inode.c 120.6 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36 37 38
#include <linux/mpage.h>
#include <linux/uio.h>
#include <linux/bio.h>
39
#include "ext4_jbd2.h"
40 41 42
#include "xattr.h"
#include "acl.h"

43 44 45 46 47 48 49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
						   new_size);
}

50 51
static void ext4_invalidatepage(struct page *page, unsigned long offset);

52 53 54
/*
 * Test whether an inode is a fast symlink.
 */
55
static int ext4_inode_is_fast_symlink(struct inode *inode)
56
{
57
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
58 59 60 61 62 63
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
64
 * The ext4 forget function must perform a revoke if we are freeing data
65 66 67 68 69 70 71
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
 */
72 73
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

91 92
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
93
		if (bh) {
94
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
95
			return ext4_journal_forget(handle, bh);
96 97 98 99 100 101 102
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
103 104
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
105
	if (err)
106
		ext4_abort(inode->i_sb, __func__,
107 108 109 110 111 112 113 114 115 116 117
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
118
	ext4_lblk_t needed;
119 120 121 122 123 124

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
125
	 * like a regular file for ext4 to try to delete it.  Things
126 127 128 129 130 131 132
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
133 134
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
135

136
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

153
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
154 155 156
	if (!IS_ERR(result))
		return result;

157
	ext4_std_error(inode->i_sb, PTR_ERR(result));
158 159 160 161 162 163 164 165 166 167 168
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
169
	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
170
		return 0;
171
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
172 173 174 175 176 177 178 179 180
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
181
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
182 183
{
	jbd_debug(2, "restarting handle %p\n", handle);
184
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
185 186 187 188 189
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
190
void ext4_delete_inode (struct inode * inode)
191 192 193
{
	handle_t *handle;

194 195
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
196 197 198 199 200 201 202 203 204 205 206 207
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

	handle = start_transaction(inode);
	if (IS_ERR(handle)) {
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
208
		ext4_orphan_del(NULL, inode);
209 210 211 212 213 214 215
		goto no_delete;
	}

	if (IS_SYNC(inode))
		handle->h_sync = 1;
	inode->i_size = 0;
	if (inode->i_blocks)
216
		ext4_truncate(inode);
217
	/*
218
	 * Kill off the orphan record which ext4_truncate created.
219
	 * AKPM: I think this can be inside the above `if'.
220
	 * Note that ext4_orphan_del() has to be able to cope with the
221
	 * deletion of a non-existent orphan - this is because we don't
222
	 * know if ext4_truncate() actually created an orphan record.
223 224
	 * (Well, we could do this if we need to, but heck - it works)
	 */
225 226
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
227 228 229 230 231 232 233 234

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
235
	if (ext4_mark_inode_dirty(handle, inode))
236 237 238
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
239 240
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
259
 *	ext4_block_to_path - parse the block number into array of offsets
260 261 262
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
263 264
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
265
 *
266
 *	To store the locations of file's data ext4 uses a data structure common
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

289
static int ext4_block_to_path(struct inode *inode,
A
Aneesh Kumar K.V 已提交
290 291
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
292
{
293 294 295
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
296 297 298 299 300 301
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
302
		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
303 304 305 306
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
307
		offsets[n++] = EXT4_IND_BLOCK;
308 309 310
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
311
		offsets[n++] = EXT4_DIND_BLOCK;
312 313 314 315
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
316
		offsets[n++] = EXT4_TIND_BLOCK;
317 318 319 320 321
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
322
		ext4_warning(inode->i_sb, "ext4_block_to_path",
323
				"block %lu > max",
324 325
				i_block + direct_blocks +
				indirect_blocks + double_blocks);
326 327 328 329 330 331 332
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
333
 *	ext4_get_branch - read the chain of indirect blocks leading to data
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
358 359
 *
 *      Need to be called with
360
 *      down_read(&EXT4_I(inode)->i_data_sem)
361
 */
A
Aneesh Kumar K.V 已提交
362 363
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
364 365 366 367 368 369 370 371
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
372
	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
393
 *	ext4_find_near - find a place for allocation with sufficient locality
394 395 396
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
397
 *	This function returns the preferred place for block allocation.
398 399 400 401 402 403 404 405 406 407 408 409 410 411
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
412
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
413
{
414
	struct ext4_inode_info *ei = EXT4_I(inode);
415 416
	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
	__le32 *p;
417
	ext4_fsblk_t bg_start;
418
	ext4_fsblk_t last_block;
419
	ext4_grpblk_t colour;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
435
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
436 437 438 439
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
440
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
441 442
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
443 444 445 446
	return bg_start + colour;
}

/**
447
 *	ext4_find_goal - find a preferred place for allocation.
448 449 450 451
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
452
 *	Normally this function find the preferred place for block allocation,
453
 *	returns it.
454
 */
A
Aneesh Kumar K.V 已提交
455
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
456
		Indirect *partial)
457
{
458
	struct ext4_block_alloc_info *block_i;
459

460
	block_i =  EXT4_I(inode)->i_block_alloc_info;
461 462 463 464 465 466 467 468 469 470

	/*
	 * try the heuristic for sequential allocation,
	 * failing that at least try to get decent locality.
	 */
	if (block_i && (block == block_i->last_alloc_logical_block + 1)
		&& (block_i->last_alloc_physical_block != 0)) {
		return block_i->last_alloc_physical_block + 1;
	}

471
	return ext4_find_near(inode, partial);
472 473 474
}

/**
475
 *	ext4_blks_to_allocate: Look up the block map and count the number
476 477 478 479 480 481 482 483 484 485
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
486
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		int blocks_to_boundary)
{
	unsigned long count = 0;

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
513
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
514 515 516 517 518 519 520 521
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
522
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
523 524 525
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
526 527
{
	int target, i;
528
	unsigned long count = 0, blk_allocated = 0;
529
	int index = 0;
530
	ext4_fsblk_t current_block = 0;
531 532 533 534 535 536 537 538 539 540
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
541 542 543
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
544 545
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
546 547
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
548 549 550 551 552 553 554 555 556
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
557 558 559 560 561 562 563 564 565
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
566
			break;
567
		}
568 569
	}

570 571 572 573 574 575
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
	count = target;
A
Aneesh Kumar K.V 已提交
576
	/* allocating blocks for data blocks */
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	current_block = ext4_new_blocks(handle, inode, iblock,
						goal, &count, err);
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
		blk_allocated += count;
	}
allocated:
597
	/* total number of blocks allocated for direct blocks */
598
	ret = blk_allocated;
599 600 601 602
	*err = 0;
	return ret;
failed_out:
	for (i = 0; i <index; i++)
603
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
604 605 606 607
	return ret;
}

/**
608
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
609 610 611 612 613 614 615 616 617 618
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
619
 *	the same format as ext4_get_branch() would do. We are calling it after
620 621
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
622
 *	picture as after the successful ext4_get_block(), except that in one
623 624 625 626 627 628
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
629
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
630 631
 *	as described above and return 0.
 */
632
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
633 634 635
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
636 637 638 639 640 641
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
642 643
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
644

645
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
664
		err = ext4_journal_get_create_access(handle, bh);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
		if ( n == indirect_blks) {
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

689 690
		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh);
691 692 693 694 695 696 697 698
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
699
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
700
		ext4_journal_forget(handle, branch[i].bh);
701 702
	}
	for (i = 0; i <indirect_blks; i++)
703
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
704

705
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
706 707 708 709 710

	return err;
}

/**
711
 * ext4_splice_branch - splice the allocated branch onto inode.
712 713 714
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
715
 *	ext4_alloc_branch)
716 717 718 719 720 721 722 723
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
724
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
725
			ext4_lblk_t block, Indirect *where, int num, int blks)
726 727 728
{
	int i;
	int err = 0;
729 730
	struct ext4_block_alloc_info *block_i;
	ext4_fsblk_t current_block;
731

732
	block_i = EXT4_I(inode)->i_block_alloc_info;
733 734 735 736 737 738 739
	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
740
		err = ext4_journal_get_write_access(handle, where->bh);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
			*(where->p + i ) = cpu_to_le32(current_block++);
	}

	/*
	 * update the most recently allocated logical & physical block
	 * in i_block_alloc_info, to assist find the proper goal block for next
	 * allocation
	 */
	if (block_i) {
		block_i->last_alloc_logical_block = block + blks - 1;
		block_i->last_alloc_physical_block =
				le32_to_cpu(where[num].key) + blks - 1;
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

K
Kalpak Shah 已提交
771
	inode->i_ctime = ext4_current_time(inode);
772
	ext4_mark_inode_dirty(handle, inode);
773 774 775 776 777 778 779 780 781

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
782
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
783 784
		 */
		jbd_debug(5, "splicing indirect only\n");
785 786
		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, where->bh);
787 788 789 790 791 792 793 794 795 796 797 798 799
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
800
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
801
		ext4_journal_forget(handle, where[i].bh);
802 803
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
804
	}
805
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
827 828 829
 *
 *
 * Need to be called with
830 831
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
832
 */
833
int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
834
		ext4_lblk_t iblock, unsigned long maxblocks,
835 836 837 838
		struct buffer_head *bh_result,
		int create, int extend_disksize)
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
839
	ext4_lblk_t offsets[4];
840 841
	Indirect chain[4];
	Indirect *partial;
842
	ext4_fsblk_t goal;
843 844 845
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
846
	struct ext4_inode_info *ei = EXT4_I(inode);
847
	int count = 0;
848
	ext4_fsblk_t first_block = 0;
849 850


A
Alex Tomas 已提交
851
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
852
	J_ASSERT(handle != NULL || create == 0);
A
Aneesh Kumar K.V 已提交
853 854
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
855 856 857 858

	if (depth == 0)
		goto out;

859
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
860 861 862 863 864 865 866 867

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
868
			ext4_fsblk_t blk;
869 870 871 872 873 874 875 876

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
877
		goto got_it;
878 879 880 881 882 883 884 885 886 887 888
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
	 * Okay, we need to do block allocation.  Lazily initialize the block
	 * allocation info here if necessary
	*/
	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
889
		ext4_init_block_alloc_info(inode);
890

891
	goal = ext4_find_goal(inode, iblock, partial);
892 893 894 895 896 897 898 899

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
900
	count = ext4_blks_to_allocate(partial, indirect_blks,
901 902
					maxblocks, blocks_to_boundary);
	/*
903
	 * Block out ext4_truncate while we alter the tree
904
	 */
905 906 907
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
908 909

	/*
910
	 * The ext4_splice_branch call will free and forget any buffers
911 912 913 914 915 916
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
917
		err = ext4_splice_branch(handle, inode, iblock,
918 919
					partial, indirect_blks, count);
	/*
920
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
921
	 * protect it if you're about to implement concurrent
922
	 * ext4_get_block() -bzzz
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	*/
	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
		ei->i_disksize = inode->i_size;
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

J
Jan Kara 已提交
948 949 950 951 952 953 954 955 956 957
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
 * Number of credits we need for writing DIO_MAX_BLOCKS:
 * We need sb + group descriptor + bitmap + inode -> 4
 * For B blocks with A block pointers per block we need:
 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 */
#define DIO_CREDITS 25
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

/*
 *
 *
 * ext4_ext4 get_block() wrapper function
 * It will do a look up first, and returns if the blocks already mapped.
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
 * If file type is extents based, it will call ext4_ext_get_blocks(),
 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
983 984 985 986 987
int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
			unsigned long max_blocks, struct buffer_head *bh,
			int create, int extend_disksize)
{
	int retval;
988 989 990

	clear_buffer_mapped(bh);

991 992 993 994 995 996 997 998
	/*
	 * Try to see if we can get  the block without requesting
	 * for new file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, 0, 0);
999
	} else {
1000 1001
		retval = ext4_get_blocks_handle(handle,
				inode, block, max_blocks, bh, 0, 0);
1002
	}
1003
	up_read((&EXT4_I(inode)->i_data_sem));
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	/* If it is only a block(s) look up */
	if (!create)
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
	if (retval > 0 && buffer_mapped(bh))
1017 1018 1019
		return retval;

	/*
1020 1021 1022 1023
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1024 1025 1026 1027 1028 1029
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1030 1031 1032 1033 1034 1035
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
				bh, create, extend_disksize);
	} else {
		retval = ext4_get_blocks_handle(handle, inode, block,
				max_blocks, bh, create, extend_disksize);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		if (retval > 0 && buffer_new(bh)) {
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
							~EXT4_EXT_MIGRATE;
		}
1046
	}
1047
	up_write((&EXT4_I(inode)->i_data_sem));
1048 1049 1050
	return retval;
}

1051
static int ext4_get_block(struct inode *inode, sector_t iblock,
1052 1053
			struct buffer_head *bh_result, int create)
{
1054
	handle_t *handle = ext4_journal_current_handle();
J
Jan Kara 已提交
1055
	int ret = 0, started = 0;
1056 1057
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;

J
Jan Kara 已提交
1058 1059 1060 1061 1062 1063 1064
	if (create && !handle) {
		/* Direct IO write... */
		if (max_blocks > DIO_MAX_BLOCKS)
			max_blocks = DIO_MAX_BLOCKS;
		handle = ext4_journal_start(inode, DIO_CREDITS +
			      2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
		if (IS_ERR(handle)) {
1065
			ret = PTR_ERR(handle);
J
Jan Kara 已提交
1066
			goto out;
1067
		}
J
Jan Kara 已提交
1068
		started = 1;
1069 1070
	}

J
Jan Kara 已提交
1071
	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1072
					max_blocks, bh_result, create, 0);
J
Jan Kara 已提交
1073 1074 1075
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
1076
	}
J
Jan Kara 已提交
1077 1078 1079
	if (started)
		ext4_journal_stop(handle);
out:
1080 1081 1082 1083 1084 1085
	return ret;
}

/*
 * `handle' can be NULL if create is zero
 */
1086
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1087
				ext4_lblk_t block, int create, int *errp)
1088 1089 1090 1091 1092 1093 1094 1095 1096
{
	struct buffer_head dummy;
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

	dummy.b_state = 0;
	dummy.b_blocknr = -1000;
	buffer_trace_init(&dummy.b_history);
A
Alex Tomas 已提交
1097
	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1098 1099
					&dummy, create, 1);
	/*
1100
	 * ext4_get_blocks_handle() returns number of blocks
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	 * mapped. 0 in case of a HOLE.
	 */
	if (err > 0) {
		if (err > 1)
			WARN_ON(1);
		err = 0;
	}
	*errp = err;
	if (!err && buffer_mapped(&dummy)) {
		struct buffer_head *bh;
		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
		if (!bh) {
			*errp = -EIO;
			goto err;
		}
		if (buffer_new(&dummy)) {
			J_ASSERT(create != 0);
A
Aneesh Kumar K.V 已提交
1118
			J_ASSERT(handle != NULL);
1119 1120 1121 1122 1123

			/*
			 * Now that we do not always journal data, we should
			 * keep in mind whether this should always journal the
			 * new buffer as metadata.  For now, regular file
1124
			 * writes use ext4_get_block instead, so it's not a
1125 1126 1127 1128
			 * problem.
			 */
			lock_buffer(bh);
			BUFFER_TRACE(bh, "call get_create_access");
1129
			fatal = ext4_journal_get_create_access(handle, bh);
1130 1131 1132 1133 1134
			if (!fatal && !buffer_uptodate(bh)) {
				memset(bh->b_data,0,inode->i_sb->s_blocksize);
				set_buffer_uptodate(bh);
			}
			unlock_buffer(bh);
1135 1136
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, bh);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
			if (!fatal)
				fatal = err;
		} else {
			BUFFER_TRACE(bh, "not a new buffer");
		}
		if (fatal) {
			*errp = fatal;
			brelse(bh);
			bh = NULL;
		}
		return bh;
	}
err:
	return NULL;
}

1153
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1154
			       ext4_lblk_t block, int create, int *err)
1155 1156 1157
{
	struct buffer_head * bh;

1158
	bh = ext4_getblk(handle, inode, block, create, err);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

static int walk_page_buffers(	handle_t *handle,
				struct buffer_head *head,
				unsigned from,
				unsigned to,
				int *partial,
				int (*fn)(	handle_t *handle,
						struct buffer_head *bh))
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
		block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1207
 * close off a transaction and start a new one between the ext4_get_block()
1208
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1209 1210
 * prepare_write() is the right place.
 *
1211 1212
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1213 1214 1215 1216
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1217
 * By accident, ext4 can be reentered when a transaction is open via
1218 1219 1220 1221 1222 1223
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1224
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1225 1226 1227 1228 1229 1230 1231 1232 1233
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
					struct buffer_head *bh)
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1234
	return ext4_journal_get_write_access(handle, bh);
1235 1236
}

N
Nick Piggin 已提交
1237 1238 1239
static int ext4_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
1240
{
N
Nick Piggin 已提交
1241
 	struct inode *inode = mapping->host;
1242
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1243 1244
	handle_t *handle;
	int retries = 0;
N
Nick Piggin 已提交
1245 1246 1247 1248 1249 1250 1251
 	struct page *page;
 	pgoff_t index;
 	unsigned from, to;

 	index = pos >> PAGE_CACHE_SHIFT;
 	from = pos & (PAGE_CACHE_SIZE - 1);
 	to = from + len;
1252 1253

retry:
N
Nick Piggin 已提交
1254 1255 1256 1257
  	handle = ext4_journal_start(inode, needed_blocks);
  	if (IS_ERR(handle)) {
  		ret = PTR_ERR(handle);
  		goto out;
1258
	}
1259

1260 1261 1262 1263 1264 1265 1266 1267
	page = __grab_cache_page(mapping, index);
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

N
Nick Piggin 已提交
1268 1269 1270 1271
	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
1272 1273 1274
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1275 1276 1277

	if (ret) {
 		unlock_page(page);
1278
		ext4_journal_stop(handle);
N
Nick Piggin 已提交
1279 1280 1281
 		page_cache_release(page);
	}

1282
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1283
		goto retry;
1284
out:
1285 1286 1287
	return ret;
}

N
Nick Piggin 已提交
1288 1289
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1290 1291 1292 1293
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1294
	return ext4_journal_dirty_metadata(handle, bh);
1295 1296 1297 1298 1299 1300
}

/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1301
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302 1303
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1304 1305 1306 1307
static int ext4_ordered_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1308
{
1309
	handle_t *handle = ext4_journal_current_handle();
1310
	struct inode *inode = mapping->host;
N
Nick Piggin 已提交
1311
	unsigned from, to;
1312 1313
	int ret = 0, ret2;

N
Nick Piggin 已提交
1314 1315 1316
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1317
	ret = ext4_jbd2_file_inode(handle, inode);
1318 1319 1320

	if (ret == 0) {
		/*
N
Nick Piggin 已提交
1321
		 * generic_write_end() will run mark_inode_dirty() if i_size
1322 1323 1324 1325 1326
		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
		 * into that.
		 */
		loff_t new_i_size;

N
Nick Piggin 已提交
1327
		new_i_size = pos + copied;
1328 1329
		if (new_i_size > EXT4_I(inode)->i_disksize)
			EXT4_I(inode)->i_disksize = new_i_size;
1330
		ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1331
							page, fsdata);
1332 1333 1334
		copied = ret2;
		if (ret2 < 0)
			ret = ret2;
1335
	}
1336
	ret2 = ext4_journal_stop(handle);
1337 1338
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1339 1340

	return ret ? ret : copied;
1341 1342
}

N
Nick Piggin 已提交
1343 1344 1345 1346
static int ext4_writeback_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1347
{
1348
	handle_t *handle = ext4_journal_current_handle();
1349
	struct inode *inode = mapping->host;
1350 1351 1352
	int ret = 0, ret2;
	loff_t new_i_size;

N
Nick Piggin 已提交
1353
	new_i_size = pos + copied;
1354 1355
	if (new_i_size > EXT4_I(inode)->i_disksize)
		EXT4_I(inode)->i_disksize = new_i_size;
1356

1357
	ret2 = generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1358
							page, fsdata);
1359 1360 1361
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
1362

1363
	ret2 = ext4_journal_stop(handle);
1364 1365
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1366 1367

	return ret ? ret : copied;
1368 1369
}

N
Nick Piggin 已提交
1370 1371 1372 1373
static int ext4_journalled_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
1374
{
1375
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1376
	struct inode *inode = mapping->host;
1377 1378
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1379
	unsigned from, to;
1380

N
Nick Piggin 已提交
1381 1382 1383 1384 1385 1386 1387 1388
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1389 1390

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1391
				to, &partial, write_end_fn);
1392 1393
	if (!partial)
		SetPageUptodate(page);
N
Nick Piggin 已提交
1394 1395
	if (pos+copied > inode->i_size)
		i_size_write(inode, pos+copied);
1396 1397 1398 1399
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	if (inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ret2 = ext4_mark_inode_dirty(handle, inode);
1400 1401 1402
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1403

1404
	unlock_page(page);
1405
	ret2 = ext4_journal_stop(handle);
1406 1407
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1408 1409 1410
	page_cache_release(page);

	return ret ? ret : copied;
1411 1412
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
/*
 * Delayed allocation stuff
 */

struct mpage_da_data {
	struct inode *inode;
	struct buffer_head lbh;			/* extent of blocks */
	unsigned long first_page, next_page;	/* extent of pages */
	get_block_t *get_block;
	struct writeback_control *wbc;
};

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
 * them with __mpage_writepage()
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 * @mpd->get_block: the filesystem's block mapper function
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
	struct address_space *mapping = mpd->inode->i_mapping;
	struct mpage_data mpd_pp = {
		.bio = NULL,
		.last_block_in_bio = 0,
		.get_block = mpd->get_block,
		.use_writepage = 1,
	};
	int ret = 0, err, nr_pages, i;
	unsigned long index, end;
	struct pagevec pvec;

	BUG_ON(mpd->next_page <= mpd->first_page);

	pagevec_init(&pvec, 0);
	index = mpd->first_page;
	end = mpd->next_page - 1;

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			err = __mpage_writepage(page, mpd->wbc, &mpd_pp);

			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 * XXX: unlock and re-dirty them?
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	if (mpd_pp.bio)
		mpage_bio_submit(WRITE, mpd_pp.bio);

	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * @mpd->inode - inode to walk through
 * @exbh->b_blocknr - first block on a disk
 * @exbh->b_size - amount of space in bytes
 * @logical - first logical block to start assignment with
 *
 * the function goes through all passed space and put actual disk
 * block numbers into buffer heads, dropping BH_Delay
 */
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
				 struct buffer_head *exbh)
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
	int blocks = exbh->b_size >> inode->i_blkbits;
	sector_t pblock = exbh->b_blocknr, cur_logical;
	struct buffer_head *head, *bh;
	unsigned long index, end;
	struct pagevec pvec;
	int nr_pages, i;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
				if (cur_logical >= logical)
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
				if (cur_logical >= logical + blocks)
					break;

				if (buffer_delay(bh)) {
					bh->b_blocknr = pblock;
					clear_buffer_delay(bh);
				} else if (buffer_mapped(bh)) {
					BUG_ON(bh->b_blocknr != pblock);
				}

				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


/*
 * __unmap_underlying_blocks - just a helper function to unmap
 * set of blocks described by @bh
 */
static inline void __unmap_underlying_blocks(struct inode *inode,
					     struct buffer_head *bh)
{
	struct block_device *bdev = inode->i_sb->s_bdev;
	int blocks, i;

	blocks = bh->b_size >> inode->i_blkbits;
	for (i = 0; i < blocks; i++)
		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
}

/*
 * mpage_da_map_blocks - go through given space
 *
 * @mpd->lbh - bh describing space
 * @mpd->get_block - the filesystem's block mapper function
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 * The function ignores errors ->get_block() returns, thus real
 * error handling is postponed to __mpage_writepage()
 */
static void mpage_da_map_blocks(struct mpage_da_data *mpd)
{
	struct buffer_head *lbh = &mpd->lbh;
	int err = 0, remain = lbh->b_size;
	sector_t next = lbh->b_blocknr;
	struct buffer_head new;

	/*
	 * We consider only non-mapped and non-allocated blocks
	 */
	if (buffer_mapped(lbh) && !buffer_delay(lbh))
		return;

	while (remain) {
		new.b_state = lbh->b_state;
		new.b_blocknr = 0;
		new.b_size = remain;
		err = mpd->get_block(mpd->inode, next, &new, 1);
		if (err) {
			/*
			 * Rather than implement own error handling
			 * here, we just leave remaining blocks
			 * unallocated and try again with ->writepage()
			 */
			break;
		}
		BUG_ON(new.b_size == 0);

		if (buffer_new(&new))
			__unmap_underlying_blocks(mpd->inode, &new);

		/*
		 * If blocks are delayed marked, we need to
		 * put actual blocknr and drop delayed bit
		 */
		if (buffer_delay(lbh))
			mpage_put_bnr_to_bhs(mpd, next, &new);

			/* go for the remaining blocks */
			next += new.b_size >> mpd->inode->i_blkbits;
			remain -= new.b_size;
		}
}

#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
				   sector_t logical, struct buffer_head *bh)
{
	struct buffer_head *lbh = &mpd->lbh;
	sector_t next;

	next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);

	/*
	 * First block in the extent
	 */
	if (lbh->b_size == 0) {
		lbh->b_blocknr = logical;
		lbh->b_size = bh->b_size;
		lbh->b_state = bh->b_state & BH_FLAGS;
		return;
	}

	/*
	 * Can we merge the block to our big extent?
	 */
	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
		lbh->b_size += bh->b_size;
		return;
	}

	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
	mpage_da_map_blocks(mpd);

	/*
	 * Now start a new extent
	 */
	lbh->b_size = bh->b_size;
	lbh->b_state = bh->b_state & BH_FLAGS;
	lbh->b_blocknr = logical;
}

/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
	struct buffer_head *bh, *head, fake;
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
		 * and start IO on them using __mpage_writepage()
		 */
		if (mpd->next_page != mpd->first_page) {
			mpage_da_map_blocks(mpd);
			mpage_da_submit_io(mpd);
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
		mpd->lbh.b_size = 0;
		mpd->lbh.b_state = 0;
		mpd->lbh.b_blocknr = 0;
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
		/*
		 * There is no attached buffer heads yet (mmap?)
		 * we treat the page asfull of dirty blocks
		 */
		bh = &fake;
		bh->b_size = PAGE_CACHE_SIZE;
		bh->b_state = 0;
		set_buffer_dirty(bh);
		set_buffer_uptodate(bh);
		mpage_add_bh_to_extent(mpd, logical, bh);
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
			if (buffer_dirty(bh))
				mpage_add_bh_to_extent(mpd, logical, bh);
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
 * mpage_da_writepages - walk the list of dirty pages of the given
 * address space, allocates non-allocated blocks, maps newly-allocated
 * blocks to existing bhs and issue IO them
 *
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @get_block: the filesystem's block mapper function.
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 *
 * In order to avoid duplication of logic that deals with partial pages,
 * multiple bio per page, etc, we find non-allocated blocks, allocate
 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
 *
 * It's important that we call __mpage_writepage() only once for each
 * involved page, otherwise we'd have to implement more complicated logic
 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
 *
 * See comments to mpage_writepages()
 */
static int mpage_da_writepages(struct address_space *mapping,
			       struct writeback_control *wbc,
			       get_block_t get_block)
{
	struct mpage_da_data mpd;
	int ret;

	if (!get_block)
		return generic_writepages(mapping, wbc);

	mpd.wbc = wbc;
	mpd.inode = mapping->host;
	mpd.lbh.b_size = 0;
	mpd.lbh.b_state = 0;
	mpd.lbh.b_blocknr = 0;
	mpd.first_page = 0;
	mpd.next_page = 0;
	mpd.get_block = get_block;

	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);

	/*
	 * Handle last extent of pages
	 */
	if (mpd.next_page != mpd.first_page) {
		mpage_da_map_blocks(&mpd);
		mpage_da_submit_io(&mpd);
	}

	return ret;
}

/*
 * this is a special callback for ->write_begin() only
 * it's intention is to return mapped block or reserve space
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
				  struct buffer_head *bh_result, int create)
{
	int ret = 0;

	BUG_ON(create == 0);
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0);
	if (ret == 0) {
		/* the block isn't allocated yet, let's reserve space */
		/* XXX: call reservation here */
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		map_bh(bh_result, inode->i_sb, 0);
		set_buffer_new(bh_result);
		set_buffer_delay(bh_result);
	} else if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);
		ret = 0;
	}

	return ret;
}

static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
	loff_t disksize = EXT4_I(inode)->i_disksize;
	handle_t *handle = NULL;

	if (create) {
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
			goto out;
		}
	}

	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
				   bh_result, create, 0);
	if (ret > 0) {
		bh_result->b_size = (ret << inode->i_blkbits);

		/*
		 * Update on-disk size along with block allocation
		 * we don't use 'extend_disksize' as size may change
		 * within already allocated block -bzzz
		 */
		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > EXT4_I(inode)->i_disksize) {
			/*
			 * XXX: replace with spinlock if seen contended -bzzz
			 */
			down_write(&EXT4_I(inode)->i_data_sem);
			if (disksize > EXT4_I(inode)->i_disksize)
				EXT4_I(inode)->i_disksize = disksize;
			up_write(&EXT4_I(inode)->i_data_sem);

			if (EXT4_I(inode)->i_disksize == disksize) {
				if (handle == NULL)
					handle = ext4_journal_start(inode, 1);
				if (!IS_ERR(handle))
					ext4_mark_inode_dirty(handle, inode);
			}
		}

		ret = 0;
	}

out:
	if (handle && !IS_ERR(handle))
		ext4_journal_stop(handle);

	return ret;
}
/* FIXME!! only support data=writeback mode */
static int ext4_da_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

	if (ext4_journal_current_handle())
		goto out_fail;

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out_fail;
	}

	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
		ret = nobh_writepage(page, ext4_get_block, wbc);
	else
		ret = block_write_full_page(page, ext4_get_block, wbc);

	if (!ret && inode->i_size > EXT4_I(inode)->i_disksize) {
		EXT4_I(inode)->i_disksize = inode->i_size;
		ext4_mark_inode_dirty(handle, inode);
	}

	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;

out_fail:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return ret;
}

static int ext4_da_writepages(struct address_space *mapping,
				struct writeback_control *wbc)
{
	return mpage_da_writepages(mapping, wbc, ext4_da_get_block_write);
}

static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	int ret;
	struct page *page;
	pgoff_t index;
	unsigned from, to;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	page = __grab_cache_page(mapping, index);
	if (!page)
		return -ENOMEM;
	*pagep = page;

	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
							ext4_da_get_block_prep);
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
	}

out:
	return ret;
}

static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh) || buffer_delay(bh);
}

static int ext4_da_write_end(struct file *file,
				struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
	if (new_i_size > EXT4_I(inode)->i_disksize)
		if (!walk_page_buffers(NULL, page_buffers(page),
				       0, len, NULL, ext4_bh_unmapped_or_delay)){
			/*
			 * Updating i_disksize when extending file without
			 * needing block allocation
			 */
			if (ext4_should_order_data(inode))
				ret = ext4_jbd2_file_inode(handle, inode);

			EXT4_I(inode)->i_disksize = new_i_size;
		}
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		/*
		 * is this block fully invalidated?
		 */
		if (offset <= curr_off && buffer_delay(bh)) {
			clear_buffer_delay(bh);
			/* XXX: add real stuff here */
		}
		curr_off = next_off;
		bh = bh->b_this_page;
	} while (bh != head);

out:
	ext4_invalidatepage(page, offset);

	return;
}


2076 2077 2078 2079 2080
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2081
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2082 2083 2084 2085 2086 2087 2088 2089
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2090
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2091 2092 2093 2094 2095
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2106
	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2118
		 * NB. EXT4_STATE_JDATA is not set on files other than
2119 2120 2121 2122 2123 2124
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2125 2126
		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
		journal = EXT4_JOURNAL(inode);
2127 2128 2129
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2130 2131 2132 2133 2134

		if (err)
			return 0;
	}

2135
	return generic_block_bmap(mapping,block,ext4_get_block);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
}

static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

/*
2151 2152 2153 2154 2155 2156 2157 2158
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
2159
 *
2160
 * In all journaling modes block_write_full_page() will start the I/O.
2161 2162 2163
 *
 * Problem:
 *
2164 2165
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
2166 2167 2168
 *
 * Similar for:
 *
2169
 *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2170
 *
2171
 * Same applies to ext4_get_block().  We will deadlock on various things like
2172
 * lock_journal and i_data_sem
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
 *
 * Setting PF_MEMALLOC here doesn't work - too many internal memory
 * allocations fail.
 *
 * 16May01: If we're reentered then journal_current_handle() will be
 *	    non-zero. We simply *return*.
 *
 * 1 July 2001: @@@ FIXME:
 *   In journalled data mode, a data buffer may be metadata against the
 *   current transaction.  But the same file is part of a shared mapping
 *   and someone does a writepage() on it.
 *
 *   We will move the buffer onto the async_data list, but *after* it has
 *   been dirtied. So there's a small window where we have dirty data on
 *   BJ_Metadata.
 *
 *   Note that this only applies to the last partial page in the file.  The
 *   bit which block_write_full_page() uses prepare/commit for.  (That's
 *   broken code anyway: it's wrong for msync()).
 *
 *   It's a rare case: affects the final partial page, for journalled data
 *   where the file is subject to bith write() and writepage() in the same
 *   transction.  To fix it we'll need a custom block_write_full_page().
 *   We'll probably need that anyway for journalling writepage() output.
 *
 * We don't honour synchronous mounts for writepage().  That would be
 * disastrous.  Any write() or metadata operation will sync the fs for
 * us.
 *
 */
2203
static int __ext4_normal_writepage(struct page *page,
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;

	if (test_opt(inode->i_sb, NOBH))
		return nobh_writepage(page, ext4_get_block, wbc);
	else
		return block_write_full_page(page, ext4_get_block, wbc);
}


2215
static int ext4_normal_writepage(struct page *page,
2216 2217 2218
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	loff_t size = i_size_read(inode);
	loff_t len;

	J_ASSERT(PageLocked(page));
	J_ASSERT(page_has_buffers(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
	BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				 ext4_bh_unmapped_or_delay));

	if (!ext4_journal_current_handle())
2232
		return __ext4_normal_writepage(page, wbc);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				struct writeback_control *wbc)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
2245 2246 2247 2248
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
	if (ret != 0)
		goto out_unlock;

	page_bufs = page_buffers(page);
	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
								bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);
2259

2260
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2261 2262
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
2263
		goto out;
2264 2265
	}

2266 2267
	ret = walk_page_buffers(handle, page_bufs, 0,
			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2268

2269 2270 2271 2272
	err = walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, write_end_fn);
	if (ret == 0)
		ret = err;
2273
	err = ext4_journal_stop(handle);
2274 2275 2276
	if (!ret)
		ret = err;

2277 2278 2279 2280 2281 2282
	walk_page_buffers(handle, page_bufs, 0,
				PAGE_CACHE_SIZE, NULL, bput_one);
	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
	goto out;

out_unlock:
2283
	unlock_page(page);
2284
out:
2285 2286 2287
	return ret;
}

2288
static int ext4_journalled_writepage(struct page *page,
2289 2290 2291
				struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
2292 2293
	loff_t size = i_size_read(inode);
	loff_t len;
2294

2295 2296 2297 2298 2299 2300 2301 2302
	J_ASSERT(PageLocked(page));
	J_ASSERT(page_has_buffers(page));
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
	BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				 ext4_bh_unmapped_or_delay));
2303

2304
	if (ext4_journal_current_handle())
2305 2306
		goto no_write;

2307
	if (PageChecked(page)) {
2308 2309 2310 2311 2312
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
		ClearPageChecked(page);
2313
		return __ext4_journalled_writepage(page, wbc);
2314 2315 2316 2317 2318 2319
	} else {
		/*
		 * It may be a page full of checkpoint-mode buffers.  We don't
		 * really know unless we go poke around in the buffer_heads.
		 * But block_write_full_page will do the right thing.
		 */
2320
		return block_write_full_page(page, ext4_get_block, wbc);
2321 2322 2323 2324
	}
no_write:
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);
2325
	return 0;
2326 2327
}

2328
static int ext4_readpage(struct file *file, struct page *page)
2329
{
2330
	return mpage_readpage(page, ext4_get_block);
2331 2332 2333
}

static int
2334
ext4_readpages(struct file *file, struct address_space *mapping,
2335 2336
		struct list_head *pages, unsigned nr_pages)
{
2337
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2338 2339
}

2340
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2341
{
2342
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2343 2344 2345 2346 2347 2348 2349

	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2350
	jbd2_journal_invalidatepage(journal, page, offset);
2351 2352
}

2353
static int ext4_releasepage(struct page *page, gfp_t wait)
2354
{
2355
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2356 2357 2358 2359

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2360
	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2361 2362 2363 2364 2365 2366 2367 2368
}

/*
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
2369 2370
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
2371
 */
2372
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2373 2374 2375 2376 2377
			const struct iovec *iov, loff_t offset,
			unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2378
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
2379
	handle_t *handle;
2380 2381 2382 2383 2384 2385 2386 2387
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
2388 2389 2390 2391 2392 2393
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
2394
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
2395 2396 2397 2398
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
2399 2400
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
2401
			ext4_journal_stop(handle);
2402 2403 2404 2405 2406
		}
	}

	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
2407
				 ext4_get_block, NULL);
2408

J
Jan Kara 已提交
2409
	if (orphan) {
2410 2411
		int err;

J
Jan Kara 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
			goto out;
		}
		if (inode->i_nlink)
2422
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
2423
		if (ret > 0) {
2424 2425 2426 2427 2428 2429 2430 2431
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
2432
				 * ext4_mark_inode_dirty() to userspace.  So
2433 2434
				 * ignore it.
				 */
2435
				ext4_mark_inode_dirty(handle, inode);
2436 2437
			}
		}
2438
		err = ext4_journal_stop(handle);
2439 2440 2441 2442 2443 2444 2445 2446
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

/*
2447
 * Pages can be marked dirty completely asynchronously from ext4's journalling
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
2459
static int ext4_journalled_set_page_dirty(struct page *page)
2460 2461 2462 2463 2464
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

2465 2466 2467
static const struct address_space_operations ext4_ordered_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
2468
	.writepage	= ext4_normal_writepage,
2469
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
2470 2471
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_ordered_write_end,
2472 2473 2474 2475
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
2476 2477 2478
	.migratepage	= buffer_migrate_page,
};

2479 2480 2481
static const struct address_space_operations ext4_writeback_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
2482
	.writepage	= ext4_normal_writepage,
2483
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
2484 2485
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_writeback_write_end,
2486 2487 2488 2489
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
2490 2491 2492
	.migratepage	= buffer_migrate_page,
};

2493 2494 2495 2496
static const struct address_space_operations ext4_journalled_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_journalled_writepage,
2497
	.sync_page	= block_sync_page,
N
Nick Piggin 已提交
2498 2499
	.write_begin	= ext4_write_begin,
	.write_end	= ext4_journalled_write_end,
2500 2501 2502 2503
	.set_page_dirty	= ext4_journalled_set_page_dirty,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_invalidatepage,
	.releasepage	= ext4_releasepage,
2504 2505
};

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
static const struct address_space_operations ext4_da_aops = {
	.readpage	= ext4_readpage,
	.readpages	= ext4_readpages,
	.writepage	= ext4_da_writepage,
	.writepages	= ext4_da_writepages,
	.sync_page	= block_sync_page,
	.write_begin	= ext4_da_write_begin,
	.write_end	= ext4_da_write_end,
	.bmap		= ext4_bmap,
	.invalidatepage	= ext4_da_invalidatepage,
	.releasepage	= ext4_releasepage,
	.direct_IO	= ext4_direct_IO,
	.migratepage	= buffer_migrate_page,
};

2521
void ext4_set_aops(struct inode *inode)
2522
{
2523 2524
	if (ext4_should_order_data(inode))
		inode->i_mapping->a_ops = &ext4_ordered_aops;
2525 2526 2527
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
2528 2529
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
2530
	else
2531
		inode->i_mapping->a_ops = &ext4_journalled_aops;
2532 2533 2534
}

/*
2535
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2536 2537 2538 2539
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
2540
int ext4_block_truncate_page(handle_t *handle,
2541 2542
		struct address_space *mapping, loff_t from)
{
2543
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2544
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
2545 2546
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
2547 2548
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
2549
	struct page *page;
2550 2551
	int err = 0;

2552 2553 2554 2555
	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
	if (!page)
		return -EINVAL;

2556 2557 2558 2559 2560 2561 2562 2563 2564
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	/*
	 * For "nobh" option,  we can only work if we don't need to
	 * read-in the page - otherwise we create buffers to do the IO.
	 */
	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2565
	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
2566
		zero_user(page, offset, length);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		set_page_dirty(page);
		goto unlock;
	}

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
2591
		ext4_get_block(inode, iblock, bh, 0);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

2612
	if (ext4_should_journal_data(inode)) {
2613
		BUFFER_TRACE(bh, "get write access");
2614
		err = ext4_journal_get_write_access(handle, bh);
2615 2616 2617 2618
		if (err)
			goto unlock;
	}

2619
	zero_user(page, offset, length);
2620 2621 2622 2623

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
2624 2625
	if (ext4_should_journal_data(inode)) {
		err = ext4_journal_dirty_metadata(handle, bh);
2626
	} else {
2627
		if (ext4_should_order_data(inode))
2628
			err = ext4_jbd2_file_inode(handle, inode);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
2652
 *	ext4_find_shared - find the indirect blocks for partial truncation.
2653 2654
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
2655
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
2656 2657 2658
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
2659
 *	This is a helper function used by ext4_truncate().
2660 2661 2662 2663 2664 2665 2666
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
2667
 *	past the truncation point is possible until ext4_truncate()
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

2686
static Indirect *ext4_find_shared(struct inode *inode, int depth,
A
Aneesh Kumar K.V 已提交
2687
			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2688 2689 2690 2691 2692 2693 2694 2695
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
	/* Make k index the deepest non-null offest + 1 */
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
2696
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
2719
		/* Nope, don't do this in ext4.  Must leave the tree intact */
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

	while(partial > p) {
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
2742 2743
static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
		struct buffer_head *bh, ext4_fsblk_t block_to_free,
2744 2745 2746 2747 2748
		unsigned long count, __le32 *first, __le32 *last)
{
	__le32 *p;
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
2749 2750
			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
			ext4_journal_dirty_metadata(handle, bh);
2751
		}
2752 2753
		ext4_mark_inode_dirty(handle, inode);
		ext4_journal_test_restart(handle, inode);
2754 2755
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
2756
			ext4_journal_get_write_access(handle, bh);
2757 2758 2759 2760 2761
		}
	}

	/*
	 * Any buffers which are on the journal will be in memory. We find
2762
	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2763
	 * on them.  We've already detached each block from the file, so
2764
	 * bforget() in jbd2_journal_forget() should be safe.
2765
	 *
2766
	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2767 2768 2769 2770
	 */
	for (p = first; p < last; p++) {
		u32 nr = le32_to_cpu(*p);
		if (nr) {
A
Aneesh Kumar K.V 已提交
2771
			struct buffer_head *tbh;
2772 2773

			*p = 0;
A
Aneesh Kumar K.V 已提交
2774 2775
			tbh = sb_find_get_block(inode->i_sb, nr);
			ext4_forget(handle, 0, inode, tbh, nr);
2776 2777 2778
		}
	}

2779
	ext4_free_blocks(handle, inode, block_to_free, count, 0);
2780 2781 2782
}

/**
2783
 * ext4_free_data - free a list of data blocks
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
2801
static void ext4_free_data(handle_t *handle, struct inode *inode,
2802 2803 2804
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
2805
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2806 2807 2808 2809
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
2810
	ext4_fsblk_t nr;		    /* Current block # */
2811 2812 2813 2814 2815 2816
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
2817
		err = ext4_journal_get_write_access(handle, this_bh);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
2835
				ext4_clear_blocks(handle, inode, this_bh,
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
						  block_to_free,
						  count, block_to_free_p, p);
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
2846
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2847 2848 2849
				  count, block_to_free_p, p);

	if (this_bh) {
2850
		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
		if (bh2jh(this_bh))
			ext4_journal_dirty_metadata(handle, this_bh);
		else
			ext4_error(inode->i_sb, __func__,
				   "circular indirect block detected, "
				   "inode=%lu, block=%llu",
				   inode->i_ino,
				   (unsigned long long) this_bh->b_blocknr);
2866 2867 2868 2869
	}
}

/**
2870
 *	ext4_free_branches - free an array of branches
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
2882
static void ext4_free_branches(handle_t *handle, struct inode *inode,
2883 2884 2885
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
2886
	ext4_fsblk_t nr;
2887 2888 2889 2890 2891 2892 2893
	__le32 *p;

	if (is_handle_aborted(handle))
		return;

	if (depth--) {
		struct buffer_head *bh;
2894
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
2909
				ext4_error(inode->i_sb, "ext4_free_branches",
2910
					   "Read failure, inode=%lu, block=%llu",
2911 2912 2913 2914 2915 2916
					   inode->i_ino, nr);
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
2917
			ext4_free_branches(handle, inode, bh,
2918 2919 2920 2921 2922 2923 2924 2925
					   (__le32*)bh->b_data,
					   (__le32*)bh->b_data + addr_per_block,
					   depth);

			/*
			 * We've probably journalled the indirect block several
			 * times during the truncate.  But it's no longer
			 * needed and we now drop it from the transaction via
2926
			 * jbd2_journal_revoke().
2927 2928 2929
			 *
			 * That's easy if it's exclusively part of this
			 * transaction.  But if it's part of the committing
2930
			 * transaction then jbd2_journal_forget() will simply
2931
			 * brelse() it.  That means that if the underlying
2932
			 * block is reallocated in ext4_get_block(),
2933 2934 2935 2936 2937 2938 2939 2940
			 * unmap_underlying_metadata() will find this block
			 * and will try to get rid of it.  damn, damn.
			 *
			 * If this block has already been committed to the
			 * journal, a revoke record will be written.  And
			 * revoke records must be emitted *before* clearing
			 * this block's bit in the bitmaps.
			 */
2941
			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
			if (is_handle_aborted(handle))
				return;
			if (try_to_extend_transaction(handle, inode)) {
2962 2963
				ext4_mark_inode_dirty(handle, inode);
				ext4_journal_test_restart(handle, inode);
2964 2965
			}

2966
			ext4_free_blocks(handle, inode, nr, 1, 1);
2967 2968 2969 2970 2971 2972 2973

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
2974
				if (!ext4_journal_get_write_access(handle,
2975 2976 2977
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
2978 2979
					"call ext4_journal_dirty_metadata");
					ext4_journal_dirty_metadata(handle,
2980 2981 2982 2983 2984 2985 2986
								    parent_bh);
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
2987
		ext4_free_data(handle, inode, parent_bh, first, last);
2988 2989 2990
	}
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3004
/*
3005
 * ext4_truncate()
3006
 *
3007 3008
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3025
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3026
 * that this inode's truncate did not complete and it will again call
3027 3028
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3029
 * that's fine - as long as they are linked from the inode, the post-crash
3030
 * ext4_truncate() run will find them and release them.
3031
 */
3032
void ext4_truncate(struct inode *inode)
3033 3034
{
	handle_t *handle;
3035
	struct ext4_inode_info *ei = EXT4_I(inode);
3036
	__le32 *i_data = ei->i_data;
3037
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3038
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
3039
	ext4_lblk_t offsets[4];
3040 3041 3042 3043
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
3044
	ext4_lblk_t last_block;
3045 3046
	unsigned blocksize = inode->i_sb->s_blocksize;

3047
	if (!ext4_can_truncate(inode))
3048 3049
		return;

A
Aneesh Kumar K.V 已提交
3050
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3051
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
3052 3053
		return;
	}
A
Alex Tomas 已提交
3054

3055
	handle = start_transaction(inode);
3056
	if (IS_ERR(handle))
3057 3058 3059
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
3060
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3061

3062 3063 3064
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
3065

3066
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
3079
	if (ext4_orphan_add(handle, inode))
3080 3081 3082 3083 3084 3085 3086
		goto out_stop;

	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
3087
	 * ext4 *really* writes onto the disk inode.
3088 3089 3090 3091
	 */
	ei->i_disksize = inode->i_size;

	/*
3092
	 * From here we block out all ext4_get_block() callers who want to
3093 3094
	 * modify the block allocation tree.
	 */
3095
	down_write(&ei->i_data_sem);
3096 3097

	if (n == 1) {		/* direct blocks */
3098 3099
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
3100 3101 3102
		goto do_indirects;
	}

3103
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3104 3105 3106 3107
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
3108
			ext4_free_branches(handle, inode, NULL,
3109 3110 3111 3112 3113 3114 3115 3116 3117
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
3118
			ext4_free_branches(handle, inode, partial->bh,
3119 3120 3121 3122 3123 3124
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
3125
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse (partial->bh);
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
3136
		nr = i_data[EXT4_IND_BLOCK];
3137
		if (nr) {
3138 3139
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
3140
		}
3141 3142
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
3143
		if (nr) {
3144 3145
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
3146
		}
3147 3148
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
3149
		if (nr) {
3150 3151
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
3152
		}
3153
	case EXT4_TIND_BLOCK:
3154 3155 3156
		;
	}

3157
	ext4_discard_reservation(inode);
3158

3159
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
3160
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3161
	ext4_mark_inode_dirty(handle, inode);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
		handle->h_sync = 1;
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
3174
	 * ext4_delete_inode(), and we allow that function to clean up the
3175 3176 3177
	 * orphan info for us.
	 */
	if (inode->i_nlink)
3178
		ext4_orphan_del(handle, inode);
3179

3180
	ext4_journal_stop(handle);
3181 3182
}

3183 3184
static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
		unsigned long ino, struct ext4_iloc *iloc)
3185
{
3186
	ext4_group_t block_group;
3187
	unsigned long offset;
3188
	ext4_fsblk_t block;
A
Akinobu Mita 已提交
3189
	struct ext4_group_desc *gdp;
3190

3191
	if (!ext4_valid_inum(sb, ino)) {
3192 3193 3194 3195 3196 3197 3198 3199
		/*
		 * This error is already checked for in namei.c unless we are
		 * looking at an NFS filehandle, in which case no error
		 * report is needed
		 */
		return 0;
	}

3200
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
A
Akinobu Mita 已提交
3201 3202
	gdp = ext4_get_group_desc(sb, block_group, NULL);
	if (!gdp)
3203 3204 3205 3206 3207
		return 0;

	/*
	 * Figure out the offset within the block group inode table
	 */
3208 3209
	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
		EXT4_INODE_SIZE(sb);
3210 3211
	block = ext4_inode_table(sb, gdp) +
		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3212 3213

	iloc->block_group = block_group;
3214
	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3215 3216 3217 3218
	return block;
}

/*
3219
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3220 3221 3222 3223
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3224 3225
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3226
{
3227
	ext4_fsblk_t block;
3228 3229
	struct buffer_head *bh;

3230
	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3231 3232 3233 3234 3235
	if (!block)
		return -EIO;

	bh = sb_getblk(inode->i_sb, block);
	if (!bh) {
3236
		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3237
				"unable to read inode block - "
3238
				"inode=%lu, block=%llu",
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
				 inode->i_ino, block);
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3257
			struct ext4_group_desc *desc;
3258 3259
			int inodes_per_buffer;
			int inode_offset, i;
3260
			ext4_group_t block_group;
3261 3262 3263
			int start;

			block_group = (inode->i_ino - 1) /
3264
					EXT4_INODES_PER_GROUP(inode->i_sb);
3265
			inodes_per_buffer = bh->b_size /
3266
				EXT4_INODE_SIZE(inode->i_sb);
3267
			inode_offset = ((inode->i_ino - 1) %
3268
					EXT4_INODES_PER_GROUP(inode->i_sb));
3269 3270 3271
			start = inode_offset & ~(inodes_per_buffer - 1);

			/* Is the inode bitmap in cache? */
3272
			desc = ext4_get_group_desc(inode->i_sb,
3273 3274 3275 3276 3277
						block_group, NULL);
			if (!desc)
				goto make_io;

			bitmap_bh = sb_getblk(inode->i_sb,
3278
				ext4_inode_bitmap(inode->i_sb, desc));
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
			for (i = start; i < start + inodes_per_buffer; i++) {
				if (i == inode_offset)
					continue;
3294
				if (ext4_test_bit(i, bitmap_bh->b_data))
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
					break;
			}
			brelse(bitmap_bh);
			if (i == start + inodes_per_buffer) {
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3318
			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3319
					"unable to read inode block - "
3320
					"inode=%lu, block=%llu",
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
					inode->i_ino, block);
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3331
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3332 3333
{
	/* We have all inode data except xattrs in memory here. */
3334 3335
	return __ext4_get_inode_loc(inode, iloc,
		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3336 3337
}

3338
void ext4_set_inode_flags(struct inode *inode)
3339
{
3340
	unsigned int flags = EXT4_I(inode)->i_flags;
3341 3342

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3343
	if (flags & EXT4_SYNC_FL)
3344
		inode->i_flags |= S_SYNC;
3345
	if (flags & EXT4_APPEND_FL)
3346
		inode->i_flags |= S_APPEND;
3347
	if (flags & EXT4_IMMUTABLE_FL)
3348
		inode->i_flags |= S_IMMUTABLE;
3349
	if (flags & EXT4_NOATIME_FL)
3350
		inode->i_flags |= S_NOATIME;
3351
	if (flags & EXT4_DIRSYNC_FL)
3352 3353 3354
		inode->i_flags |= S_DIRSYNC;
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
	unsigned int flags = ei->vfs_inode.i_flags;

	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
	if (flags & S_SYNC)
		ei->i_flags |= EXT4_SYNC_FL;
	if (flags & S_APPEND)
		ei->i_flags |= EXT4_APPEND_FL;
	if (flags & S_IMMUTABLE)
		ei->i_flags |= EXT4_IMMUTABLE_FL;
	if (flags & S_NOATIME)
		ei->i_flags |= EXT4_NOATIME_FL;
	if (flags & S_DIRSYNC)
		ei->i_flags |= EXT4_DIRSYNC_FL;
}
3373 3374 3375 3376
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
					struct ext4_inode_info *ei)
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3377 3378
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3379 3380 3381 3382 3383 3384

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
A
Aneesh Kumar K.V 已提交
3385 3386 3387 3388 3389 3390
		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3391 3392 3393 3394
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3395

3396
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3397
{
3398 3399
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3400
	struct ext4_inode_info *ei;
3401
	struct buffer_head *bh;
3402 3403
	struct inode *inode;
	long ret;
3404 3405
	int block;

3406 3407 3408 3409 3410 3411 3412
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3413 3414 3415
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3416 3417 3418
#endif
	ei->i_block_alloc_info = NULL;

3419 3420
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3421 3422
		goto bad_inode;
	bh = iloc.bh;
3423
	raw_inode = ext4_raw_inode(&iloc);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
	if(!(test_opt (inode->i_sb, NO_UID32))) {
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

	ei->i_state = 0;
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3443
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3444 3445
			/* this inode is deleted */
			brelse (bh);
3446
			ret = -ESTALE;
3447 3448 3449 3450 3451 3452 3453 3454
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3455
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3456
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3457
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3458
	    cpu_to_le32(EXT4_OS_HURD)) {
B
Badari Pulavarty 已提交
3459 3460
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3461
	}
3462
	inode->i_size = ext4_isize(raw_inode);
3463 3464 3465 3466 3467 3468 3469
	ei->i_disksize = inode->i_size;
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3470
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3471 3472 3473
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3474
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3475
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3476
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3477 3478
		    EXT4_INODE_SIZE(inode->i_sb)) {
			brelse (bh);
3479
			ret = -EIO;
3480
			goto bad_inode;
3481
		}
3482 3483
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3484 3485
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3486 3487
		} else {
			__le32 *magic = (void *)raw_inode +
3488
					EXT4_GOOD_OLD_INODE_SIZE +
3489
					ei->i_extra_isize;
3490 3491
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
				 ei->i_state |= EXT4_STATE_XATTR;
3492 3493 3494 3495
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3496 3497 3498 3499 3500
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3501 3502 3503 3504 3505 3506 3507
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3508
	if (S_ISREG(inode->i_mode)) {
3509 3510 3511
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3512
	} else if (S_ISDIR(inode->i_mode)) {
3513 3514
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3515
	} else if (S_ISLNK(inode->i_mode)) {
3516 3517
		if (ext4_inode_is_fast_symlink(inode))
			inode->i_op = &ext4_fast_symlink_inode_operations;
3518
		else {
3519 3520
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3521 3522
		}
	} else {
3523
		inode->i_op = &ext4_special_inode_operations;
3524 3525 3526 3527 3528 3529 3530 3531
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
	}
	brelse (iloc.bh);
3532
	ext4_set_inode_flags(inode);
3533 3534
	unlock_new_inode(inode);
	return inode;
3535 3536

bad_inode:
3537 3538
	iget_failed(inode);
	return ERR_PTR(ret);
3539 3540
}

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;
	int err = 0;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3555
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3556
		raw_inode->i_blocks_high = 0;
A
Aneesh Kumar K.V 已提交
3557
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	} else if (i_blocks <= 0xffffffffffffULL) {
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		/* i_block is stored in the split  48 bit fields */
A
Aneesh Kumar K.V 已提交
3568
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3569
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
A
Aneesh Kumar K.V 已提交
3570
		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3571
	} else {
A
Aneesh Kumar K.V 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
		/*
		 * i_blocks should be represented in a 48 bit variable
		 * as multiple of  file system block size
		 */
		err = ext4_update_rocompat_feature(handle, sb,
					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
		if (err)
			goto  err_out;
		ei->i_flags |= EXT4_HUGE_FILE_FL;
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3585 3586 3587 3588 3589
	}
err_out:
	return err;
}

3590 3591 3592 3593 3594 3595 3596
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3597
static int ext4_do_update_inode(handle_t *handle,
3598
				struct inode *inode,
3599
				struct ext4_iloc *iloc)
3600
{
3601 3602
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3603 3604 3605 3606 3607
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3608 3609
	if (ei->i_state & EXT4_STATE_NEW)
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3610

3611
	ext4_get_inode_flags(ei);
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
	if(!(test_opt(inode->i_sb, NO_UID32))) {
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
		if(!ei->i_dtime) {
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3638 3639 3640 3641 3642 3643

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3644 3645
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3646
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3647 3648
	/* clear the migrate flag in the raw_inode */
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3649 3650
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3651 3652
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3653
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3670
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3671 3672 3673 3674
			sb->s_dirt = 1;
			handle->h_sync = 1;
			err = ext4_journal_dirty_metadata(handle,
					EXT4_SB(sb)->s_sbh);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3689
	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
3690 3691
		raw_inode->i_block[block] = ei->i_data[block];

3692 3693 3694 3695 3696
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
3697
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3698 3699
	}

3700

3701 3702
	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
	rc = ext4_journal_dirty_metadata(handle, bh);
3703 3704
	if (!err)
		err = rc;
3705
	ei->i_state &= ~EXT4_STATE_NEW;
3706 3707 3708

out_brelse:
	brelse (bh);
3709
	ext4_std_error(inode->i_sb, err);
3710 3711 3712 3713
	return err;
}

/*
3714
 * ext4_write_inode()
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
3731
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
3748
int ext4_write_inode(struct inode *inode, int wait)
3749 3750 3751 3752
{
	if (current->flags & PF_MEMALLOC)
		return 0;

3753
	if (ext4_journal_current_handle()) {
M
Mingming Cao 已提交
3754
		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3755 3756 3757 3758 3759 3760 3761
		dump_stack();
		return -EIO;
	}

	if (!wait)
		return 0;

3762
	return ext4_force_commit(inode->i_sb);
3763 3764 3765
}

/*
3766
 * ext4_setattr()
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
3780 3781 3782 3783 3784 3785 3786 3787
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
3788
 */
3789
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
3805 3806
		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3807 3808 3809 3810 3811 3812
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
		if (error) {
3813
			ext4_journal_stop(handle);
3814 3815 3816 3817 3818 3819 3820 3821
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
3822 3823
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
3824 3825
	}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	if (attr->ia_valid & ATTR_SIZE) {
		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
				error = -EFBIG;
				goto err_out;
			}
		}
	}

3837 3838 3839 3840
	if (S_ISREG(inode->i_mode) &&
	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
		handle_t *handle;

3841
		handle = ext4_journal_start(inode, 3);
3842 3843 3844 3845 3846
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

3847 3848 3849
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
3850 3851
		if (!error)
			error = rc;
3852
		ext4_journal_stop(handle);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
3869 3870 3871 3872
	}

	rc = inode_setattr(inode, attr);

3873
	/* If inode_setattr's call to ext4_truncate failed to get a
3874 3875 3876
	 * transaction handle at all, we need to clean up the in-core
	 * orphan list manually. */
	if (inode->i_nlink)
3877
		ext4_orphan_del(NULL, inode);
3878 3879

	if (!rc && (ia_valid & ATTR_MODE))
3880
		rc = ext4_acl_chmod(inode);
3881 3882

err_out:
3883
	ext4_std_error(inode->i_sb, error);
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
	if (!error)
		error = rc;
	return error;
}


/*
 * How many blocks doth make a writepage()?
 *
 * With N blocks per page, it may be:
 * N data blocks
 * 2 indirect block
 * 2 dindirect
 * 1 tindirect
 * N+5 bitmap blocks (from the above)
 * N+5 group descriptor summary blocks
 * 1 inode block
 * 1 superblock.
3902
 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3903
 *
3904
 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
 *
 * With ordered or writeback data it's the same, less the N data blocks.
 *
 * If the inode's direct blocks can hold an integral number of pages then a
 * page cannot straddle two indirect blocks, and we can only touch one indirect
 * and dindirect block, and the "5" above becomes "3".
 *
 * This still overestimates under most circumstances.  If we were to pass the
 * start and end offsets in here as well we could do block_to_path() on each
 * block and work out the exact number of indirects which are touched.  Pah.
 */

A
Alex Tomas 已提交
3917
int ext4_writepage_trans_blocks(struct inode *inode)
3918
{
3919 3920
	int bpp = ext4_journal_blocks_per_page(inode);
	int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3921 3922
	int ret;

A
Alex Tomas 已提交
3923 3924 3925
	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
		return ext4_ext_writepage_trans_blocks(inode, bpp);

3926
	if (ext4_should_journal_data(inode))
3927 3928 3929 3930 3931 3932 3933
		ret = 3 * (bpp + indirects) + 2;
	else
		ret = 2 * (bpp + indirects) + 2;

#ifdef CONFIG_QUOTA
	/* We know that structure was already allocated during DQUOT_INIT so
	 * we will be updating only the data blocks + inodes */
3934
	ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3935 3936 3937 3938 3939 3940
#endif

	return ret;
}

/*
3941
 * The caller must have previously called ext4_reserve_inode_write().
3942 3943
 * Give this, we know that the caller already has write access to iloc->bh.
 */
3944 3945
int ext4_mark_iloc_dirty(handle_t *handle,
		struct inode *inode, struct ext4_iloc *iloc)
3946 3947 3948
{
	int err = 0;

3949 3950 3951
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

3952 3953 3954
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

3955
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3956
	err = ext4_do_update_inode(handle, inode, iloc);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
3967 3968
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
3969 3970 3971
{
	int err = 0;
	if (handle) {
3972
		err = ext4_get_inode_loc(inode, iloc);
3973 3974
		if (!err) {
			BUFFER_TRACE(iloc->bh, "get_write_access");
3975
			err = ext4_journal_get_write_access(handle, iloc->bh);
3976 3977 3978 3979 3980 3981
			if (err) {
				brelse(iloc->bh);
				iloc->bh = NULL;
			}
		}
	}
3982
	ext4_std_error(inode->i_sb, err);
3983 3984 3985
	return err;
}

3986 3987 3988 3989
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
3990 3991 3992 3993
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;
	struct ext4_xattr_entry *entry;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);
	entry = IFIRST(header);

	/* No extended attributes present */
	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4042
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4043
{
4044
	struct ext4_iloc iloc;
4045 4046 4047
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4048 4049

	might_sleep();
4050
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
A
Aneesh Kumar K.V 已提交
4067 4068
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4069
					ext4_warning(inode->i_sb, __func__,
4070 4071 4072
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4073 4074
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4075 4076 4077 4078
				}
			}
		}
	}
4079
	if (!err)
4080
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4081 4082 4083 4084
	return err;
}

/*
4085
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4098
void ext4_dirty_inode(struct inode *inode)
4099
{
4100
	handle_t *current_handle = ext4_journal_current_handle();
4101 4102
	handle_t *handle;

4103
	handle = ext4_journal_start(inode, 2);
4104 4105 4106 4107 4108 4109
	if (IS_ERR(handle))
		goto out;
	if (current_handle &&
		current_handle->h_transaction != handle->h_transaction) {
		/* This task has a transaction open against a different fs */
		printk(KERN_EMERG "%s: transactions do not match!\n",
4110
		       __func__);
4111 4112 4113
	} else {
		jbd_debug(5, "marking dirty.  outer handle=%p\n",
				current_handle);
4114
		ext4_mark_inode_dirty(handle, inode);
4115
	}
4116
	ext4_journal_stop(handle);
4117 4118 4119 4120 4121 4122 4123 4124
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4125
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4126 4127 4128
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4129
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4130
{
4131
	struct ext4_iloc iloc;
4132 4133 4134

	int err = 0;
	if (handle) {
4135
		err = ext4_get_inode_loc(inode, &iloc);
4136 4137
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4138
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4139
			if (!err)
4140
				err = ext4_journal_dirty_metadata(handle,
4141 4142 4143 4144
								  iloc.bh);
			brelse(iloc.bh);
		}
	}
4145
	ext4_std_error(inode->i_sb, err);
4146 4147 4148 4149
	return err;
}
#endif

4150
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4166
	journal = EXT4_JOURNAL(inode);
4167
	if (is_journal_aborted(journal))
4168 4169
		return -EROFS;

4170 4171
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4182
		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4183
	else
4184 4185
		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
	ext4_set_aops(inode);
4186

4187
	jbd2_journal_unlock_updates(journal);
4188 4189 4190

	/* Finally we can mark the inode as dirty. */

4191
	handle = ext4_journal_start(inode, 1);
4192 4193 4194
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4195
	err = ext4_mark_inode_dirty(handle, inode);
4196
	handle->h_sync = 1;
4197 4198
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4199 4200 4201

	return err;
}
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

	if (page_has_buffers(page)) {
		/* return if we have all the buffers mapped */
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
				       ext4_bh_unmapped))
			goto out_unlock;
	}
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
			len, len, page, NULL);
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
	up_read(&inode->i_alloc_sem);
	return ret;
}