inode.c 136.0 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22 23
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
24
#include <linux/jbd2.h>
25 26 27 28 29 30
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
31
#include <linux/pagevec.h>
32
#include <linux/mpage.h>
33
#include <linux/namei.h>
34 35
#include <linux/uio.h>
#include <linux/bio.h>
36
#include <linux/workqueue.h>
37
#include <linux/kernel.h>
38
#include <linux/printk.h>
39
#include <linux/slab.h>
40
#include <linux/ratelimit.h>
41

42
#include "ext4_jbd2.h"
43 44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46
#include "truncate.h"
47

48 49
#include <trace/events/ext4.h>

50 51
#define MPAGE_DA_EXTENT_TAIL 0x01

52 53 54
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
55
	trace_ext4_begin_ordered_truncate(inode, new_size);
56 57 58 59 60 61 62 63 64 65 66
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
67 68
}

69
static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 71 72 73 74 75
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76

77 78 79
/*
 * Test whether an inode is a fast symlink.
 */
80
static int ext4_inode_is_fast_symlink(struct inode *inode)
81
{
82
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 84 85 86 87 88 89 90 91 92
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
93
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94
				 int nblocks)
95
{
96 97 98
	int ret;

	/*
99
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100 101 102 103
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
104
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
105
	jbd_debug(2, "restarting handle %p\n", handle);
106
	up_write(&EXT4_I(inode)->i_data_sem);
107
	ret = ext4_journal_restart(handle, nblocks);
108
	down_write(&EXT4_I(inode)->i_data_sem);
109
	ext4_discard_preallocations(inode);
110 111

	return ret;
112 113 114 115 116
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
117
void ext4_evict_inode(struct inode *inode)
118 119
{
	handle_t *handle;
120
	int err;
121

122
	trace_ext4_evict_inode(inode);
123 124 125

	ext4_ioend_wait(inode);

A
Al Viro 已提交
126
	if (inode->i_nlink) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
154 155 156 157
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

158
	if (!is_bad_inode(inode))
159
		dquot_initialize(inode);
160

161 162
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
163 164 165 166 167
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

168
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169
	if (IS_ERR(handle)) {
170
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 172 173 174 175
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
176
		ext4_orphan_del(NULL, inode);
177 178 179 180
		goto no_delete;
	}

	if (IS_SYNC(inode))
181
		ext4_handle_sync(handle);
182
	inode->i_size = 0;
183 184
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
185
		ext4_warning(inode->i_sb,
186 187 188
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
189
	if (inode->i_blocks)
190
		ext4_truncate(inode);
191 192 193 194 195 196 197

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
198
	if (!ext4_handle_has_enough_credits(handle, 3)) {
199 200 201 202
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
203
			ext4_warning(inode->i_sb,
204 205 206
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
207
			ext4_orphan_del(NULL, inode);
208 209 210 211
			goto no_delete;
		}
	}

212
	/*
213
	 * Kill off the orphan record which ext4_truncate created.
214
	 * AKPM: I think this can be inside the above `if'.
215
	 * Note that ext4_orphan_del() has to be able to cope with the
216
	 * deletion of a non-existent orphan - this is because we don't
217
	 * know if ext4_truncate() actually created an orphan record.
218 219
	 * (Well, we could do this if we need to, but heck - it works)
	 */
220 221
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
222 223 224 225 226 227 228 229

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
230
	if (ext4_mark_inode_dirty(handle, inode))
231
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
232
		ext4_clear_inode(inode);
233
	else
234 235
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
236 237
	return;
no_delete:
A
Al Viro 已提交
238
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
239 240
}

241 242
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
243
{
244
	return &EXT4_I(inode)->i_reserved_quota;
245
}
246
#endif
247

248 249
/*
 * Calculate the number of metadata blocks need to reserve
250
 * to allocate a block located at @lblock
251
 */
252
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253
{
254
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255
		return ext4_ext_calc_metadata_amount(inode, lblock);
256

257
	return ext4_ind_calc_metadata_amount(inode, lblock);
258 259
}

260 261 262 263
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
264 265
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
266 267
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 269 270
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
271
	trace_ext4_da_update_reserve_space(inode, used);
272 273 274 275 276 277 278 279
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
280

281 282 283
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
285
			   used + ei->i_allocated_meta_blocks);
286
	ei->i_allocated_meta_blocks = 0;
287

288 289 290 291 292 293
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
294
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
295
				   ei->i_reserved_meta_blocks);
296
		ei->i_reserved_meta_blocks = 0;
297
		ei->i_da_metadata_calc_len = 0;
298
	}
299
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300

301 302
	/* Update quota subsystem for data blocks */
	if (quota_claim)
303
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
304
	else {
305 306 307
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
308
		 * not re-claim the quota for fallocated blocks.
309
		 */
310
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
311
	}
312 313 314 315 316 317

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
318 319
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
320
		ext4_discard_preallocations(inode);
321 322
}

323
static int __check_block_validity(struct inode *inode, const char *func,
324 325
				unsigned int line,
				struct ext4_map_blocks *map)
326
{
327 328
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
329 330 331 332
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
333 334 335 336 337
		return -EIO;
	}
	return 0;
}

338
#define check_block_validity(inode, map)	\
339
	__check_block_validity((inode), __func__, __LINE__, (map))
340

341
/*
342 343
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
377 378 379 380 381 382 383 384 385
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
386 387 388 389 390
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
391 392
			if (num >= max_pages) {
				done = 1;
393
				break;
394
			}
395 396 397 398 399 400
		}
		pagevec_release(&pvec);
	}
	return num;
}

401
/*
402
 * The ext4_map_blocks() function tries to look up the requested blocks,
403
 * and returns if the blocks are already mapped.
404 405 406 407 408
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
409 410
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 412 413 414 415 416 417 418 419 420 421 422
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
423 424
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
425 426
{
	int retval;
427

428 429 430 431
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
432
	/*
433 434
	 * Try to see if we can get the block without requesting a new
	 * file system block.
435 436
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
437
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
439
	} else {
440
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
441
	}
442
	up_read((&EXT4_I(inode)->i_data_sem));
443

444
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445
		int ret = check_block_validity(inode, map);
446 447 448 449
		if (ret != 0)
			return ret;
	}

450
	/* If it is only a block(s) look up */
451
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 453 454 455 456 457 458 459 460
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
461
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 463
		return retval;

464 465 466 467 468 469 470 471 472 473
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
474
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475

476
	/*
477 478 479 480
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
481 482
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
483 484 485 486 487 488 489

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
490
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 493 494 495
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
496
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
498
	} else {
499
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
500

501
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 503 504 505 506
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
507
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508
		}
509

510 511 512 513 514 515 516
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
517
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 519
			ext4_da_update_reserve_space(inode, retval, 1);
	}
520
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522

523
	up_write((&EXT4_I(inode)->i_data_sem));
524
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525
		int ret = check_block_validity(inode, map);
526 527 528
		if (ret != 0)
			return ret;
	}
529 530 531
	return retval;
}

532 533 534
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

535 536
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
537
{
538
	handle_t *handle = ext4_journal_current_handle();
539
	struct ext4_map_blocks map;
J
Jan Kara 已提交
540
	int ret = 0, started = 0;
541
	int dio_credits;
542

543 544 545 546
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
547
		/* Direct IO write... */
548 549 550
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
552
		if (IS_ERR(handle)) {
553
			ret = PTR_ERR(handle);
554
			return ret;
555
		}
J
Jan Kara 已提交
556
		started = 1;
557 558
	}

559
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
560
	if (ret > 0) {
561 562 563
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
564
		ret = 0;
565
	}
J
Jan Kara 已提交
566 567
	if (started)
		ext4_journal_stop(handle);
568 569 570
	return ret;
}

571 572 573 574 575 576 577
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

578 579 580
/*
 * `handle' can be NULL if create is zero
 */
581
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
582
				ext4_lblk_t block, int create, int *errp)
583
{
584 585
	struct ext4_map_blocks map;
	struct buffer_head *bh;
586 587 588 589
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

590 591 592 593
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
594

595 596 597 598 599 600 601 602 603 604
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
605
	}
606 607 608
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
609

610 611 612 613 614 615 616 617 618 619 620 621 622
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
623
		}
624 625 626 627 628 629 630
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
631
	}
632 633 634 635 636 637
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
638 639
}

640
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
641
			       ext4_lblk_t block, int create, int *err)
642
{
643
	struct buffer_head *bh;
644

645
	bh = ext4_getblk(handle, inode, block, create, err);
646 647 648 649 650 651 652 653 654 655 656 657 658
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

659 660 661 662 663 664 665
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
666 667 668 669 670 671 672
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

673 674
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
675
	     block_start = block_end, bh = next) {
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
693
 * close off a transaction and start a new one between the ext4_get_block()
694
 * and the commit_write().  So doing the jbd2_journal_start at the start of
695 696
 * prepare_write() is the right place.
 *
697 698
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 700 701 702
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
703
 * By accident, ext4 can be reentered when a transaction is open via
704 705 706 707 708 709
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
710
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 712 713 714 715
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
716
				       struct buffer_head *bh)
717
{
718 719 720
	int dirty = buffer_dirty(bh);
	int ret;

721 722
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
723
	/*
C
Christoph Hellwig 已提交
724
	 * __block_write_begin() could have dirtied some buffers. Clean
725 726
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
727
	 * by __block_write_begin() isn't a real problem here as we clear
728 729 730 731 732 733 734 735 736
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
737 738
}

739 740
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
741
static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 743
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
744
{
745
	struct inode *inode = mapping->host;
746
	int ret, needed_blocks;
747 748
	handle_t *handle;
	int retries = 0;
749
	struct page *page;
750
	pgoff_t index;
751
	unsigned from, to;
N
Nick Piggin 已提交
752

753
	trace_ext4_write_begin(inode, pos, len, flags);
754 755 756 757 758
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759
	index = pos >> PAGE_CACHE_SHIFT;
760 761
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
762 763

retry:
764 765 766 767
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
768
	}
769

770 771 772 773
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

774
	page = grab_cache_page_write_begin(mapping, index, flags);
775 776 777 778 779 780 781
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

782
	if (ext4_should_dioread_nolock(inode))
783
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784
	else
785
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
786 787

	if (!ret && ext4_should_journal_data(inode)) {
788 789 790
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
791 792

	if (ret) {
793 794
		unlock_page(page);
		page_cache_release(page);
795
		/*
796
		 * __block_write_begin may have instantiated a few blocks
797 798
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
799 800 801
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
802
		 */
803
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 805 806 807
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
808
			ext4_truncate_failed_write(inode);
809
			/*
810
			 * If truncate failed early the inode might
811 812 813 814 815 816 817
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
818 819
	}

820
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821
		goto retry;
822
out:
823 824 825
	return ret;
}

N
Nick Piggin 已提交
826 827
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828 829 830 831
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
832
	return ext4_handle_dirty_metadata(handle, NULL, bh);
833 834
}

835
static int ext4_generic_write_end(struct file *file,
836 837 838
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

881 882 883 884
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
885
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
886 887
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
888
static int ext4_ordered_write_end(struct file *file,
889 890 891
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
892
{
893
	handle_t *handle = ext4_journal_current_handle();
894
	struct inode *inode = mapping->host;
895 896
	int ret = 0, ret2;

897
	trace_ext4_ordered_write_end(inode, pos, len, copied);
898
	ret = ext4_jbd2_file_inode(handle, inode);
899 900

	if (ret == 0) {
901
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
902
							page, fsdata);
903
		copied = ret2;
904
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 906 907 908 909
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
910 911
		if (ret2 < 0)
			ret = ret2;
912
	}
913
	ret2 = ext4_journal_stop(handle);
914 915
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
916

917
	if (pos + len > inode->i_size) {
918
		ext4_truncate_failed_write(inode);
919
		/*
920
		 * If truncate failed early the inode might still be
921 922 923 924 925 926 927 928
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
929
	return ret ? ret : copied;
930 931
}

N
Nick Piggin 已提交
932
static int ext4_writeback_write_end(struct file *file,
933 934 935
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
936
{
937
	handle_t *handle = ext4_journal_current_handle();
938
	struct inode *inode = mapping->host;
939 940
	int ret = 0, ret2;

941
	trace_ext4_writeback_write_end(inode, pos, len, copied);
942
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
943
							page, fsdata);
944
	copied = ret2;
945
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 947 948 949 950 951
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

952 953
	if (ret2 < 0)
		ret = ret2;
954

955
	ret2 = ext4_journal_stop(handle);
956 957
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
958

959
	if (pos + len > inode->i_size) {
960
		ext4_truncate_failed_write(inode);
961
		/*
962
		 * If truncate failed early the inode might still be
963 964 965 966 967 968 969
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
970
	return ret ? ret : copied;
971 972
}

N
Nick Piggin 已提交
973
static int ext4_journalled_write_end(struct file *file,
974 975 976
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
977
{
978
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
979
	struct inode *inode = mapping->host;
980 981
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
982
	unsigned from, to;
983
	loff_t new_i_size;
984

985
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
986 987 988
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

989 990
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
991 992 993 994 995
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
996 997

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
998
				to, &partial, write_end_fn);
999 1000
	if (!partial)
		SetPageUptodate(page);
1001 1002
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1003
		i_size_write(inode, pos+copied);
1004
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 1007
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1008
		ret2 = ext4_mark_inode_dirty(handle, inode);
1009 1010 1011
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1012

1013
	unlock_page(page);
1014
	page_cache_release(page);
1015
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 1017 1018 1019 1020 1021
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1022
	ret2 = ext4_journal_stop(handle);
1023 1024
	if (!ret)
		ret = ret2;
1025
	if (pos + len > inode->i_size) {
1026
		ext4_truncate_failed_write(inode);
1027
		/*
1028
		 * If truncate failed early the inode might still be
1029 1030 1031 1032 1033 1034
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1035 1036

	return ret ? ret : copied;
1037
}
1038

1039
/*
1040
 * Reserve a single cluster located at lblock
1041
 */
1042
int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043
{
A
Aneesh Kumar K.V 已提交
1044
	int retries = 0;
1045
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046
	struct ext4_inode_info *ei = EXT4_I(inode);
1047
	unsigned int md_needed;
1048
	int ret;
1049 1050 1051 1052 1053 1054

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1055
repeat:
1056
	spin_lock(&ei->i_block_reservation_lock);
1057 1058
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1059
	trace_ext4_da_reserve_space(inode, md_needed);
1060
	spin_unlock(&ei->i_block_reservation_lock);
1061

1062
	/*
1063 1064 1065
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1066
	 */
1067
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1068 1069
	if (ret)
		return ret;
1070 1071 1072 1073
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1074
	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1075
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
A
Aneesh Kumar K.V 已提交
1076 1077 1078 1079
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1080 1081
		return -ENOSPC;
	}
1082
	spin_lock(&ei->i_block_reservation_lock);
1083
	ei->i_reserved_data_blocks++;
1084 1085
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1086

1087 1088 1089
	return 0;       /* success */
}

1090
static void ext4_da_release_space(struct inode *inode, int to_free)
1091 1092
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093
	struct ext4_inode_info *ei = EXT4_I(inode);
1094

1095 1096 1097
	if (!to_free)
		return;		/* Nothing to release, exit */

1098
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1099

L
Li Zefan 已提交
1100
	trace_ext4_da_release_space(inode, to_free);
1101
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1102
		/*
1103 1104 1105 1106
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1107
		 */
1108 1109 1110 1111 1112 1113
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1114
	}
1115
	ei->i_reserved_data_blocks -= to_free;
1116

1117 1118 1119 1120 1121
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1122 1123
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1124
		 */
1125
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1126
				   ei->i_reserved_meta_blocks);
1127
		ei->i_reserved_meta_blocks = 0;
1128
		ei->i_da_metadata_calc_len = 0;
1129
	}
1130

1131
	/* update fs dirty data blocks counter */
1132
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1133 1134

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1135

1136
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1137 1138 1139
}

static void ext4_da_page_release_reservation(struct page *page,
1140
					     unsigned long offset)
1141 1142 1143 1144
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1145 1146 1147
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1174
}
1175

1176 1177 1178 1179 1180 1181
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1182
 * them with writepage() call back
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1193 1194
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1195
{
1196 1197 1198 1199 1200
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1201
	loff_t size = i_size_read(inode);
1202 1203
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1204
	int journal_data = ext4_should_journal_data(inode);
1205
	sector_t pblock = 0, cur_logical = 0;
1206
	struct ext4_io_submit io_submit;
1207 1208

	BUG_ON(mpd->next_page <= mpd->first_page);
1209
	memset(&io_submit, 0, sizeof(io_submit));
1210 1211 1212
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1213
	 * If we look at mpd->b_blocknr we would only be looking
1214 1215
	 * at the currently mapped buffer_heads.
	 */
1216 1217 1218
	index = mpd->first_page;
	end = mpd->next_page - 1;

1219
	pagevec_init(&pvec, 0);
1220
	while (index <= end) {
1221
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1222 1223 1224
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1225
			int commit_write = 0, skip_page = 0;
1226 1227
			struct page *page = pvec.pages[i];

1228 1229 1230
			index = page->index;
			if (index > end)
				break;
1231 1232 1233 1234 1235

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1236 1237 1238 1239 1240 1241
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1242 1243 1244 1245 1246
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1247
			/*
1248 1249
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1250
			 * __block_write_begin.  If this fails,
1251
			 * skip the page and move on.
1252
			 */
1253
			if (!page_has_buffers(page)) {
1254
				if (__block_write_begin(page, 0, len,
1255
						noalloc_get_block_write)) {
1256
				skip_page:
1257 1258 1259 1260 1261
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1262

1263 1264
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1265
			do {
1266
				if (!bh)
1267
					goto skip_page;
1268 1269 1270
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1271 1272 1273 1274
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1275 1276 1277 1278 1279 1280 1281
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1282

1283
				/* skip page if block allocation undone */
1284
				if (buffer_delay(bh) || buffer_unwritten(bh))
1285
					skip_page = 1;
1286 1287
				bh = bh->b_this_page;
				block_start += bh->b_size;
1288 1289
				cur_logical++;
				pblock++;
1290 1291
			} while (bh != page_bufs);

1292 1293
			if (skip_page)
				goto skip_page;
1294 1295 1296 1297 1298

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1299
			clear_page_dirty_for_io(page);
1300 1301 1302 1303 1304 1305
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1306
				err = __ext4_journalled_writepage(page, len);
1307
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1308 1309
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1310 1311 1312 1313 1314 1315
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1316 1317
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1318 1319

			if (!err)
1320
				mpd->pages_written++;
1321 1322 1323 1324 1325 1326 1327 1328 1329
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1330
	ext4_io_submit(&io_submit);
1331 1332 1333
	return ret;
}

1334
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1335 1336 1337 1338 1339 1340 1341
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1342 1343
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1344 1345 1346 1347 1348 1349
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1350
			if (page->index > end)
1351 1352 1353 1354 1355 1356 1357
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1358 1359
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1360 1361 1362 1363
	}
	return;
}

1364 1365 1366
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 1368 1369 1370
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
1371 1372
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1373
	printk(KERN_CRIT "dirty_blocks=%lld\n",
1374 1375
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1376 1377 1378 1379 1380
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
1381 1382 1383
	return;
}

1384
/*
1385 1386
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1387
 *
1388
 * @mpd - bh describing space
1389 1390 1391 1392
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1393
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1394
{
1395
	int err, blks, get_blocks_flags;
1396
	struct ext4_map_blocks map, *mapp = NULL;
1397 1398 1399 1400
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1401 1402

	/*
1403 1404
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1405
	 */
1406 1407 1408 1409 1410
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1411 1412 1413 1414

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1415
	/*
1416
	 * Call ext4_map_blocks() to allocate any delayed allocation
1417 1418 1419 1420 1421 1422 1423 1424
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1425
	 * want to change *many* call functions, so ext4_map_blocks()
1426
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1427 1428 1429 1430 1431
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1432
	 */
1433 1434
	map.m_lblk = next;
	map.m_len = max_blocks;
1435
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1436 1437
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1438
	if (mpd->b_state & (1 << BH_Delay))
1439 1440
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1441
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1442
	if (blks < 0) {
1443 1444
		struct super_block *sb = mpd->inode->i_sb;

1445
		err = blks;
1446
		/*
1447
		 * If get block returns EAGAIN or ENOSPC and there
1448 1449
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1450 1451
		 */
		if (err == -EAGAIN)
1452
			goto submit_io;
1453 1454

		if (err == -ENOSPC &&
1455
		    ext4_count_free_blocks(sb)) {
1456
			mpd->retval = err;
1457
			goto submit_io;
1458 1459
		}

1460
		/*
1461 1462 1463 1464 1465
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1466
		 */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1478
		}
1479
		/* invalidate all the pages */
1480
		ext4_da_block_invalidatepages(mpd);
1481 1482 1483

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1484
		return;
1485
	}
1486 1487
	BUG_ON(blks == 0);

1488
	mapp = &map;
1489 1490 1491
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1492

1493 1494
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1495

1496 1497 1498 1499 1500 1501
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
			if (err)
				/* Only if the journal is aborted */
				return;
		}
1502 1503 1504
	}

	/*
1505
	 * Update on-disk size along with block allocation.
1506 1507 1508 1509 1510 1511
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1512 1513 1514 1515 1516
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1517 1518
	}

1519
submit_io:
1520
	mpage_da_submit_io(mpd, mapp);
1521
	mpd->io_done = 1;
1522 1523
}

1524 1525
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1537 1538
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1539 1540
{
	sector_t next;
1541
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1542

1543 1544 1545 1546
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1547
	 * ext4_map_blocks() multiple times in a loop
1548 1549 1550 1551
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1552
	/* check if thereserved journal credits might overflow */
1553
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1574 1575 1576
	/*
	 * First block in the extent
	 */
1577 1578 1579 1580
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1581 1582 1583
		return;
	}

1584
	next = mpd->b_blocknr + nrblocks;
1585 1586 1587
	/*
	 * Can we merge the block to our big extent?
	 */
1588 1589
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1590 1591 1592
		return;
	}

1593
flush_it:
1594 1595 1596 1597
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1598
	mpage_da_map_and_submit(mpd);
1599
	return;
1600 1601
}

1602
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1603
{
1604
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1605 1606
}

1607
/*
1608 1609 1610
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1611 1612 1613 1614 1615 1616 1617
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1618 1619
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1620
				  struct buffer_head *bh, int create)
1621
{
1622
	struct ext4_map_blocks map;
1623
	int ret = 0;
1624 1625 1626 1627
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
1628 1629

	BUG_ON(create == 0);
1630 1631 1632 1633
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1634 1635 1636 1637 1638 1639

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1640 1641 1642 1643 1644 1645
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
1646
		/*
C
Christoph Hellwig 已提交
1647
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
1648
		 */
1649 1650 1651 1652 1653 1654 1655 1656
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map.m_flags & EXT4_MAP_FROM_CLUSTER)) {
			ret = ext4_da_reserve_space(inode, iblock);
			if (ret)
				/* not enough space to reserve */
				return ret;
		}
1657

1658 1659 1660 1661
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
1662 1663
	}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1675
		set_buffer_mapped(bh);
1676 1677
	}
	return 0;
1678
}
1679

1680 1681 1682
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1683
 * callback function for block_write_begin() and block_write_full_page().
1684
 * These functions should only try to map a single block at a time.
1685 1686 1687 1688 1689
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1690 1691 1692
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1693 1694
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1695 1696
				   struct buffer_head *bh_result, int create)
{
1697
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1698
	return _ext4_get_block(inode, iblock, bh_result, 0);
1699 1700
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1723
	ClearPageChecked(page);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1737 1738
	BUG_ON(!ext4_handle_valid(handle));

1739 1740 1741 1742 1743 1744 1745
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1746
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1747 1748 1749 1750 1751
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1752
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1753 1754 1755 1756
out:
	return ret;
}

1757 1758 1759
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

1760
/*
1761 1762 1763 1764
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1765
 * we are writing back data modified via mmap(), no one guarantees in which
1766 1767 1768 1769
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1770 1771 1772 1773 1774
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1800
 */
1801
static int ext4_writepage(struct page *page,
1802
			  struct writeback_control *wbc)
1803
{
T
Theodore Ts'o 已提交
1804
	int ret = 0, commit_write = 0;
1805
	loff_t size;
1806
	unsigned int len;
1807
	struct buffer_head *page_bufs = NULL;
1808 1809
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
1810
	trace_ext4_writepage(page);
1811 1812 1813 1814 1815
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1816

T
Theodore Ts'o 已提交
1817 1818
	/*
	 * If the page does not have buffers (for whatever reason),
1819
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
1820 1821
	 * fails, redirty the page and move on.
	 */
1822
	if (!page_has_buffers(page)) {
1823
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
1824 1825
					noalloc_get_block_write)) {
		redirty_page:
1826 1827 1828 1829
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
1830 1831 1832 1833 1834
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
1835
		/*
1836 1837 1838 1839
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
1840
		 */
T
Theodore Ts'o 已提交
1841 1842 1843
		goto redirty_page;
	}
	if (commit_write)
1844
		/* now mark the buffer_heads as dirty and uptodate */
1845
		block_commit_write(page, 0, len);
1846

1847
	if (PageChecked(page) && ext4_should_journal_data(inode))
1848 1849 1850 1851
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
1852
		return __ext4_journalled_writepage(page, len);
1853

T
Theodore Ts'o 已提交
1854
	if (buffer_uninit(page_bufs)) {
1855 1856 1857 1858
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
1859 1860
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
1861 1862 1863 1864

	return ret;
}

1865
/*
1866
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
1867
 * calculate the total number of credits to reserve to fit
1868 1869 1870
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
1871
 */
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
1883
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1884 1885 1886 1887 1888
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
1889

1890 1891
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
1892
 * address space and accumulate pages that need writing, and call
1893 1894
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
1895 1896 1897
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
1898 1899
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
1900
{
1901
	struct buffer_head	*bh, *head;
1902
	struct inode		*inode = mapping->host;
1903 1904 1905 1906 1907 1908
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
1909

1910 1911 1912
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
1913 1914 1915 1916
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

1917
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1918 1919 1920 1921
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

1922
	*done_index = index;
1923
	while (index <= end) {
1924
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1925 1926
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
1927
			return 0;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
1939 1940
			if (page->index > end)
				goto out;
1941

1942 1943
			*done_index = page->index + 1;

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

1954 1955 1956
			lock_page(page);

			/*
1957 1958 1959 1960 1961 1962
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
1963
			 */
1964 1965 1966 1967
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
1968 1969 1970 1971
				unlock_page(page);
				continue;
			}

1972
			wait_on_page_writeback(page);
1973 1974
			BUG_ON(PageWriteback(page));

1975
			if (mpd->next_page != page->index)
1976 1977 1978 1979 1980 1981
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
1982 1983
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
1984
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
1985 1986
				if (mpd->io_done)
					goto ret_extent_tail;
1987 1988
			} else {
				/*
1989 1990
				 * Page with regular buffer heads,
				 * just add all dirty ones
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2006 2007
						if (mpd->io_done)
							goto ret_extent_tail;
2008 2009
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2010 2011 2012 2013 2014 2015 2016 2017 2018
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2019 2020 2021 2022 2023 2024
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2025 2026 2027 2028 2029
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2030
				    wbc->sync_mode == WB_SYNC_NONE)
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2041
					goto out;
2042 2043 2044 2045 2046
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2047 2048 2049
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2050 2051 2052
out:
	pagevec_release(&pvec);
	cond_resched();
2053 2054 2055 2056
	return ret;
}


2057
static int ext4_da_writepages(struct address_space *mapping,
2058
			      struct writeback_control *wbc)
2059
{
2060 2061
	pgoff_t	index;
	int range_whole = 0;
2062
	handle_t *handle = NULL;
2063
	struct mpage_da_data mpd;
2064
	struct inode *inode = mapping->host;
2065
	int pages_written = 0;
2066
	unsigned int max_pages;
2067
	int range_cyclic, cycled = 1, io_done = 0;
2068 2069
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2070
	loff_t range_start = wbc->range_start;
2071
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2072
	pgoff_t done_index = 0;
2073
	pgoff_t end;
2074

2075
	trace_ext4_da_writepages(inode, wbc);
2076

2077 2078 2079 2080 2081
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2082
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2083
		return 0;
2084 2085 2086 2087 2088

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2089
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2090 2091 2092 2093 2094
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2095
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2096 2097
		return -EROFS;

2098 2099
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2100

2101 2102
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2103
		index = mapping->writeback_index;
2104 2105 2106 2107 2108
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2109 2110
		end = -1;
	} else {
2111
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2112 2113
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2132 2133 2134 2135 2136 2137
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2148
retry:
2149
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2150 2151
		tag_pages_for_writeback(mapping, index, end);

2152
	while (!ret && wbc->nr_to_write > 0) {
2153 2154 2155 2156 2157 2158 2159 2160

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2161
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2162

2163 2164 2165 2166
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2167
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2168
			       "%ld pages, ino %lu; err %d", __func__,
2169
				wbc->nr_to_write, inode->i_ino, ret);
2170 2171
			goto out_writepages;
		}
2172 2173

		/*
2174
		 * Now call write_cache_pages_da() to find the next
2175
		 * contiguous region of logical blocks that need
2176
		 * blocks to be allocated by ext4 and submit them.
2177
		 */
2178
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2179
		/*
2180
		 * If we have a contiguous extent of pages and we
2181 2182 2183 2184
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2185
			mpage_da_map_and_submit(&mpd);
2186 2187
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2188
		trace_ext4_da_write_pages(inode, &mpd);
2189
		wbc->nr_to_write -= mpd.pages_written;
2190

2191
		ext4_journal_stop(handle);
2192

2193
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2194 2195 2196 2197
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2198
			jbd2_journal_force_commit_nested(sbi->s_journal);
2199 2200
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2201 2202 2203 2204
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
2205
			pages_written += mpd.pages_written;
2206
			ret = 0;
2207
			io_done = 1;
2208
		} else if (wbc->nr_to_write)
2209 2210 2211 2212 2213 2214
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2215
	}
2216 2217 2218 2219 2220 2221 2222
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2223 2224

	/* Update index */
2225
	wbc->range_cyclic = range_cyclic;
2226 2227 2228 2229 2230
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2231
		mapping->writeback_index = done_index;
2232

2233
out_writepages:
2234
	wbc->nr_to_write -= nr_to_writebump;
2235
	wbc->range_start = range_start;
2236
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2237
	return ret;
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247 2248
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2249
	 * counters can get slightly wrong with percpu_counter_batch getting
2250 2251 2252 2253
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2254 2255 2256
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2257 2258 2259
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
2260 2261
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2262 2263 2264
		 */
		return 1;
	}
2265 2266 2267 2268 2269 2270 2271
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

2272 2273 2274
	return 0;
}

2275
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2276 2277
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2278
{
2279
	int ret, retries = 0;
2280 2281 2282 2283
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;
2284
	loff_t page_len;
2285 2286

	index = pos >> PAGE_CACHE_SHIFT;
2287 2288 2289 2290 2291 2292 2293

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2294
	trace_ext4_da_write_begin(inode, pos, len, flags);
2295
retry:
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2307 2308 2309
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2310

2311
	page = grab_cache_page_write_begin(mapping, index, flags);
2312 2313 2314 2315 2316
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2317 2318
	*pagep = page;

2319
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2320 2321 2322 2323
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2324 2325 2326 2327 2328 2329
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2330
			ext4_truncate_failed_write(inode);
2331 2332 2333 2334 2335 2336 2337
	} else {
		page_len = pos & (PAGE_CACHE_SIZE - 1);
		if (page_len > 0) {
			ret = ext4_discard_partial_page_buffers_no_lock(handle,
				inode, page, pos - page_len, page_len,
				EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
		}
2338 2339
	}

2340 2341
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2342 2343 2344 2345
out:
	return ret;
}

2346 2347 2348 2349 2350
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2351
					    unsigned long offset)
2352 2353 2354 2355 2356 2357 2358 2359 2360
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2361
	for (i = 0; i < idx; i++)
2362 2363
		bh = bh->b_this_page;

2364
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2365 2366 2367 2368
		return 0;
	return 1;
}

2369
static int ext4_da_write_end(struct file *file,
2370 2371 2372
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2373 2374 2375 2376 2377
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2378
	unsigned long start, end;
2379
	int write_mode = (int)(unsigned long)fsdata;
2380
	loff_t page_len;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
2393

2394
	trace_ext4_da_write_end(inode, pos, len, copied);
2395
	start = pos & (PAGE_CACHE_SIZE - 1);
2396
	end = start + copied - 1;
2397 2398 2399 2400 2401 2402 2403 2404

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2416

2417 2418 2419
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2420 2421 2422 2423 2424
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2425
		}
2426
	}
2427 2428
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	page_len = PAGE_CACHE_SIZE -
			((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));

	if (page_len > 0) {
		ret = ext4_discard_partial_page_buffers_no_lock(handle,
			inode, page, pos + copied - 1, page_len,
			EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
	}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2458
	ext4_da_page_release_reservation(page, offset);
2459 2460 2461 2462 2463 2464 2465

out:
	ext4_invalidatepage(page, offset);

	return;
}

2466 2467 2468 2469 2470
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2471 2472
	trace_ext4_alloc_da_blocks(inode);

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2483
	 *
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2496
	 * the pages by calling redirty_page_for_writepage() but that
2497 2498
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2499
	 * simplifying them because we wouldn't actually intend to
2500 2501 2502
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2503
	 *
2504 2505 2506 2507 2508 2509
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2510

2511 2512 2513 2514 2515
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2516
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2517 2518 2519 2520 2521 2522 2523 2524
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2525
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2526 2527 2528 2529 2530
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2541 2542
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2554
		 * NB. EXT4_STATE_JDATA is not set on files other than
2555 2556 2557 2558 2559 2560
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2561
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2562
		journal = EXT4_JOURNAL(inode);
2563 2564 2565
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2566 2567 2568 2569 2570

		if (err)
			return 0;
	}

2571
	return generic_block_bmap(mapping, block, ext4_get_block);
2572 2573
}

2574
static int ext4_readpage(struct file *file, struct page *page)
2575
{
2576
	trace_ext4_readpage(page);
2577
	return mpage_readpage(page, ext4_get_block);
2578 2579 2580
}

static int
2581
ext4_readpages(struct file *file, struct address_space *mapping,
2582 2583
		struct list_head *pages, unsigned nr_pages)
{
2584
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2585 2586
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2607
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2608
{
2609
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2610

2611 2612
	trace_ext4_invalidatepage(page, offset);

2613 2614 2615 2616 2617
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2618 2619 2620 2621 2622 2623
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2624 2625 2626 2627
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2628 2629
}

2630
static int ext4_releasepage(struct page *page, gfp_t wait)
2631
{
2632
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2633

2634 2635
	trace_ext4_releasepage(page);

2636 2637 2638
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2639 2640 2641 2642
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2643 2644
}

2645 2646 2647 2648 2649
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2650
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2651 2652
		   struct buffer_head *bh_result, int create)
{
2653
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2654
		   inode->i_ino, create);
2655 2656
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2657 2658 2659
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2660 2661
			    ssize_t size, void *private, int ret,
			    bool is_async)
2662
{
2663
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2664 2665
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2666 2667
	unsigned long flags;
	struct ext4_inode_info *ei;
2668

2669 2670
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2671
		goto out;
2672

2673 2674 2675 2676 2677 2678
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
2679
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2680 2681
		ext4_free_io_end(io_end);
		iocb->private = NULL;
2682 2683 2684
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2685
		inode_dio_done(inode);
2686
		return;
2687 2688
	}

2689 2690
	io_end->offset = offset;
	io_end->size = size;
2691 2692 2693 2694
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2695 2696
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2697
	/* Add the io_end to per-inode completed aio dio list*/
2698 2699 2700 2701
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2702 2703 2704

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
2705
	iocb->private = NULL;
2706 2707 2708

	/* XXX: probably should move into the real I/O completion handler */
	inode_dio_done(inode);
2709
}
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

2728 2729 2730 2731
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2732
	inode = io_end->inode;
2733 2734 2735 2736
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
		io_end->flag |= EXT4_IO_END_UNWRITTEN;
		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
	}
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2763
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2782 2783 2784 2785 2786
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2787
 * For holes, we fallocate those blocks, mark them as uninitialized
2788
 * If those blocks were preallocated, we mark sure they are splited, but
2789
 * still keep the range to write as uninitialized.
2790
 *
2791 2792
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2793
 * set up an end_io call back function, which will do the conversion
2794
 * when async direct IO completed.
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
2813 2814 2815
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
2816
 		 * to prevent parallel buffered read to expose the stale data
2817
 		 * before DIO complete the data IO.
2818 2819
		 *
 		 * As to previously fallocated extents, ext4 get_block
2820 2821 2822
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
2823 2824 2825 2826 2827 2828 2829 2830
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
2831
 		 */
2832 2833 2834
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
2835
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2836 2837 2838 2839
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
2840
			 * direct IO, so that later ext4_map_blocks()
2841 2842 2843 2844 2845 2846 2847
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

2848
		ret = __blockdev_direct_IO(rw, iocb, inode,
2849 2850
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
2851
					 ext4_get_block_write,
2852 2853 2854
					 ext4_end_io_dio,
					 NULL,
					 DIO_LOCKING | DIO_SKIP_HOLES);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
2874 2875
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
2876
			int err;
2877 2878
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
2879
			 * completed, we could do the conversion right here
2880
			 */
2881 2882 2883 2884
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
2885
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2886
		}
2887 2888
		return ret;
	}
2889 2890

	/* for write the the end of file case, we fall back to old way */
2891 2892 2893 2894 2895 2896 2897 2898 2899
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
2900
	ssize_t ret;
2901

2902 2903 2904 2905 2906 2907
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

2908
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2909
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2910 2911 2912 2913 2914 2915
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
2916 2917
}

2918
/*
2919
 * Pages can be marked dirty completely asynchronously from ext4's journalling
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
2931
static int ext4_journalled_set_page_dirty(struct page *page)
2932 2933 2934 2935 2936
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

2937
static const struct address_space_operations ext4_ordered_aops = {
2938 2939
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2940
	.writepage		= ext4_writepage,
2941 2942 2943 2944 2945 2946 2947 2948
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2949
	.error_remove_page	= generic_error_remove_page,
2950 2951
};

2952
static const struct address_space_operations ext4_writeback_aops = {
2953 2954
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2955
	.writepage		= ext4_writepage,
2956 2957 2958 2959 2960 2961 2962 2963
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2964
	.error_remove_page	= generic_error_remove_page,
2965 2966
};

2967
static const struct address_space_operations ext4_journalled_aops = {
2968 2969
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2970
	.writepage		= ext4_writepage,
2971 2972 2973 2974 2975 2976
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
2977
	.direct_IO		= ext4_direct_IO,
2978
	.is_partially_uptodate  = block_is_partially_uptodate,
2979
	.error_remove_page	= generic_error_remove_page,
2980 2981
};

2982
static const struct address_space_operations ext4_da_aops = {
2983 2984
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
2985
	.writepage		= ext4_writepage,
2986 2987 2988 2989 2990 2991 2992 2993 2994
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
2995
	.error_remove_page	= generic_error_remove_page,
2996 2997
};

2998
void ext4_set_aops(struct inode *inode)
2999
{
3000 3001 3002 3003
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3004
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3005 3006 3007
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3008 3009
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3010
	else
3011
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3012 3013
}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
		return -EINVAL;

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	unsigned int end_of_block, range_to_discard;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page)) {
		/*
		 * If the range to be discarded covers a partial block
		 * we need to get the page buffers.  This is because
		 * partial blocks cannot be released and the page needs
		 * to be updated with the contents of the block before
		 * we write the zeros on top of it.
		 */
		if (!(from & (blocksize - 1)) ||
		    !((from + length) & (blocksize - 1))) {
			create_empty_buffers(page, blocksize, 0);
		} else {
			/*
			 * If there are no partial blocks,
			 * there is nothing to update,
			 * so we can return now
			 */
			return 0;
		}
	}

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3221
		} else
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3234
/*
3235
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3236 3237 3238 3239
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3240
int ext4_block_truncate_page(handle_t *handle,
3241
		struct address_space *mapping, loff_t from)
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
{
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	unsigned length;
	unsigned blocksize;
	struct inode *inode = mapping->host;

	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));

	return ext4_block_zero_page_range(handle, mapping, from, length);
}

/*
 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
 * starting from file offset 'from'.  The range to be zero'd must
 * be contained with in one block.  If the specified range exceeds
 * the end of the block it will be shortened to end of the block
 * that cooresponds to 'from'
 */
int ext4_block_zero_page_range(handle_t *handle,
		struct address_space *mapping, loff_t from, loff_t length)
3263
{
3264
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3265
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3266
	unsigned blocksize, max, pos;
A
Aneesh Kumar K.V 已提交
3267
	ext4_lblk_t iblock;
3268 3269
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3270
	struct page *page;
3271 3272
	int err = 0;

3273 3274
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3275 3276 3277
	if (!page)
		return -EINVAL;

3278
	blocksize = inode->i_sb->s_blocksize;
3279 3280 3281 3282 3283 3284 3285 3286 3287
	max = blocksize - (offset & (blocksize - 1));

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the block
	 */
	if (length > max || length < 0)
		length = max;

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
3310
		ext4_get_block(inode, iblock, bh, 0);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

3331
	if (ext4_should_journal_data(inode)) {
3332
		BUFFER_TRACE(bh, "get write access");
3333
		err = ext4_journal_get_write_access(handle, bh);
3334 3335 3336 3337
		if (err)
			goto unlock;
	}

3338
	zero_user(page, offset, length);
3339 3340 3341 3342

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
3343
	if (ext4_should_journal_data(inode)) {
3344
		err = ext4_handle_dirty_metadata(handle, inode, bh);
3345
	} else
3346 3347 3348 3349 3350 3351 3352 3353
		mark_buffer_dirty(bh);

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
		return -ENOTSUPP;

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
		return -ENOTSUPP;
	}

3387 3388 3389 3390 3391
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
		return -ENOTSUPP;
	}

3392 3393 3394
	return ext4_ext_punch_hole(file, offset, length);
}

3395
/*
3396
 * ext4_truncate()
3397
 *
3398 3399
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3416
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3417
 * that this inode's truncate did not complete and it will again call
3418 3419
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3420
 * that's fine - as long as they are linked from the inode, the post-crash
3421
 * ext4_truncate() run will find them and release them.
3422
 */
3423
void ext4_truncate(struct inode *inode)
3424
{
3425 3426
	trace_ext4_truncate_enter(inode);

3427
	if (!ext4_can_truncate(inode))
3428 3429
		return;

3430
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3431

3432
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3433
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3434

3435
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3436
		ext4_ext_truncate(inode);
3437 3438
	else
		ext4_ind_truncate(inode);
3439

3440
	trace_ext4_truncate_exit(inode);
3441 3442 3443
}

/*
3444
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3445 3446 3447 3448
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3449 3450
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3451
{
3452 3453 3454 3455 3456 3457
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3458
	iloc->bh = NULL;
3459 3460
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3461

3462 3463 3464
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3465 3466
		return -EIO;

3467 3468 3469
	/*
	 * Figure out the offset within the block group inode table
	 */
3470
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3471 3472 3473 3474 3475 3476
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3477
	if (!bh) {
3478 3479
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3480 3481 3482 3483
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3507
			int i, start;
3508

3509
			start = inode_offset & ~(inodes_per_block - 1);
3510

3511 3512
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3525
			for (i = start; i < start + inodes_per_block; i++) {
3526 3527
				if (i == inode_offset)
					continue;
3528
				if (ext4_test_bit(i, bitmap_bh->b_data))
3529 3530 3531
					break;
			}
			brelse(bitmap_bh);
3532
			if (i == start + inodes_per_block) {
3533 3534 3535 3536 3537 3538 3539 3540 3541
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3542 3543 3544 3545 3546 3547 3548 3549 3550
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3551
			/* s_inode_readahead_blks is always a power of 2 */
3552 3553 3554 3555 3556 3557 3558
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3559
				num -= ext4_itable_unused_count(sb, gdp);
3560 3561 3562 3563 3564 3565 3566
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3567 3568 3569 3570 3571
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3572
		trace_ext4_load_inode(inode);
3573 3574 3575 3576 3577
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3578 3579
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3580 3581 3582 3583 3584 3585 3586 3587 3588
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3589
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3590 3591
{
	/* We have all inode data except xattrs in memory here. */
3592
	return __ext4_get_inode_loc(inode, iloc,
3593
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3594 3595
}

3596
void ext4_set_inode_flags(struct inode *inode)
3597
{
3598
	unsigned int flags = EXT4_I(inode)->i_flags;
3599 3600

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3601
	if (flags & EXT4_SYNC_FL)
3602
		inode->i_flags |= S_SYNC;
3603
	if (flags & EXT4_APPEND_FL)
3604
		inode->i_flags |= S_APPEND;
3605
	if (flags & EXT4_IMMUTABLE_FL)
3606
		inode->i_flags |= S_IMMUTABLE;
3607
	if (flags & EXT4_NOATIME_FL)
3608
		inode->i_flags |= S_NOATIME;
3609
	if (flags & EXT4_DIRSYNC_FL)
3610 3611 3612
		inode->i_flags |= S_DIRSYNC;
}

3613 3614 3615
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3636
}
3637

3638
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3639
				  struct ext4_inode_info *ei)
3640 3641
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3642 3643
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3644 3645 3646 3647 3648 3649

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3650
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3651 3652 3653 3654 3655
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3656 3657 3658 3659
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3660

3661
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3662
{
3663 3664
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3665 3666
	struct ext4_inode_info *ei;
	struct inode *inode;
3667
	journal_t *journal = EXT4_SB(sb)->s_journal;
3668
	long ret;
3669 3670
	int block;

3671 3672 3673 3674 3675 3676 3677
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3678
	iloc.bh = NULL;
3679

3680 3681
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3682
		goto bad_inode;
3683
	raw_inode = ext4_raw_inode(&iloc);
3684 3685 3686
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3687
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3688 3689 3690 3691 3692
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

3693
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3694 3695 3696 3697 3698 3699 3700 3701 3702
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3703
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3704
			/* this inode is deleted */
3705
			ret = -ESTALE;
3706 3707 3708 3709 3710 3711 3712 3713
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3714
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3715
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3716
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3717 3718
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3719
	inode->i_size = ext4_isize(raw_inode);
3720
	ei->i_disksize = inode->i_size;
3721 3722 3723
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3724 3725
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3726
	ei->i_last_alloc_group = ~0;
3727 3728 3729 3730
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3731
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3732 3733 3734
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3746
		read_lock(&journal->j_state_lock);
3747 3748 3749 3750 3751 3752 3753 3754
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3755
		read_unlock(&journal->j_state_lock);
3756 3757 3758 3759
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3760
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3761
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3762
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3763
		    EXT4_INODE_SIZE(inode->i_sb)) {
3764
			ret = -EIO;
3765
			goto bad_inode;
3766
		}
3767 3768
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3769 3770
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3771 3772
		} else {
			__le32 *magic = (void *)raw_inode +
3773
					EXT4_GOOD_OLD_INODE_SIZE +
3774
					ei->i_extra_isize;
3775
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3776
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3777 3778 3779 3780
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
3781 3782 3783 3784 3785
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3786 3787 3788 3789 3790 3791 3792
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3793
	ret = 0;
3794
	if (ei->i_file_acl &&
3795
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3796 3797
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3798 3799
		ret = -EIO;
		goto bad_inode;
3800
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3801 3802 3803 3804 3805
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3806
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3807 3808
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3809
		/* Validate block references which are part of inode */
3810
		ret = ext4_ind_check_inode(inode);
3811
	}
3812
	if (ret)
3813
		goto bad_inode;
3814

3815
	if (S_ISREG(inode->i_mode)) {
3816 3817 3818
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3819
	} else if (S_ISDIR(inode->i_mode)) {
3820 3821
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3822
	} else if (S_ISLNK(inode->i_mode)) {
3823
		if (ext4_inode_is_fast_symlink(inode)) {
3824
			inode->i_op = &ext4_fast_symlink_inode_operations;
3825 3826 3827
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3828 3829
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3830
		}
3831 3832
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3833
		inode->i_op = &ext4_special_inode_operations;
3834 3835 3836 3837 3838 3839
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3840 3841
	} else {
		ret = -EIO;
3842
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3843
		goto bad_inode;
3844
	}
3845
	brelse(iloc.bh);
3846
	ext4_set_inode_flags(inode);
3847 3848
	unlock_new_inode(inode);
	return inode;
3849 3850

bad_inode:
3851
	brelse(iloc.bh);
3852 3853
	iget_failed(inode);
	return ERR_PTR(ret);
3854 3855
}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3869
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3870
		raw_inode->i_blocks_high = 0;
3871
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3872 3873 3874 3875 3876 3877
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3878 3879 3880 3881
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3882
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3883
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3884
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3885
	} else {
3886
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3887 3888 3889 3890
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3891
	}
3892
	return 0;
3893 3894
}

3895 3896 3897 3898 3899 3900 3901
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3902
static int ext4_do_update_inode(handle_t *handle,
3903
				struct inode *inode,
3904
				struct ext4_iloc *iloc)
3905
{
3906 3907
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3908 3909 3910 3911 3912
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3913
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3914
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3915

3916
	ext4_get_inode_flags(ei);
3917
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3918
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3919 3920 3921 3922 3923 3924
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3925
		if (!ei->i_dtime) {
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3943 3944 3945 3946 3947 3948

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3949 3950
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3951
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3952
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3953 3954
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3955 3956
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3957
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
3974
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3975
			sb->s_dirt = 1;
3976
			ext4_handle_sync(handle);
3977
			err = ext4_handle_dirty_metadata(handle, NULL,
3978
					EXT4_SB(sb)->s_sbh);
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
3993 3994 3995
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
3996

3997 3998 3999 4000 4001
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4002
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4003 4004
	}

4005
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4006
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4007 4008
	if (!err)
		err = rc;
4009
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4010

4011
	ext4_update_inode_fsync_trans(handle, inode, 0);
4012
out_brelse:
4013
	brelse(bh);
4014
	ext4_std_error(inode->i_sb, err);
4015 4016 4017 4018
	return err;
}

/*
4019
 * ext4_write_inode()
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4036
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4053
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4054
{
4055 4056
	int err;

4057 4058 4059
	if (current->flags & PF_MEMALLOC)
		return 0;

4060 4061 4062 4063 4064 4065
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4066

4067
		if (wbc->sync_mode != WB_SYNC_ALL)
4068 4069 4070 4071 4072
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4073

4074
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4075 4076
		if (err)
			return err;
4077
		if (wbc->sync_mode == WB_SYNC_ALL)
4078 4079
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4080 4081
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4082 4083
			err = -EIO;
		}
4084
		brelse(iloc.bh);
4085 4086
	}
	return err;
4087 4088 4089
}

/*
4090
 * ext4_setattr()
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4104 4105 4106 4107 4108 4109 4110 4111
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4112
 */
4113
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4114 4115 4116
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4117
	int orphan = 0;
4118 4119 4120 4121 4122 4123
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4124
	if (is_quota_modification(inode, attr))
4125
		dquot_initialize(inode);
4126 4127 4128 4129 4130 4131
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4132
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4133
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4134 4135 4136 4137
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4138
		error = dquot_transfer(inode, attr);
4139
		if (error) {
4140
			ext4_journal_stop(handle);
4141 4142 4143 4144 4145 4146 4147 4148
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4149 4150
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4151 4152
	}

4153
	if (attr->ia_valid & ATTR_SIZE) {
4154 4155
		inode_dio_wait(inode);

4156
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4157 4158
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4159 4160
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4161 4162 4163
		}
	}

4164
	if (S_ISREG(inode->i_mode) &&
4165
	    attr->ia_valid & ATTR_SIZE &&
4166
	    (attr->ia_size < inode->i_size)) {
4167 4168
		handle_t *handle;

4169
		handle = ext4_journal_start(inode, 3);
4170 4171 4172 4173
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4174 4175 4176 4177
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4178 4179
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4180 4181
		if (!error)
			error = rc;
4182
		ext4_journal_stop(handle);
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4195
				orphan = 0;
4196 4197 4198 4199
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4200 4201
	}

4202 4203 4204 4205 4206 4207 4208
	if (attr->ia_valid & ATTR_SIZE) {
		if (attr->ia_size != i_size_read(inode)) {
			truncate_setsize(inode, attr->ia_size);
			ext4_truncate(inode);
		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
			ext4_truncate(inode);
	}
4209

C
Christoph Hellwig 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4219
	if (orphan && inode->i_nlink)
4220
		ext4_orphan_del(NULL, inode);
4221 4222

	if (!rc && (ia_valid & ATTR_MODE))
4223
		rc = ext4_acl_chmod(inode);
4224 4225

err_out:
4226
	ext4_std_error(inode->i_sb, error);
4227 4228 4229 4230 4231
	if (!error)
		error = rc;
	return error;
}

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4256

4257 4258
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4259
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4260
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4261
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4262
}
4263

4264
/*
4265 4266 4267
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4268
 *
4269
 * If datablocks are discontiguous, they are possible to spread over
4270
 * different block groups too. If they are contiuguous, with flexbg,
4271
 * they could still across block group boundary.
4272
 *
4273 4274
 * Also account for superblock, inode, quota and xattr blocks
 */
4275
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4276
{
4277 4278
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4305 4306
	if (groups > ngroups)
		groups = ngroups;
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4320
 * Calculate the total number of credits to reserve to fit
4321 4322
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4323
 *
4324
 * This could be called via ext4_write_begin()
4325
 *
4326
 * We need to consider the worse case, when
4327
 * one new block per extent.
4328
 */
A
Alex Tomas 已提交
4329
int ext4_writepage_trans_blocks(struct inode *inode)
4330
{
4331
	int bpp = ext4_journal_blocks_per_page(inode);
4332 4333
	int ret;

4334
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4335

4336
	/* Account for data blocks for journalled mode */
4337
	if (ext4_should_journal_data(inode))
4338
		ret += bpp;
4339 4340
	return ret;
}
4341 4342 4343 4344 4345

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4346
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4347 4348 4349 4350 4351 4352 4353 4354 4355
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4356
/*
4357
 * The caller must have previously called ext4_reserve_inode_write().
4358 4359
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4360
int ext4_mark_iloc_dirty(handle_t *handle,
4361
			 struct inode *inode, struct ext4_iloc *iloc)
4362 4363 4364
{
	int err = 0;

4365 4366 4367
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

4368 4369 4370
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4371
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4372
	err = ext4_do_update_inode(handle, inode, iloc);
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4383 4384
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4385
{
4386 4387 4388 4389 4390 4391 4392 4393 4394
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4395 4396
		}
	}
4397
	ext4_std_error(inode->i_sb, err);
4398 4399 4400
	return err;
}

4401 4402 4403 4404
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4405 4406 4407 4408
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4421 4422
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4455
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4456
{
4457
	struct ext4_iloc iloc;
4458 4459 4460
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4461 4462

	might_sleep();
4463
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4464
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4465 4466
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4467
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4481 4482
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4483 4484
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4485
					ext4_warning(inode->i_sb,
4486 4487 4488
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4489 4490
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4491 4492 4493 4494
				}
			}
		}
	}
4495
	if (!err)
4496
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4497 4498 4499 4500
	return err;
}

/*
4501
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4502 4503 4504 4505 4506
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4507
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4508 4509 4510 4511 4512 4513
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4514
void ext4_dirty_inode(struct inode *inode, int flags)
4515 4516 4517
{
	handle_t *handle;

4518
	handle = ext4_journal_start(inode, 2);
4519 4520
	if (IS_ERR(handle))
		goto out;
4521 4522 4523

	ext4_mark_inode_dirty(handle, inode);

4524
	ext4_journal_stop(handle);
4525 4526 4527 4528 4529 4530 4531 4532
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4533
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4534 4535 4536
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4537
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4538
{
4539
	struct ext4_iloc iloc;
4540 4541 4542

	int err = 0;
	if (handle) {
4543
		err = ext4_get_inode_loc(inode, &iloc);
4544 4545
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4546
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4547
			if (!err)
4548
				err = ext4_handle_dirty_metadata(handle,
4549
								 NULL,
4550
								 iloc.bh);
4551 4552 4553
			brelse(iloc.bh);
		}
	}
4554
	ext4_std_error(inode->i_sb, err);
4555 4556 4557 4558
	return err;
}
#endif

4559
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4575
	journal = EXT4_JOURNAL(inode);
4576 4577
	if (!journal)
		return 0;
4578
	if (is_journal_aborted(journal))
4579 4580
		return -EROFS;

4581 4582
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4593
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4594
	else
4595
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4596
	ext4_set_aops(inode);
4597

4598
	jbd2_journal_unlock_updates(journal);
4599 4600 4601

	/* Finally we can mark the inode as dirty. */

4602
	handle = ext4_journal_start(inode, 1);
4603 4604 4605
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4606
	err = ext4_mark_inode_dirty(handle, inode);
4607
	ext4_handle_sync(handle);
4608 4609
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4610 4611 4612

	return err;
}
4613 4614 4615 4616 4617 4618

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4619
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4620
{
4621
	struct page *page = vmf->page;
4622 4623
	loff_t size;
	unsigned long len;
4624
	int ret;
4625 4626 4627
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4628 4629 4630
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4631 4632

	/*
4633 4634
	 * This check is racy but catches the common case. We rely on
	 * __block_page_mkwrite() to do a reliable check.
4635
	 */
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4647
	}
4648 4649

	lock_page(page);
4650 4651 4652 4653 4654 4655
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4656
	}
4657 4658 4659 4660 4661

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4662
	/*
4663 4664
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4665
	 */
4666 4667
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4668
					ext4_bh_unmapped)) {
4669 4670 4671 4672
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4673
		}
4674
	}
4675
	unlock_page(page);
4676 4677 4678 4679 4680 4681 4682 4683
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4684
		ret = VM_FAULT_SIGBUS;
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4703 4704
	return ret;
}