inside the above `if'.
237
	 * Note that ext4_orphan_del() has to be able to cope with the
238
	 * deletion of a non-existent orphan - this is because we don't
239
	 * know if ext4_truncate() actually created an orphan record.
240 241
	 * (Well, we could do this if we need to, but heck - it works)
	 */
242 243
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
244 245 246 247 248 249 250 251

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
252
	if (ext4_mark_inode_dirty(handle, inode))
253
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
254
		ext4_clear_inode(inode);
255
	else
256 257
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
258 259
	return;
no_delete:
A
Al Viro 已提交
260
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
276
 *	ext4_block_to_path - parse the block number into array of offsets
277 278 279
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
280 281
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
282
 *
283
 *	To store the locations of file's data ext4 uses a data structure common
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

306
static int ext4_block_to_path(struct inode *inode,
307 308
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
309
{
310 311 312
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
313 314 315 316 317
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

318
	if (i_block < direct_blocks) {
319 320
		offsets[n++] = i_block;
		final = direct_blocks;
321
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
322
		offsets[n++] = EXT4_IND_BLOCK;
323 324 325
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
326
		offsets[n++] = EXT4_DIND_BLOCK;
327 328 329 330
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
331
		offsets[n++] = EXT4_TIND_BLOCK;
332 333 334 335 336
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
337
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
338 339
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
340 341 342 343 344 345
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

346 347
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
348 349
				 __le32 *p, unsigned int max)
{
350
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
351
	__le32 *bref = p;
352 353
	unsigned int blk;

354
	while (bref < p+max) {
355
		blk = le32_to_cpu(*bref++);
356 357
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
358
						    blk, 1))) {
359
			es->s_last_error_block = cpu_to_le64(blk);
360 361
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
362 363 364 365
			return -EIO;
		}
	}
	return 0;
366 367 368 369
}


#define ext4_check_indirect_blockref(inode, bh)                         \
370 371
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
372 373 374
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
375 376
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
377 378
			      EXT4_NDIR_BLOCKS)

379
/**
380
 *	ext4_get_branch - read the chain of indirect blocks leading to data
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
405 406
 *
 *      Need to be called with
407
 *      down_read(&EXT4_I(inode)->i_data_sem)
408
 */
A
Aneesh Kumar K.V 已提交
409 410
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
411 412 413 414 415 416 417 418
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
419
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
420 421 422
	if (!p->key)
		goto no_block;
	while (--depth) {
423 424
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
425
			goto failure;
426

427 428 429 430 431 432 433 434 435 436 437
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
438

439
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
440 441 442 443 444 445 446 447 448 449 450 451 452
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
453
 *	ext4_find_near - find a place for allocation with sufficient locality
454 455 456
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
457
 *	This function returns the preferred place for block allocation.
458 459 460 461 462 463 464 465 466 467 468 469 470 471
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
472
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
473
{
474
	struct ext4_inode_info *ei = EXT4_I(inode);
475
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
476
	__le32 *p;
477
	ext4_fsblk_t bg_start;
478
	ext4_fsblk_t last_block;
479
	ext4_grpblk_t colour;
480 481
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
497 498 499 500 501 502 503
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
504 505
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

506 507 508 509 510 511 512
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

513 514
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
515
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
516 517
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
518 519 520 521
	return bg_start + colour;
}

/**
522
 *	ext4_find_goal - find a preferred place for allocation.
523 524 525 526
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
527
 *	Normally this function find the preferred place for block allocation,
528
 *	returns it.
529 530
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
531
 */
A
Aneesh Kumar K.V 已提交
532
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
533
				   Indirect *partial)
534
{
535 536
	ext4_fsblk_t goal;

537
	/*
538
	 * XXX need to get goal block from mballoc's data structures
539 540
	 */

541 542 543
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
544 545 546
}

/**
547
 *	ext4_blks_to_allocate: Look up the block map and count the number
548 549 550 551 552 553 554 555 556 557
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
558
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
559
				 int blocks_to_boundary)
560
{
561
	unsigned int count = 0;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
585
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
586 587 588 589 590 591 592 593
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
594
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
595 596 597
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
598
{
599
	struct ext4_allocation_request ar;
600
	int target, i;
601
	unsigned long count = 0, blk_allocated = 0;
602
	int index = 0;
603
	ext4_fsblk_t current_block = 0;
604 605 606 607 608 609 610 611 612 613
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
614 615 616
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
617 618
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
619 620
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
621 622 623
		if (*err)
			goto failed_out;

624 625 626 627 628 629 630 631
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
632

633 634 635 636 637 638
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
639 640 641 642 643 644 645 646 647
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
648
			break;
649
		}
650 651
	}

652 653 654 655 656
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
657 658 659 660 661 662 663 664 665 666
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
667 668 669 670 671 672 673 674
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
675

676 677 678 679 680 681 682 683 684
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
685 686 687 688
			/*
			 * save the new block number
			 * for the first direct block
			 */
689 690
			new_blocks[index] = current_block;
		}
691
		blk_allocated += ar.len;
692 693
	}
allocated:
694
	/* total number of blocks allocated for direct blocks */
695
	ret = blk_allocated;
696 697 698
	*err = 0;
	return ret;
failed_out:
699
	for (i = 0; i < index; i++)
700
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
701 702 703 704
	return ret;
}

/**
705
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
706 707 708 709 710 711 712 713 714 715
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
716
 *	the same format as ext4_get_branch() would do. We are calling it after
717 718
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
719
 *	picture as after the successful ext4_get_block(), except that in one
720 721 722 723 724 725
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
726
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 728
 *	as described above and return 0.
 */
729
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 731 732
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
733 734 735 736 737 738
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
739 740
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
741

742
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
761
		err = ext4_journal_get_create_access(handle, bh);
762
		if (err) {
763 764
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
765 766 767 768 769 770 771 772
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
773
		if (n == indirect_blks) {
774 775 776 777 778 779
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
780
			for (i = 1; i < num; i++)
781 782 783 784 785 786
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

787 788
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
789 790 791 792 793 794 795
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
796
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
797
	for (i = 1; i <= n ; i++) {
798
		/*
799 800 801
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
802
		 */
803 804
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
805
	}
806 807
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
808

809
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
810 811 812 813 814

	return err;
}

/**
815
 * ext4_splice_branch - splice the allocated branch onto inode.
816 817 818
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
819
 *	ext4_alloc_branch)
820 821 822 823 824 825 826 827
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
828
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
829 830
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
831 832 833
{
	int i;
	int err = 0;
834
	ext4_fsblk_t current_block;
835 836 837 838 839 840 841 842

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
843
		err = ext4_journal_get_write_access(handle, where->bh);
844 845 846 847 848 849 850 851 852 853 854 855 856 857
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
858
			*(where->p + i) = cpu_to_le32(current_block++);
859 860 861 862 863 864 865 866 867 868 869
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
870
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
871 872
		 */
		jbd_debug(5, "splicing indirect only\n");
873 874
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
875 876 877 878 879 880
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
881
		ext4_mark_inode_dirty(handle, inode);
882 883 884 885 886 887
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
888
		/*
889 890 891
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
892
		 */
893 894
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
895
	}
896 897
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
898 899 900 901 902

	return err;
}

/*
903
 * The ext4_ind_map_blocks() function handles non-extents inodes
904
 * (i.e., using the traditional indirect/double-indirect i_blocks
905
 * scheme) for ext4_map_blocks().
906
 *
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
923
 *
924 925 926 927 928
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
929
 */
930 931
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
932
			       int flags)
933 934
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
935
	ext4_lblk_t offsets[4];
936 937
	Indirect chain[4];
	Indirect *partial;
938
	ext4_fsblk_t goal;
939 940 941 942
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
943
	ext4_fsblk_t first_block = 0;
944

945
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
946
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
947
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
948
				   &blocks_to_boundary);
949 950 951 952

	if (depth == 0)
		goto out;

953
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
954 955 956 957 958 959

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
960
		while (count < map->m_len && count <= blocks_to_boundary) {
961
			ext4_fsblk_t blk;
962 963 964 965 966 967 968 969

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
970
		goto got_it;
971 972 973
	}

	/* Next simple case - plain lookup or failed read of indirect block */
974
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
975 976 977
		goto cleanup;

	/*
978
	 * Okay, we need to do block allocation.
979
	*/
980
	goal = ext4_find_goal(inode, map->m_lblk, partial);
981 982 983 984 985 986 987 988

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
989
	count = ext4_blks_to_allocate(partial, indirect_blks,
990
				      map->m_len, blocks_to_boundary);
991
	/*
992
	 * Block out ext4_truncate while we alter the tree
993
	 */
994
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
995 996
				&count, goal,
				offsets + (partial - chain), partial);
997 998

	/*
999
	 * The ext4_splice_branch call will free and forget any buffers
1000 1001 1002 1003 1004 1005
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1006
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1007
					 partial, indirect_blks, count);
1008
	if (err)
1009 1010
		goto cleanup;

1011
	map->m_flags |= EXT4_MAP_NEW;
1012 1013

	ext4_update_inode_fsync_trans(handle, inode, 1);
1014
got_it:
1015 1016 1017
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1018
	if (count > blocks_to_boundary)
1019
		map->m_flags |= EXT4_MAP_BOUNDARY;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1033 1034
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1035
{
1036
	return &EXT4_I(inode)->i_reserved_quota;
1037
}
1038
#endif
1039

1040 1041
/*
 * Calculate the number of metadata blocks need to reserve
1042
 * to allocate a new block at @lblocks for non extent file based file
1043
 */
1044 1045
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1046
{
1047
	struct ext4_inode_info *ei = EXT4_I(inode);
1048
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1049
	int blk_bits;
1050

1051 1052
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1053

1054
	lblock -= EXT4_NDIR_BLOCKS;
1055

1056 1057 1058 1059 1060 1061 1062
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1063
	blk_bits = order_base_2(lblock);
1064
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1065 1066 1067 1068
}

/*
 * Calculate the number of metadata blocks need to reserve
1069
 * to allocate a block located at @lblock
1070
 */
1071
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1072
{
1073
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1074
		return ext4_ext_calc_metadata_amount(inode, lblock);
1075

1076
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1077 1078
}

1079 1080 1081 1082
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1083 1084
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1085 1086
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 1088 1089
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1090
	trace_ext4_da_update_reserve_space(inode, used);
1091 1092 1093 1094 1095 1096 1097 1098
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1099

1100 1101 1102
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1103 1104
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1105
	ei->i_allocated_meta_blocks = 0;
1106

1107 1108 1109 1110 1111 1112
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1113 1114
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1115
		ei->i_reserved_meta_blocks = 0;
1116
		ei->i_da_metadata_calc_len = 0;
1117
	}
1118
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1119

1120 1121
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1122
		dquot_claim_block(inode, used);
1123
	else {
1124 1125 1126
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1127
		 * not re-claim the quota for fallocated blocks.
1128
		 */
1129
		dquot_release_reservation_block(inode, used);
1130
	}
1131 1132 1133 1134 1135 1136

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1137 1138
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1139
		ext4_discard_preallocations(inode);
1140 1141
}

1142
static int __check_block_validity(struct inode *inode, const char *func,
1143 1144
				unsigned int line,
				struct ext4_map_blocks *map)
1145
{
1146 1147
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1148 1149 1150 1151
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1152 1153 1154 1155 1156
		return -EIO;
	}
	return 0;
}

1157
#define check_block_validity(inode, map)	\
1158
	__check_block_validity((inode), __func__, __LINE__, (map))
1159

1160
/*
1161 1162
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1196 1197 1198 1199 1200 1201 1202 1203 1204
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1205 1206 1207 1208 1209
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1210 1211
			if (num >= max_pages) {
				done = 1;
1212
				break;
1213
			}
1214 1215 1216 1217 1218 1219
		}
		pagevec_release(&pvec);
	}
	return num;
}

1220
/*
1221
 * The ext4_map_blocks() function tries to look up the requested blocks,
1222
 * and returns if the blocks are already mapped.
1223 1224 1225 1226 1227
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1228 1229
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1242 1243
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1244 1245
{
	int retval;
1246

1247 1248 1249 1250
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1251
	/*
1252 1253
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1254 1255
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1256
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1257
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1258
	} else {
1259
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1260
	}
1261
	up_read((&EXT4_I(inode)->i_data_sem));
1262

1263
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1264
		int ret = check_block_validity(inode, map);
1265 1266 1267 1268
		if (ret != 0)
			return ret;
	}

1269
	/* If it is only a block(s) look up */
1270
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1271 1272 1273 1274 1275 1276 1277 1278 1279
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1280
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1281 1282
		return retval;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1293
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1294

1295
	/*
1296 1297 1298 1299
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1300 1301
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1302 1303 1304 1305 1306 1307 1308

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1309
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1310
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1311 1312 1313 1314
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1315
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1316
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1317
	} else {
1318
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1319

1320
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1321 1322 1323 1324 1325
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1326
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1327
		}
1328

1329 1330 1331 1332 1333 1334 1335
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1336
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1337 1338
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1339
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1340
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1341

1342
	up_write((&EXT4_I(inode)->i_data_sem));
1343
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1344
		int ret = check_block_validity(inode, map);
1345 1346 1347
		if (ret != 0)
			return ret;
	}
1348 1349 1350
	return retval;
}

1351 1352 1353
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1354 1355
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1356
{
1357
	handle_t *handle = ext4_journal_current_handle();
1358
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1359
	int ret = 0, started = 0;
1360
	int dio_credits;
1361

1362 1363 1364 1365
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1366
		/* Direct IO write... */
1367 1368 1369
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1370
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1371
		if (IS_ERR(handle)) {
1372
			ret = PTR_ERR(handle);
1373
			return ret;
1374
		}
J
Jan Kara 已提交
1375
		started = 1;
1376 1377
	}

1378
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1379
	if (ret > 0) {
1380 1381 1382
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1383
		ret = 0;
1384
	}
J
Jan Kara 已提交
1385 1386
	if (started)
		ext4_journal_stop(handle);
1387 1388 1389
	return ret;
}

1390 1391 1392 1393 1394 1395 1396
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1397 1398 1399
/*
 * `handle' can be NULL if create is zero
 */
1400
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1401
				ext4_lblk_t block, int create, int *errp)
1402
{
1403 1404
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1405 1406 1407 1408
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1409 1410 1411 1412
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1424
	}
1425 1426 1427
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1442
		}
1443 1444 1445 1446 1447 1448 1449
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1450
	}
1451 1452 1453 1454 1455 1456
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1457 1458
}

1459
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1460
			       ext4_lblk_t block, int create, int *err)
1461
{
1462
	struct buffer_head *bh;
1463

1464
	bh = ext4_getblk(handle, inode, block, create, err);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1478 1479 1480 1481 1482 1483 1484
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1485 1486 1487 1488 1489 1490 1491
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1492 1493
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1494
	     block_start = block_end, bh = next) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1512
 * close off a transaction and start a new one between the ext4_get_block()
1513
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1514 1515
 * prepare_write() is the right place.
 *
1516 1517
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1518 1519 1520 1521
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1522
 * By accident, ext4 can be reentered when a transaction is open via
1523 1524 1525 1526 1527 1528
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1529
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1530 1531 1532 1533 1534
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1535
				       struct buffer_head *bh)
1536
{
1537 1538 1539
	int dirty = buffer_dirty(bh);
	int ret;

1540 1541
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * __block_prepare_write() could have dirtied some buffers. Clean
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
	 * by __block_prepare_write() isn't a real problem here as we clear
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1568 1569
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1570
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1571 1572
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1573
{
1574
	struct inode *inode = mapping->host;
1575
	int ret, needed_blocks;
1576 1577
	handle_t *handle;
	int retries = 0;
1578
	struct page *page;
1579
	pgoff_t index;
1580
	unsigned from, to;
N
Nick Piggin 已提交
1581

1582
	trace_ext4_write_begin(inode, pos, len, flags);
1583 1584 1585 1586 1587
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1588
	index = pos >> PAGE_CACHE_SHIFT;
1589 1590
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1591 1592

retry:
1593 1594 1595 1596
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1597
	}
1598

1599 1600 1601 1602
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1603
	page = grab_cache_page_write_begin(mapping, index, flags);
1604 1605 1606 1607 1608 1609 1610
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1611
	if (ext4_should_dioread_nolock(inode))
1612
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1613
	else
1614
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1615 1616

	if (!ret && ext4_should_journal_data(inode)) {
1617 1618 1619
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1620 1621

	if (ret) {
1622 1623
		unlock_page(page);
		page_cache_release(page);
1624
		/*
1625
		 * __block_write_begin may have instantiated a few blocks
1626 1627
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1628 1629 1630
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1631
		 */
1632
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1633 1634 1635 1636
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1637
			ext4_truncate_failed_write(inode);
1638
			/*
1639
			 * If truncate failed early the inode might
1640 1641 1642 1643 1644 1645 1646
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1647 1648
	}

1649
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1650
		goto retry;
1651
out:
1652 1653 1654
	return ret;
}

N
Nick Piggin 已提交
1655 1656
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1657 1658 1659 1660
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1661
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1662 1663
}

1664
static int ext4_generic_write_end(struct file *file,
1665 1666 1667
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1710 1711 1712 1713
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1714
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1715 1716
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1717
static int ext4_ordered_write_end(struct file *file,
1718 1719 1720
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1721
{
1722
	handle_t *handle = ext4_journal_current_handle();
1723
	struct inode *inode = mapping->host;
1724 1725
	int ret = 0, ret2;

1726
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1727
	ret = ext4_jbd2_file_inode(handle, inode);
1728 1729

	if (ret == 0) {
1730
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1731
							page, fsdata);
1732
		copied = ret2;
1733
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1734 1735 1736 1737 1738
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1739 1740
		if (ret2 < 0)
			ret = ret2;
1741
	}
1742
	ret2 = ext4_journal_stop(handle);
1743 1744
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1745

1746
	if (pos + len > inode->i_size) {
1747
		ext4_truncate_failed_write(inode);
1748
		/*
1749
		 * If truncate failed early the inode might still be
1750 1751 1752 1753 1754 1755 1756 1757
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1758
	return ret ? ret : copied;
1759 1760
}

N
Nick Piggin 已提交
1761
static int ext4_writeback_write_end(struct file *file,
1762 1763 1764
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1765
{
1766
	handle_t *handle = ext4_journal_current_handle();
1767
	struct inode *inode = mapping->host;
1768 1769
	int ret = 0, ret2;

1770
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1771
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1772
							page, fsdata);
1773
	copied = ret2;
1774
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1775 1776 1777 1778 1779 1780
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1781 1782
	if (ret2 < 0)
		ret = ret2;
1783

1784
	ret2 = ext4_journal_stop(handle);
1785 1786
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1787

1788
	if (pos + len > inode->i_size) {
1789
		ext4_truncate_failed_write(inode);
1790
		/*
1791
		 * If truncate failed early the inode might still be
1792 1793 1794 1795 1796 1797 1798
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1799
	return ret ? ret : copied;
1800 1801
}

N
Nick Piggin 已提交
1802
static int ext4_journalled_write_end(struct file *file,
1803 1804 1805
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1806
{
1807
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1808
	struct inode *inode = mapping->host;
1809 1810
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1811
	unsigned from, to;
1812
	loff_t new_i_size;
1813

1814
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1815 1816 1817 1818 1819 1820 1821 1822
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1823 1824

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1825
				to, &partial, write_end_fn);
1826 1827
	if (!partial)
		SetPageUptodate(page);
1828 1829
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1830
		i_size_write(inode, pos+copied);
1831
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1832 1833
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1834
		ret2 = ext4_mark_inode_dirty(handle, inode);
1835 1836 1837
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1838

1839
	unlock_page(page);
1840
	page_cache_release(page);
1841
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1842 1843 1844 1845 1846 1847
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1848
	ret2 = ext4_journal_stop(handle);
1849 1850
	if (!ret)
		ret = ret2;
1851
	if (pos + len > inode->i_size) {
1852
		ext4_truncate_failed_write(inode);
1853
		/*
1854
		 * If truncate failed early the inode might still be
1855 1856 1857 1858 1859 1860
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1861 1862

	return ret ? ret : copied;
1863
}
1864

1865 1866 1867 1868
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1869
{
A
Aneesh Kumar K.V 已提交
1870
	int retries = 0;
1871
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872
	struct ext4_inode_info *ei = EXT4_I(inode);
1873
	unsigned long md_needed;
1874
	int ret;
1875 1876 1877 1878 1879 1880

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1881
repeat:
1882
	spin_lock(&ei->i_block_reservation_lock);
1883
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1884
	trace_ext4_da_reserve_space(inode, md_needed);
1885
	spin_unlock(&ei->i_block_reservation_lock);
1886

1887
	/*
1888 1889 1890
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1891
	 */
1892
	ret = dquot_reserve_block(inode, 1);
1893 1894
	if (ret)
		return ret;
1895 1896 1897 1898
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1899
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1900
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1901 1902 1903 1904
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1905 1906
		return -ENOSPC;
	}
1907
	spin_lock(&ei->i_block_reservation_lock);
1908
	ei->i_reserved_data_blocks++;
1909 1910
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1911

1912 1913 1914
	return 0;       /* success */
}

1915
static void ext4_da_release_space(struct inode *inode, int to_free)
1916 1917
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1918
	struct ext4_inode_info *ei = EXT4_I(inode);
1919

1920 1921 1922
	if (!to_free)
		return;		/* Nothing to release, exit */

1923
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1924

L
Li Zefan 已提交
1925
	trace_ext4_da_release_space(inode, to_free);
1926
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1927
		/*
1928 1929 1930 1931
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1932
		 */
1933 1934 1935 1936 1937 1938
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1939
	}
1940
	ei->i_reserved_data_blocks -= to_free;
1941

1942 1943 1944 1945 1946 1947
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1948 1949
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1950
		ei->i_reserved_meta_blocks = 0;
1951
		ei->i_da_metadata_calc_len = 0;
1952
	}
1953

1954
	/* update fs dirty data blocks counter */
1955
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1956 1957

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1958

1959
	dquot_release_reservation_block(inode, to_free);
1960 1961 1962
}

static void ext4_da_page_release_reservation(struct page *page,
1963
					     unsigned long offset)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1980
	ext4_da_release_space(page->mapping->host, to_release);
1981
}
1982

1983 1984 1985 1986 1987 1988
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1989
 * them with writepage() call back
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
2002
	long pages_skipped;
2003 2004 2005 2006 2007
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2008 2009

	BUG_ON(mpd->next_page <= mpd->first_page);
2010 2011 2012
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2013
	 * If we look at mpd->b_blocknr we would only be looking
2014 2015
	 * at the currently mapped buffer_heads.
	 */
2016 2017 2018
	index = mpd->first_page;
	end = mpd->next_page - 1;

2019
	pagevec_init(&pvec, 0);
2020
	while (index <= end) {
2021
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2022 2023 2024 2025 2026
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2027 2028 2029 2030 2031 2032 2033 2034
			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2035
			pages_skipped = mpd->wbc->pages_skipped;
2036
			err = mapping->a_ops->writepage(page, mpd->wbc);
2037 2038 2039 2040 2041
			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
				/*
				 * have successfully written the page
				 * without skipping the same
				 */
2042
				mpd->pages_written++;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * the function goes through all passed space and put actual disk
2060
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2061
 */
2062 2063
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
				 struct ext4_map_blocks *map)
2064 2065 2066
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2067 2068
	int blocks = map->m_len;
	sector_t pblock = map->m_pblk, cur_logical;
2069
	struct buffer_head *head, *bh;
2070
	pgoff_t index, end;
2071 2072 2073
	struct pagevec pvec;
	int nr_pages, i;

2074 2075
	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
2102
				if (cur_logical >= map->m_lblk)
2103 2104 2105 2106 2107
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
2108
				if (cur_logical >= map->m_lblk + blocks)
2109
					break;
2110

2111
				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2127
				} else if (buffer_mapped(bh))
2128 2129
					BUG_ON(bh->b_blocknr != pblock);

2130
				if (map->m_flags & EXT4_MAP_UNINIT)
2131
					set_buffer_uninit(bh);
2132 2133 2134 2135 2136 2137 2138 2139 2140
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2159
			if (page->index > end)
2160 2161 2162 2163 2164 2165 2166
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2167 2168
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2169 2170 2171 2172
	}
	return;
}

2173 2174 2175
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2188 2189 2190
	return;
}

2191 2192 2193
/*
 * mpage_da_map_blocks - go through given space
 *
2194
 * @mpd - bh describing space
2195 2196 2197 2198
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2199
static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2200
{
2201
	int err, blks, get_blocks_flags;
2202
	struct ext4_map_blocks map;
2203 2204 2205 2206
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2207 2208 2209 2210

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
2211
	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2212 2213
		!(mpd->b_state & (1 << BH_Delay)) &&
		!(mpd->b_state & (1 << BH_Unwritten)))
2214
		return 0;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	/*
	 * If we didn't accumulate anything to write simply return
	 */
	if (!mpd->b_size)
		return 0;

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2225
	/*
2226
	 * Call ext4_map_blocks() to allocate any delayed allocation
2227 2228 2229 2230 2231 2232 2233 2234
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2235
	 * want to change *many* call functions, so ext4_map_blocks()
2236 2237 2238 2239 2240 2241
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2242
	 */
2243 2244
	map.m_lblk = next;
	map.m_len = max_blocks;
2245
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2246 2247
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2248
	if (mpd->b_state & (1 << BH_Delay))
2249 2250
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2251
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2252
	if (blks < 0) {
2253 2254
		struct super_block *sb = mpd->inode->i_sb;

2255
		err = blks;
2256 2257 2258 2259
		/*
		 * If get block returns with error we simply
		 * return. Later writepage will redirty the page and
		 * writepages will find the dirty page again
2260 2261 2262
		 */
		if (err == -EAGAIN)
			return 0;
2263 2264

		if (err == -ENOSPC &&
2265
		    ext4_count_free_blocks(sb)) {
2266 2267 2268 2269
			mpd->retval = err;
			return 0;
		}

2270
		/*
2271 2272 2273 2274 2275
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2276
		 */
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2288
		}
2289
		/* invalidate all the pages */
2290
		ext4_da_block_invalidatepages(mpd, next,
2291
				mpd->b_size >> mpd->inode->i_blkbits);
2292 2293
		return err;
	}
2294 2295
	BUG_ON(blks == 0);

2296 2297 2298
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2299

2300 2301 2302
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2303

2304 2305 2306 2307
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2308 2309
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2310
		mpage_put_bnr_to_bhs(mpd, &map);
2311

2312 2313 2314 2315 2316 2317 2318
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
			return err;
	}

	/*
2319
	 * Update on-disk size along with block allocation.
2320 2321 2322 2323 2324 2325 2326 2327 2328
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
		return ext4_mark_inode_dirty(handle, mpd->inode);
	}

2329
	return 0;
2330 2331
}

2332 2333
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2345 2346
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2347 2348
{
	sector_t next;
2349
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2350

2351 2352 2353 2354
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2355
	 * ext4_map_blocks() multiple times in a loop
2356 2357 2358 2359
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2360
	/* check if thereserved journal credits might overflow */
2361
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2382 2383 2384
	/*
	 * First block in the extent
	 */
2385 2386 2387 2388
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2389 2390 2391
		return;
	}

2392
	next = mpd->b_blocknr + nrblocks;
2393 2394 2395
	/*
	 * Can we merge the block to our big extent?
	 */
2396 2397
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2398 2399 2400
		return;
	}

2401
flush_it:
2402 2403 2404 2405
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2406 2407
	if (mpage_da_map_blocks(mpd) == 0)
		mpage_da_submit_io(mpd);
2408 2409
	mpd->io_done = 1;
	return;
2410 2411
}

2412
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2413
{
2414
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2431
	struct buffer_head *bh, *head;
2432 2433 2434 2435 2436 2437 2438 2439
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2440
		 * and start IO on them using writepage()
2441 2442
		 */
		if (mpd->next_page != mpd->first_page) {
2443 2444
			if (mpage_da_map_blocks(mpd) == 0)
				mpage_da_submit_io(mpd);
2445 2446 2447 2448 2449 2450 2451
			/*
			 * skip rest of the page in the page_vec
			 */
			mpd->io_done = 1;
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2462 2463 2464
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2465 2466 2467 2468 2469 2470 2471
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2472 2473
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2474 2475
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2476 2477 2478 2479 2480 2481 2482 2483
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2484 2485 2486 2487
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2488
			 * with the page in ext4_writepage
2489
			 */
2490
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2491 2492 2493
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2494 2495
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2496 2497 2498 2499 2500 2501 2502 2503 2504
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2505 2506
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2507
			}
2508 2509 2510 2511 2512 2513 2514 2515
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2516 2517 2518
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2519 2520 2521 2522 2523 2524 2525
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2526 2527
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2528
				  struct buffer_head *bh, int create)
2529
{
2530
	struct ext4_map_blocks map;
2531
	int ret = 0;
2532 2533 2534 2535
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2536 2537

	BUG_ON(create == 0);
2538 2539 2540 2541
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2542 2543 2544 2545 2546 2547

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2548 2549 2550 2551 2552 2553
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2554 2555 2556 2557
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2558
		ret = ext4_da_reserve_space(inode, iblock);
2559 2560 2561 2562
		if (ret)
			/* not enough space to reserve */
			return ret;

2563 2564 2565 2566
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2567 2568
	}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2583
}
2584

2585 2586 2587
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2588 2589
 * callback function for block_prepare_write() and block_write_full_page().
 * These functions should only try to map a single block at a time.
2590 2591 2592 2593 2594
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2595 2596 2597
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2598 2599
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2600 2601
				   struct buffer_head *bh_result, int create)
{
2602
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2603
	return _ext4_get_block(inode, iblock, bh_result, 0);
2604 2605
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2653
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2654 2655 2656 2657
out:
	return ret;
}

2658 2659 2660
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2661
/*
2662 2663 2664 2665 2666 2667 2668 2669 2670
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2671 2672 2673 2674 2675
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2701
 */
2702
static int ext4_writepage(struct page *page,
2703
			  struct writeback_control *wbc)
2704 2705
{
	int ret = 0;
2706
	loff_t size;
2707
	unsigned int len;
2708
	struct buffer_head *page_bufs = NULL;
2709 2710
	struct inode *inode = page->mapping->host;

2711
	trace_ext4_writepage(inode, page);
2712 2713 2714 2715 2716
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2717

2718
	if (page_has_buffers(page)) {
2719
		page_bufs = page_buffers(page);
2720
		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2721
					ext4_bh_delay_or_unwritten)) {
2722
			/*
2723 2724
			 * We don't want to do  block allocation
			 * So redirty the page and return
2725 2726 2727
			 * We may reach here when we do a journal commit
			 * via journal_submit_inode_data_buffers.
			 * If we don't have mapping block we just ignore
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
			 * them. We can also reach here via shrink_page_list
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
	} else {
		/*
		 * The test for page_has_buffers() is subtle:
		 * We know the page is dirty but it lost buffers. That means
		 * that at some moment in time after write_begin()/write_end()
		 * has been called all buffers have been clean and thus they
		 * must have been written at least once. So they are all
		 * mapped and we can happily proceed with mapping them
		 * and writing the page.
		 *
		 * Try to initialize the buffer_heads and check whether
		 * all are mapped and non delay. We don't want to
		 * do block allocation here.
		 */
2748
		ret = block_prepare_write(page, 0, len,
2749
					  noalloc_get_block_write);
2750 2751 2752 2753
		if (!ret) {
			page_bufs = page_buffers(page);
			/* check whether all are mapped and non delay */
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2754
						ext4_bh_delay_or_unwritten)) {
2755 2756 2757 2758 2759 2760 2761 2762 2763
				redirty_page_for_writepage(wbc, page);
				unlock_page(page);
				return 0;
			}
		} else {
			/*
			 * We can't do block allocation here
			 * so just redity the page and unlock
			 * and return
2764 2765 2766 2767 2768
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
2769
		/* now mark the buffer_heads as dirty and uptodate */
2770
		block_commit_write(page, 0, len);
2771 2772
	}

2773 2774 2775 2776 2777 2778
	if (PageChecked(page) && ext4_should_journal_data(inode)) {
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2779
		return __ext4_journalled_writepage(page, len);
2780 2781
	}

2782
	if (page_bufs && buffer_uninit(page_bufs)) {
2783 2784 2785 2786
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2787 2788
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2789 2790 2791 2792

	return ret;
}

2793
/*
2794 2795 2796 2797 2798
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2799
 */
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2811
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2812 2813 2814 2815 2816
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2936
static int ext4_da_writepages(struct address_space *mapping,
2937
			      struct writeback_control *wbc)
2938
{
2939 2940
	pgoff_t	index;
	int range_whole = 0;
2941
	handle_t *handle = NULL;
2942
	struct mpage_da_data mpd;
2943
	struct inode *inode = mapping->host;
2944 2945
	int pages_written = 0;
	long pages_skipped;
2946
	unsigned int max_pages;
2947
	int range_cyclic, cycled = 1, io_done = 0;
2948 2949
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2950
	loff_t range_start = wbc->range_start;
2951
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2952

2953
	trace_ext4_da_writepages(inode, wbc);
2954

2955 2956 2957 2958 2959
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2960
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2961
		return 0;
2962 2963 2964 2965 2966

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2967
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2968 2969 2970 2971 2972
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2973
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2974 2975
		return -EROFS;

2976 2977
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2978

2979 2980
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2981
		index = mapping->writeback_index;
2982 2983 2984 2985 2986 2987
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
2988
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
	if (!range_cyclic && range_whole)
		desired_nr_to_write = wbc->nr_to_write * 8;
	else
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3020 3021 3022
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3023 3024
	pages_skipped = wbc->pages_skipped;

3025
retry:
3026
	while (!ret && wbc->nr_to_write > 0) {
3027 3028 3029 3030 3031 3032 3033 3034

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3035
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3036

3037 3038 3039 3040
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3041
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3042
			       "%ld pages, ino %lu; err %d", __func__,
3043
				wbc->nr_to_write, inode->i_ino, ret);
3044 3045
			goto out_writepages;
		}
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3064
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3065
		/*
3066
		 * If we have a contiguous extent of pages and we
3067 3068 3069 3070 3071 3072 3073 3074 3075
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
			if (mpage_da_map_blocks(&mpd) == 0)
				mpage_da_submit_io(&mpd);
			mpd.io_done = 1;
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3076
		trace_ext4_da_write_pages(inode, &mpd);
3077
		wbc->nr_to_write -= mpd.pages_written;
3078

3079
		ext4_journal_stop(handle);
3080

3081
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3082 3083 3084 3085
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3086
			jbd2_journal_force_commit_nested(sbi->s_journal);
3087 3088 3089
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3090 3091 3092 3093
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3094 3095
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3096
			ret = 0;
3097
			io_done = 1;
3098
		} else if (wbc->nr_to_write)
3099 3100 3101 3102 3103 3104
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3105
	}
3106 3107 3108 3109 3110 3111 3112
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3113
	if (pages_skipped != wbc->pages_skipped)
3114 3115
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3116
			 "with nr_to_write = %ld ret = %d",
3117
			 __func__, wbc->nr_to_write, ret);
3118 3119 3120

	/* Update index */
	index += pages_written;
3121
	wbc->range_cyclic = range_cyclic;
3122 3123 3124 3125 3126 3127
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3128

3129
out_writepages:
3130
	wbc->nr_to_write -= nr_to_writebump;
3131
	wbc->range_start = range_start;
3132
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3133
	return ret;
3134 3135
}

3136 3137 3138 3139 3140 3141 3142 3143 3144
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3145
	 * counters can get slightly wrong with percpu_counter_batch getting
3146 3147 3148 3149 3150 3151 3152 3153 3154
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3155 3156
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3157 3158 3159
		 */
		return 1;
	}
3160 3161 3162 3163 3164 3165 3166
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3167 3168 3169
	return 0;
}

3170
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3171 3172
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3173
{
3174
	int ret, retries = 0;
3175 3176 3177 3178 3179 3180
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3181 3182 3183 3184 3185 3186 3187

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3188
	trace_ext4_da_write_begin(inode, pos, len, flags);
3189
retry:
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3201 3202 3203
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3204

3205
	page = grab_cache_page_write_begin(mapping, index, flags);
3206 3207 3208 3209 3210
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3211 3212
	*pagep = page;

3213
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3214 3215 3216 3217
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3218 3219 3220 3221 3222 3223
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3224
			ext4_truncate_failed_write(inode);
3225 3226
	}

3227 3228
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3229 3230 3231 3232
out:
	return ret;
}

3233 3234 3235 3236 3237
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3238
					    unsigned long offset)
3239 3240 3241 3242 3243 3244 3245 3246 3247
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3248
	for (i = 0; i < idx; i++)
3249 3250
		bh = bh->b_this_page;

3251
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3252 3253 3254 3255
		return 0;
	return 1;
}

3256
static int ext4_da_write_end(struct file *file,
3257 3258 3259
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3260 3261 3262 3263 3264
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3265
	unsigned long start, end;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3279

3280
	trace_ext4_da_write_end(inode, pos, len, copied);
3281
	start = pos & (PAGE_CACHE_SIZE - 1);
3282
	end = start + copied - 1;
3283 3284 3285 3286 3287 3288 3289 3290

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3302

3303 3304 3305
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3306 3307 3308 3309 3310
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3311
		}
3312
	}
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3334
	ext4_da_page_release_reservation(page, offset);
3335 3336 3337 3338 3339 3340 3341

out:
	ext4_invalidatepage(page, offset);

	return;
}

3342 3343 3344 3345 3346
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3347 3348
	trace_ext4_alloc_da_blocks(inode);

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3359
	 *
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3379
	 *
3380 3381 3382 3383 3384 3385
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3386

3387 3388 3389 3390 3391
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3392
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3393 3394 3395 3396 3397 3398 3399 3400
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3401
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3402 3403 3404 3405 3406
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3417 3418
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3430
		 * NB. EXT4_STATE_JDATA is not set on files other than
3431 3432 3433 3434 3435 3436
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3437
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3438
		journal = EXT4_JOURNAL(inode);
3439 3440 3441
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3442 3443 3444 3445 3446

		if (err)
			return 0;
	}

3447
	return generic_block_bmap(mapping, block, ext4_get_block);
3448 3449
}

3450
static int ext4_readpage(struct file *file, struct page *page)
3451
{
3452
	return mpage_readpage(page, ext4_get_block);
3453 3454 3455
}

static int
3456
ext4_readpages(struct file *file, struct address_space *mapping,
3457 3458
		struct list_head *pages, unsigned nr_pages)
{
3459
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3460 3461
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3491
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3492
{
3493
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3494

3495 3496 3497 3498 3499
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3500 3501 3502 3503 3504 3505
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3506 3507 3508 3509
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3510 3511
}

3512
static int ext4_releasepage(struct page *page, gfp_t wait)
3513
{
3514
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3515 3516 3517 3518

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3519 3520 3521 3522
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3523 3524 3525
}

/*
3526 3527
 * O_DIRECT for ext3 (or indirect map) based files
 *
3528 3529 3530 3531 3532
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3533 3534
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3535
 */
3536
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3537 3538
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3539 3540 3541
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3542
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3543
	handle_t *handle;
3544 3545 3546
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3547
	int retries = 0;
3548 3549 3550 3551 3552

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3553 3554 3555 3556 3557 3558
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3559
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3560 3561 3562 3563
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3564 3565
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3566
			ext4_journal_stop(handle);
3567 3568 3569
		}
	}

3570
retry:
3571
	if (rw == READ && ext4_should_dioread_nolock(inode))
3572
		ret = __blockdev_direct_IO(rw, iocb, inode,
3573 3574
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3575 3576
				 ext4_get_block, NULL, NULL, 0);
	else {
3577 3578
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3579
				 offset, nr_segs,
3580
				 ext4_get_block, NULL);
3581 3582 3583 3584 3585 3586 3587 3588 3589

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3590 3591
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3592

J
Jan Kara 已提交
3593
	if (orphan) {
3594 3595
		int err;

J
Jan Kara 已提交
3596 3597 3598 3599 3600 3601 3602
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3603 3604 3605
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3606 3607 3608
			goto out;
		}
		if (inode->i_nlink)
3609
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3610
		if (ret > 0) {
3611 3612 3613 3614 3615 3616 3617 3618
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3619
				 * ext4_mark_inode_dirty() to userspace.  So
3620 3621
				 * ignore it.
				 */
3622
				ext4_mark_inode_dirty(handle, inode);
3623 3624
			}
		}
3625
		err = ext4_journal_stop(handle);
3626 3627 3628 3629 3630 3631 3632
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3633 3634 3635 3636 3637
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3638
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3639 3640
		   struct buffer_head *bh_result, int create)
{
3641
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3642
		   inode->i_ino, create);
3643 3644
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3645 3646
}

3647
static void dump_completed_IO(struct inode * inode)
3648 3649 3650 3651
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3652
	unsigned long flags;
3653

3654 3655
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3656 3657 3658
		return;
	}

3659
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3660
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3661
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3662 3663 3664 3665 3666 3667 3668 3669 3670
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3671
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3672 3673
#endif
}
3674 3675 3676 3677

/*
 * check a range of space and convert unwritten extents to written.
 */
3678
static int ext4_end_io_nolock(ext4_io_end_t *io)
3679 3680 3681
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3682
	ssize_t size = io->size;
3683 3684
	int ret = 0;

3685
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3686 3687 3688 3689 3690 3691
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3692
	if (io->flag != EXT4_IO_UNWRITTEN)
3693 3694
		return ret;

3695
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3696
	if (ret < 0) {
3697
		printk(KERN_EMERG "%s: failed to convert unwritten"
3698 3699 3700 3701 3702
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3703

3704 3705
	if (io->iocb)
		aio_complete(io->iocb, io->result, 0);
3706 3707 3708
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3709
}
3710

3711 3712 3713
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3714
static void ext4_end_io_work(struct work_struct *work)
3715
{
3716 3717 3718 3719 3720
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3721

3722
	mutex_lock(&inode->i_mutex);
3723
	ret = ext4_end_io_nolock(io);
3724 3725 3726
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3727
	}
3728 3729 3730 3731 3732

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3733
	mutex_unlock(&inode->i_mutex);
3734
	ext4_free_io_end(io);
3735
}
3736

3737 3738 3739
/*
 * This function is called from ext4_sync_file().
 *
3740 3741
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3742 3743
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3744 3745 3746 3747 3748
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3749
 */
3750
int flush_completed_IO(struct inode *inode)
3751 3752
{
	ext4_io_end_t *io;
3753 3754
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3755 3756 3757
	int ret = 0;
	int ret2 = 0;

3758
	if (list_empty(&ei->i_completed_io_list))
3759 3760
		return ret;

3761
	dump_completed_IO(inode);
3762 3763 3764
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3765 3766
				ext4_io_end_t, list);
		/*
3767
		 * Calling ext4_end_io_nolock() to convert completed
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3780
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3781
		ret = ext4_end_io_nolock(io);
3782
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3783 3784 3785 3786 3787
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3788
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3789 3790 3791
	return (ret2 < 0) ? ret2 : 0;
}

3792
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3793 3794 3795
{
	ext4_io_end_t *io = NULL;

3796
	io = kmalloc(sizeof(*io), flags);
3797 3798

	if (io) {
3799
		igrab(inode);
3800
		io->inode = inode;
3801
		io->flag = 0;
3802 3803
		io->offset = 0;
		io->size = 0;
3804
		io->page = NULL;
3805 3806
		io->iocb = NULL;
		io->result = 0;
3807
		INIT_WORK(&io->work, ext4_end_io_work);
3808
		INIT_LIST_HEAD(&io->list);
3809 3810 3811 3812 3813 3814
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3815 3816
			    ssize_t size, void *private, int ret,
			    bool is_async)
3817 3818 3819
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3820 3821
	unsigned long flags;
	struct ext4_inode_info *ei;
3822

3823 3824
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3825
		goto out;
3826

3827 3828 3829 3830 3831 3832
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3833
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3834 3835
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3836 3837 3838 3839
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3840 3841
	}

3842 3843
	io_end->offset = offset;
	io_end->size = size;
3844 3845 3846 3847
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3848 3849
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3850
	/* queue the work to convert unwritten extents to written */
3851 3852
	queue_work(wq, &io_end->work);

3853
	/* Add the io_end to per-inode completed aio dio list*/
3854 3855 3856 3857
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3858 3859
	iocb->private = NULL;
}
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3926 3927 3928 3929 3930 3931 3932 3933 3934
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3935 3936 3937 3938
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3957 3958 3959
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3960 3961
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3962 3963
		 *
 		 * As to previously fallocated extents, ext4 get_block
3964 3965 3966
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3967 3968 3969 3970 3971 3972 3973 3974
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3975
 		 */
3976 3977 3978
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3979
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3980 3981 3982 3983
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3984
			 * direct IO, so that later ext4_map_blocks()
3985 3986 3987 3988 3989 3990 3991
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3992 3993 3994
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3995
					 ext4_get_block_write,
3996
					 ext4_end_io_dio);
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
4016 4017
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
4018
			int err;
4019 4020 4021 4022
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
4023 4024 4025 4026
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
4027
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4028
		}
4029 4030
		return ret;
	}
4031 4032

	/* for write the the end of file case, we fall back to old way */
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

4043
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4044 4045 4046 4047 4048
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

4049
/*
4050
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4062
static int ext4_journalled_set_page_dirty(struct page *page)
4063 4064 4065 4066 4067
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4068
static const struct address_space_operations ext4_ordered_aops = {
4069 4070
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4071
	.writepage		= ext4_writepage,
4072 4073 4074 4075 4076 4077 4078 4079 4080
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4081
	.error_remove_page	= generic_error_remove_page,
4082 4083
};

4084
static const struct address_space_operations ext4_writeback_aops = {
4085 4086
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4087
	.writepage		= ext4_writepage,
4088 4089 4090 4091 4092 4093 4094 4095 4096
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4097
	.error_remove_page	= generic_error_remove_page,
4098 4099
};

4100
static const struct address_space_operations ext4_journalled_aops = {
4101 4102
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4103
	.writepage		= ext4_writepage,
4104 4105 4106 4107 4108 4109 4110 4111
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4112
	.error_remove_page	= generic_error_remove_page,
4113 4114
};

4115
static const struct address_space_operations ext4_da_aops = {
4116 4117
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4118
	.writepage		= ext4_writepage,
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4129
	.error_remove_page	= generic_error_remove_page,
4130 4131
};

4132
void ext4_set_aops(struct inode *inode)
4133
{
4134 4135 4136 4137
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4138
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4139 4140 4141
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4142 4143
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4144
	else
4145
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4146 4147 4148
}

/*
4149
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4150 4151 4152 4153
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4154
int ext4_block_truncate_page(handle_t *handle,
4155 4156
		struct address_space *mapping, loff_t from)
{
4157
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4158
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4159 4160
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4161 4162
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4163
	struct page *page;
4164 4165
	int err = 0;

4166 4167
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4168 4169 4170
	if (!page)
		return -EINVAL;

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4195
		ext4_get_block(inode, iblock, bh, 0);
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4216
	if (ext4_should_journal_data(inode)) {
4217
		BUFFER_TRACE(bh, "get write access");
4218
		err = ext4_journal_get_write_access(handle, bh);
4219 4220 4221 4222
		if (err)
			goto unlock;
	}

4223
	zero_user(page, offset, length);
4224 4225 4226 4227

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4228
	if (ext4_should_journal_data(inode)) {
4229
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4230
	} else {
4231
		if (ext4_should_order_data(inode))
4232
			err = ext4_jbd2_file_inode(handle, inode);
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4256
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4257 4258
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4259
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4260 4261 4262
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4263
 *	This is a helper function used by ext4_truncate().
4264 4265 4266 4267 4268 4269 4270
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4271
 *	past the truncation point is possible until ext4_truncate()
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4290
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4291 4292
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4293 4294 4295 4296 4297
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4298
	/* Make k index the deepest non-null offset + 1 */
4299 4300
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4301
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4312
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4324
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4325 4326 4327 4328 4329 4330
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4331
	while (partial > p) {
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4347 4348 4349 4350 4351
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4352 4353
{
	__le32 *p;
4354
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4355 4356 4357

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4358

4359 4360
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4361 4362 4363
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4364 4365 4366
		return 1;
	}

4367 4368
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4369 4370
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4371
		}
4372
		ext4_mark_inode_dirty(handle, inode);
4373 4374
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4375 4376
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4377
			ext4_journal_get_write_access(handle, bh);
4378 4379 4380
		}
	}

4381 4382
	for (p = first; p < last; p++)
		*p = 0;
4383

4384
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4385
	return 0;
4386 4387 4388
}

/**
4389
 * ext4_free_data - free a list of data blocks
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4407
static void ext4_free_data(handle_t *handle, struct inode *inode,
4408 4409 4410
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4411
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4412 4413 4414 4415
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4416
	ext4_fsblk_t nr;		    /* Current block # */
4417 4418 4419 4420 4421 4422
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4423
		err = ext4_journal_get_write_access(handle, this_bh);
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4441 4442 4443 4444
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4445 4446 4447 4448 4449 4450 4451 4452
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4453
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4454 4455 4456
				  count, block_to_free_p, p);

	if (this_bh) {
4457
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4458 4459 4460 4461 4462 4463 4464

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4465
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4466
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4467
		else
4468 4469 4470 4471
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4472 4473 4474 4475
	}
}

/**
4476
 *	ext4_free_branches - free an array of branches
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4488
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4489 4490 4491
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4492
	ext4_fsblk_t nr;
4493 4494
	__le32 *p;

4495
	if (ext4_handle_is_aborted(handle))
4496 4497 4498 4499
		return;

	if (depth--) {
		struct buffer_head *bh;
4500
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4501 4502 4503 4504 4505 4506
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4507 4508
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4509 4510 4511 4512
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4513 4514 4515
				break;
			}

4516 4517 4518 4519 4520 4521 4522 4523
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4524 4525
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4526 4527 4528 4529 4530
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4531
			ext4_free_branches(handle, inode, bh,
4532 4533 4534
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4552
			if (ext4_handle_is_aborted(handle))
4553 4554
				return;
			if (try_to_extend_transaction(handle, inode)) {
4555
				ext4_mark_inode_dirty(handle, inode);
4556 4557
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4558 4559
			}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4571
			ext4_free_blocks(handle, inode, 0, nr, 1,
4572 4573
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4574 4575 4576 4577 4578 4579 4580

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4581
				if (!ext4_journal_get_write_access(handle,
4582 4583 4584
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4585 4586 4587 4588
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4589 4590 4591 4592 4593 4594
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4595
		ext4_free_data(handle, inode, parent_bh, first, last);
4596 4597 4598
	}
}

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4612
/*
4613
 * ext4_truncate()
4614
 *
4615 4616
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4633
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4634
 * that this inode's truncate did not complete and it will again call
4635 4636
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4637
 * that's fine - as long as they are linked from the inode, the post-crash
4638
 * ext4_truncate() run will find them and release them.
4639
 */
4640
void ext4_truncate(struct inode *inode)
4641 4642
{
	handle_t *handle;
4643
	struct ext4_inode_info *ei = EXT4_I(inode);
4644
	__le32 *i_data = ei->i_data;
4645
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4646
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4647
	ext4_lblk_t offsets[4];
4648 4649 4650 4651
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4652
	ext4_lblk_t last_block;
4653 4654
	unsigned blocksize = inode->i_sb->s_blocksize;

4655
	if (!ext4_can_truncate(inode))
4656 4657
		return;

4658
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4659

4660
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4661
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4662

4663
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4664
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4665 4666
		return;
	}
A
Alex Tomas 已提交
4667

4668
	handle = start_transaction(inode);
4669
	if (IS_ERR(handle))
4670 4671 4672
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4673
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4674

4675 4676 4677
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4678

4679
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4692
	if (ext4_orphan_add(handle, inode))
4693 4694
		goto out_stop;

4695 4696 4697 4698 4699
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4700

4701
	ext4_discard_preallocations(inode);
4702

4703 4704 4705 4706 4707
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4708
	 * ext4 *really* writes onto the disk inode.
4709 4710 4711 4712
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4713 4714
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4715 4716 4717
		goto do_indirects;
	}

4718
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4719 4720 4721 4722
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4723
			ext4_free_branches(handle, inode, NULL,
4724 4725 4726 4727 4728 4729 4730 4731 4732
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4733
			ext4_free_branches(handle, inode, partial->bh,
4734 4735 4736 4737 4738 4739
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4740
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4741 4742 4743
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4744
		brelse(partial->bh);
4745 4746 4747 4748 4749 4750
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4751
		nr = i_data[EXT4_IND_BLOCK];
4752
		if (nr) {
4753 4754
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4755
		}
4756 4757
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4758
		if (nr) {
4759 4760
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4761
		}
4762 4763
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4764
		if (nr) {
4765 4766
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4767
		}
4768
	case EXT4_TIND_BLOCK:
4769 4770 4771
		;
	}

4772
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4773
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4774
	ext4_mark_inode_dirty(handle, inode);
4775 4776 4777 4778 4779 4780

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4781
		ext4_handle_sync(handle);
4782 4783 4784 4785 4786
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4787
	 * ext4_delete_inode(), and we allow that function to clean up the
4788 4789 4790
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4791
		ext4_orphan_del(handle, inode);
4792

4793
	ext4_journal_stop(handle);
4794 4795 4796
}

/*
4797
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4798 4799 4800 4801
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4802 4803
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4804
{
4805 4806 4807 4808 4809 4810
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4811
	iloc->bh = NULL;
4812 4813
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4814

4815 4816 4817
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4818 4819
		return -EIO;

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4830
	if (!bh) {
4831 4832
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4833 4834 4835 4836
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4860
			int i, start;
4861

4862
			start = inode_offset & ~(inodes_per_block - 1);
4863

4864 4865
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4878
			for (i = start; i < start + inodes_per_block; i++) {
4879 4880
				if (i == inode_offset)
					continue;
4881
				if (ext4_test_bit(i, bitmap_bh->b_data))
4882 4883 4884
					break;
			}
			brelse(bitmap_bh);
4885
			if (i == start + inodes_per_block) {
4886 4887 4888 4889 4890 4891 4892 4893 4894
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4895 4896 4897 4898 4899 4900 4901 4902 4903
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4904
			/* s_inode_readahead_blks is always a power of 2 */
4905 4906 4907 4908 4909 4910 4911
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4912
				num -= ext4_itable_unused_count(sb, gdp);
4913 4914 4915 4916 4917 4918 4919
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4930 4931
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4932 4933 4934 4935 4936 4937 4938 4939 4940
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4941
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4942 4943
{
	/* We have all inode data except xattrs in memory here. */
4944
	return __ext4_get_inode_loc(inode, iloc,
4945
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4946 4947
}

4948
void ext4_set_inode_flags(struct inode *inode)
4949
{
4950
	unsigned int flags = EXT4_I(inode)->i_flags;
4951 4952

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4953
	if (flags & EXT4_SYNC_FL)
4954
		inode->i_flags |= S_SYNC;
4955
	if (flags & EXT4_APPEND_FL)
4956
		inode->i_flags |= S_APPEND;
4957
	if (flags & EXT4_IMMUTABLE_FL)
4958
		inode->i_flags |= S_IMMUTABLE;
4959
	if (flags & EXT4_NOATIME_FL)
4960
		inode->i_flags |= S_NOATIME;
4961
	if (flags & EXT4_DIRSYNC_FL)
4962 4963 4964
		inode->i_flags |= S_DIRSYNC;
}

4965 4966 4967
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4988
}
4989

4990
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4991
				  struct ext4_inode_info *ei)
4992 4993
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4994 4995
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4996 4997 4998 4999 5000 5001

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
5002
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
5003 5004 5005 5006 5007
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
5008 5009 5010 5011
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
5012

5013
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5014
{
5015 5016
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
5017 5018
	struct ext4_inode_info *ei;
	struct inode *inode;
5019
	journal_t *journal = EXT4_SB(sb)->s_journal;
5020
	long ret;
5021 5022
	int block;

5023 5024 5025 5026 5027 5028 5029
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
5030
	iloc.bh = 0;
5031

5032 5033
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
5034
		goto bad_inode;
5035
	raw_inode = ext4_raw_inode(&iloc);
5036 5037 5038
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5039
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5040 5041 5042 5043 5044
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5045
	ei->i_state_flags = 0;
5046 5047 5048 5049 5050 5051 5052 5053 5054
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5055
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5056
			/* this inode is deleted */
5057
			ret = -ESTALE;
5058 5059 5060 5061 5062 5063 5064 5065
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5066
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5067
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5068
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5069 5070
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5071
	inode->i_size = ext4_isize(raw_inode);
5072
	ei->i_disksize = inode->i_size;
5073 5074 5075
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5076 5077
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5078
	ei->i_last_alloc_group = ~0;
5079 5080 5081 5082
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5083
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5084 5085 5086
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

5098
		read_lock(&journal->j_state_lock);
5099 5100 5101 5102 5103 5104 5105 5106
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
5107
		read_unlock(&journal->j_state_lock);
5108 5109 5110 5111
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5112
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5113
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5114
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5115
		    EXT4_INODE_SIZE(inode->i_sb)) {
5116
			ret = -EIO;
5117
			goto bad_inode;
5118
		}
5119 5120
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5121 5122
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5123 5124
		} else {
			__le32 *magic = (void *)raw_inode +
5125
					EXT4_GOOD_OLD_INODE_SIZE +
5126
					ei->i_extra_isize;
5127
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5128
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5129 5130 5131 5132
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5133 5134 5135 5136 5137
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5138 5139 5140 5141 5142 5143 5144
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5145
	ret = 0;
5146
	if (ei->i_file_acl &&
5147
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5148 5149
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5150 5151
		ret = -EIO;
		goto bad_inode;
5152
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5153 5154 5155 5156 5157
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5158
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5159 5160
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5161
		/* Validate block references which are part of inode */
5162 5163
		ret = ext4_check_inode_blockref(inode);
	}
5164
	if (ret)
5165
		goto bad_inode;
5166

5167
	if (S_ISREG(inode->i_mode)) {
5168 5169 5170
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5171
	} else if (S_ISDIR(inode->i_mode)) {
5172 5173
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5174
	} else if (S_ISLNK(inode->i_mode)) {
5175
		if (ext4_inode_is_fast_symlink(inode)) {
5176
			inode->i_op = &ext4_fast_symlink_inode_operations;
5177 5178 5179
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5180 5181
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5182
		}
5183 5184
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5185
		inode->i_op = &ext4_special_inode_operations;
5186 5187 5188 5189 5190 5191
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5192 5193
	} else {
		ret = -EIO;
5194
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5195
		goto bad_inode;
5196
	}
5197
	brelse(iloc.bh);
5198
	ext4_set_inode_flags(inode);
5199 5200
	unlock_new_inode(inode);
	return inode;
5201 5202

bad_inode:
5203
	brelse(iloc.bh);
5204 5205
	iget_failed(inode);
	return ERR_PTR(ret);
5206 5207
}

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5221
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5222
		raw_inode->i_blocks_high = 0;
5223
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5224 5225 5226 5227 5228 5229
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5230 5231 5232 5233
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5234
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5235
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5236
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5237
	} else {
5238
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5239 5240 5241 5242
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5243
	}
5244
	return 0;
5245 5246
}

5247 5248 5249 5250 5251 5252 5253
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5254
static int ext4_do_update_inode(handle_t *handle,
5255
				struct inode *inode,
5256
				struct ext4_iloc *iloc)
5257
{
5258 5259
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5260 5261 5262 5263 5264
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5265
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5266
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5267

5268
	ext4_get_inode_flags(ei);
5269
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5270
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5271 5272 5273 5274 5275 5276
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5277
		if (!ei->i_dtime) {
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5295 5296 5297 5298 5299 5300

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5301 5302
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5303
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5304
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5305 5306
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5307 5308
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5309
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5326
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5327
			sb->s_dirt = 1;
5328
			ext4_handle_sync(handle);
5329
			err = ext4_handle_dirty_metadata(handle, NULL,
5330
					EXT4_SB(sb)->s_sbh);
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5345 5346 5347
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5348

5349 5350 5351 5352 5353
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5354
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5355 5356
	}

5357
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5358
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5359 5360
	if (!err)
		err = rc;
5361
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5362

5363
	ext4_update_inode_fsync_trans(handle, inode, 0);
5364
out_brelse:
5365
	brelse(bh);
5366
	ext4_std_error(inode->i_sb, err);
5367 5368 5369 5370
	return err;
}

/*
5371
 * ext4_write_inode()
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5388
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5405
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5406
{
5407 5408
	int err;

5409 5410 5411
	if (current->flags & PF_MEMALLOC)
		return 0;

5412 5413 5414 5415 5416 5417
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5418

5419
		if (wbc->sync_mode != WB_SYNC_ALL)
5420 5421 5422 5423 5424
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5425

5426
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5427 5428
		if (err)
			return err;
5429
		if (wbc->sync_mode == WB_SYNC_ALL)
5430 5431
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5432 5433
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5434 5435
			err = -EIO;
		}
5436
		brelse(iloc.bh);
5437 5438
	}
	return err;
5439 5440 5441
}

/*
5442
 * ext4_setattr()
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5456 5457 5458 5459 5460 5461 5462 5463
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5464
 */
5465
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5466 5467 5468 5469 5470 5471 5472 5473 5474
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5475
	if (is_quota_modification(inode, attr))
5476
		dquot_initialize(inode);
5477 5478 5479 5480 5481 5482
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5483
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5484
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5485 5486 5487 5488
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5489
		error = dquot_transfer(inode, attr);
5490
		if (error) {
5491
			ext4_journal_stop(handle);
5492 5493 5494 5495 5496 5497 5498 5499
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5500 5501
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5502 5503
	}

5504
	if (attr->ia_valid & ATTR_SIZE) {
5505
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5506 5507
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5508 5509
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5510 5511 5512
		}
	}

5513
	if (S_ISREG(inode->i_mode) &&
5514 5515
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5516
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5517 5518
		handle_t *handle;

5519
		handle = ext4_journal_start(inode, 3);
5520 5521 5522 5523 5524
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5525 5526 5527
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5528 5529
		if (!error)
			error = rc;
5530
		ext4_journal_stop(handle);
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5547
		/* ext4_truncate will clear the flag */
5548
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5549
			ext4_truncate(inode);
5550 5551
	}

C
Christoph Hellwig 已提交
5552 5553 5554
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5555

C
Christoph Hellwig 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5565
	if (inode->i_nlink)
5566
		ext4_orphan_del(NULL, inode);
5567 5568

	if (!rc && (ia_valid & ATTR_MODE))
5569
		rc = ext4_acl_chmod(inode);
5570 5571

err_out:
5572
	ext4_std_error(inode->i_sb, error);
5573 5574 5575 5576 5577
	if (!error)
		error = rc;
	return error;
}

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5604

5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5632
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5633 5634
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5635
}
5636

5637
/*
5638 5639 5640
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5641
 *
5642
 * If datablocks are discontiguous, they are possible to spread over
5643
 * different block groups too. If they are contiuguous, with flexbg,
5644
 * they could still across block group boundary.
5645
 *
5646 5647 5648 5649
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5650 5651
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5678 5679
	if (groups > ngroups)
		groups = ngroups;
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5694 5695
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5696
 *
5697
 * This could be called via ext4_write_begin()
5698
 *
5699
 * We need to consider the worse case, when
5700
 * one new block per extent.
5701
 */
A
Alex Tomas 已提交
5702
int ext4_writepage_trans_blocks(struct inode *inode)
5703
{
5704
	int bpp = ext4_journal_blocks_per_page(inode);
5705 5706
	int ret;

5707
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5708

5709
	/* Account for data blocks for journalled mode */
5710
	if (ext4_should_journal_data(inode))
5711
		ret += bpp;
5712 5713
	return ret;
}
5714 5715 5716 5717 5718

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5719
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5720 5721 5722 5723 5724 5725 5726 5727 5728
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5729
/*
5730
 * The caller must have previously called ext4_reserve_inode_write().
5731 5732
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5733
int ext4_mark_iloc_dirty(handle_t *handle,
5734
			 struct inode *inode, struct ext4_iloc *iloc)
5735 5736 5737
{
	int err = 0;

5738 5739 5740
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5741 5742 5743
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5744
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5745
	err = ext4_do_update_inode(handle, inode, iloc);
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5756 5757
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5758
{
5759 5760 5761 5762 5763 5764 5765 5766 5767
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5768 5769
		}
	}
5770
	ext4_std_error(inode->i_sb, err);
5771 5772 5773
	return err;
}

5774 5775 5776 5777
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5778 5779 5780 5781
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5794 5795
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5828
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5829
{
5830
	struct ext4_iloc iloc;
5831 5832 5833
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5834 5835

	might_sleep();
5836
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5837 5838
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5839
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5853 5854
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5855 5856
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5857
					ext4_warning(inode->i_sb,
5858 5859 5860
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5861 5862
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5863 5864 5865 5866
				}
			}
		}
	}
5867
	if (!err)
5868
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5869 5870 5871 5872
	return err;
}

/*
5873
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5874 5875 5876 5877 5878
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5879
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5880 5881 5882 5883 5884 5885
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5886
void ext4_dirty_inode(struct inode *inode)
5887 5888 5889
{
	handle_t *handle;

5890
	handle = ext4_journal_start(inode, 2);
5891 5892
	if (IS_ERR(handle))
		goto out;
5893 5894 5895

	ext4_mark_inode_dirty(handle, inode);

5896
	ext4_journal_stop(handle);
5897 5898 5899 5900 5901 5902 5903 5904
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5905
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5906 5907 5908
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5909
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5910
{
5911
	struct ext4_iloc iloc;
5912 5913 5914

	int err = 0;
	if (handle) {
5915
		err = ext4_get_inode_loc(inode, &iloc);
5916 5917
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5918
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5919
			if (!err)
5920
				err = ext4_handle_dirty_metadata(handle,
5921
								 NULL,
5922
								 iloc.bh);
5923 5924 5925
			brelse(iloc.bh);
		}
	}
5926
	ext4_std_error(inode->i_sb, err);
5927 5928 5929 5930
	return err;
}
#endif

5931
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5947
	journal = EXT4_JOURNAL(inode);
5948 5949
	if (!journal)
		return 0;
5950
	if (is_journal_aborted(journal))
5951 5952
		return -EROFS;

5953 5954
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5965
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5966
	else
5967
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5968
	ext4_set_aops(inode);
5969

5970
	jbd2_journal_unlock_updates(journal);
5971 5972 5973

	/* Finally we can mark the inode as dirty. */

5974
	handle = ext4_journal_start(inode, 1);
5975 5976 5977
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5978
	err = ext4_mark_inode_dirty(handle, inode);
5979
	ext4_handle_sync(handle);
5980 5981
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5982 5983 5984

	return err;
}
5985 5986 5987 5988 5989 5990

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5991
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5992
{
5993
	struct page *page = vmf->page;
5994 5995 5996
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5997
	void *fsdata;
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

6022 6023 6024 6025 6026 6027 6028
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
6029 6030
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6031 6032
					ext4_bh_unmapped)) {
			unlock_page(page);
6033
			goto out_unlock;
6034
		}
6035
	}
6036
	unlock_page(page);
6037 6038 6039 6040 6041 6042 6043 6044
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6045
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6046 6047 6048
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6049
			len, len, page, fsdata);
6050 6051 6052 6053
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6054 6055
	if (ret)
		ret = VM_FAULT_SIGBUS;
6056 6057 6058
	up_read(&inode->i_alloc_sem);
	return ret;
}