inode.c 175.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45 46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49 50
#include <trace/events/ext4.h>

51 52
#define MPAGE_DA_EXTENT_TAIL 0x01

53 54 55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56 57 58 59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60 61
}

62
static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 64 65 66 67 68
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
69

70 71 72
/*
 * Test whether an inode is a fast symlink.
 */
73
static int ext4_inode_is_fast_symlink(struct inode *inode)
74
{
75
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
76 77 78 79 80 81 82 83 84 85 86
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
87
	ext4_lblk_t needed;
88 89 90 91 92 93

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
94
	 * like a regular file for ext4 to try to delete it.  Things
95 96 97 98 99 100 101
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
102 103
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
104

105
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

122
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
123 124 125
	if (!IS_ERR(result))
		return result;

126
	ext4_std_error(inode->i_sb, PTR_ERR(result));
127 128 129 130 131 132 133 134 135 136 137
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
138 139 140
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
141
		return 0;
142
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
143 144 145 146 147 148 149 150 151
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
152
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
153
				 int nblocks)
154
{
155 156 157
	int ret;

	/*
158
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
159 160 161 162
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
163
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
164
	jbd_debug(2, "restarting handle %p\n", handle);
165 166 167
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
168
	ext4_discard_preallocations(inode);
169 170

	return ret;
171 172 173 174 175
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
176
void ext4_evict_inode(struct inode *inode)
177 178
{
	handle_t *handle;
179
	int err;
180

A
Al Viro 已提交
181 182 183 184 185
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

186
	if (!is_bad_inode(inode))
187
		dquot_initialize(inode);
188

189 190
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
191 192 193 194 195
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

196
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197
	if (IS_ERR(handle)) {
198
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
199 200 201 202 203
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
204
		ext4_orphan_del(NULL, inode);
205 206 207 208
		goto no_delete;
	}

	if (IS_SYNC(inode))
209
		ext4_handle_sync(handle);
210
	inode->i_size = 0;
211 212
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
213
		ext4_warning(inode->i_sb,
214 215 216
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
217
	if (inode->i_blocks)
218
		ext4_truncate(inode);
219 220 221 222 223 224 225

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
226
	if (!ext4_handle_has_enough_credits(handle, 3)) {
227 228 229 230
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
231
			ext4_warning(inode->i_sb,
232 233 234
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
235
			ext4_orphan_del(NULL, inode);
236 237 238 239
			goto no_delete;
		}
	}

240
	/*
241
	 * Kill off the orphan record which ext4_truncate created.
242
	 * AKPM: I think this can be inside the above `if'.
243
	 * Note that ext4_orphan_del() has to be able to cope with the
244
	 * deletion of a non-existent orphan - this is because we don't
245
	 * know if ext4_truncate() actually created an orphan record.
246 247
	 * (Well, we could do this if we need to, but heck - it works)
	 */
248 249
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
250 251 252 253 254 255 256 257

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
258
	if (ext4_mark_inode_dirty(handle, inode))
259
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
260
		ext4_clear_inode(inode);
261
	else
262 263
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
264 265
	return;
no_delete:
A
Al Viro 已提交
266
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
282
 *	ext4_block_to_path - parse the block number into array of offsets
283 284 285
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
286 287
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
288
 *
289
 *	To store the locations of file's data ext4 uses a data structure common
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

312
static int ext4_block_to_path(struct inode *inode,
313 314
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
315
{
316 317 318
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
319 320 321 322 323
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

324
	if (i_block < direct_blocks) {
325 326
		offsets[n++] = i_block;
		final = direct_blocks;
327
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
328
		offsets[n++] = EXT4_IND_BLOCK;
329 330 331
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
332
		offsets[n++] = EXT4_DIND_BLOCK;
333 334 335 336
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337
		offsets[n++] = EXT4_TIND_BLOCK;
338 339 340 341 342
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
343
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344 345
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
346 347 348 349 350 351
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

352 353
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
354 355
				 __le32 *p, unsigned int max)
{
356
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
357
	__le32 *bref = p;
358 359
	unsigned int blk;

360
	while (bref < p+max) {
361
		blk = le32_to_cpu(*bref++);
362 363
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
364
						    blk, 1))) {
365
			es->s_last_error_block = cpu_to_le64(blk);
366 367
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
368 369 370 371
			return -EIO;
		}
	}
	return 0;
372 373 374 375
}


#define ext4_check_indirect_blockref(inode, bh)                         \
376 377
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
378 379 380
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
381 382
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
383 384
			      EXT4_NDIR_BLOCKS)

385
/**
386
 *	ext4_get_branch - read the chain of indirect blocks leading to data
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
411 412
 *
 *      Need to be called with
413
 *      down_read(&EXT4_I(inode)->i_data_sem)
414
 */
A
Aneesh Kumar K.V 已提交
415 416
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
417 418 419 420 421 422 423 424
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
425
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
426 427 428
	if (!p->key)
		goto no_block;
	while (--depth) {
429 430
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
431
			goto failure;
432

433 434 435 436 437 438 439 440 441 442 443
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
444

445
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
446 447 448 449 450 451 452 453 454 455 456 457 458
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
459
 *	ext4_find_near - find a place for allocation with sufficient locality
460 461 462
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
463
 *	This function returns the preferred place for block allocation.
464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
478
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
479
{
480
	struct ext4_inode_info *ei = EXT4_I(inode);
481
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
482
	__le32 *p;
483
	ext4_fsblk_t bg_start;
484
	ext4_fsblk_t last_block;
485
	ext4_grpblk_t colour;
486 487
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
503 504 505 506 507 508 509
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510 511
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

512 513 514 515 516 517 518
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

519 520
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
521
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
522 523
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524 525 526 527
	return bg_start + colour;
}

/**
528
 *	ext4_find_goal - find a preferred place for allocation.
529 530 531 532
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
533
 *	Normally this function find the preferred place for block allocation,
534
 *	returns it.
535 536
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
537
 */
A
Aneesh Kumar K.V 已提交
538
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
539
				   Indirect *partial)
540
{
541 542
	ext4_fsblk_t goal;

543
	/*
544
	 * XXX need to get goal block from mballoc's data structures
545 546
	 */

547 548 549
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
550 551 552
}

/**
553
 *	ext4_blks_to_allocate: Look up the block map and count the number
554 555 556 557 558 559 560 561 562 563
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
564
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565
				 int blocks_to_boundary)
566
{
567
	unsigned int count = 0;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
591
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
592 593 594 595 596 597 598 599
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
600
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601 602 603
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
604
{
605
	struct ext4_allocation_request ar;
606
	int target, i;
607
	unsigned long count = 0, blk_allocated = 0;
608
	int index = 0;
609
	ext4_fsblk_t current_block = 0;
610 611 612 613 614 615 616 617 618 619
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
620 621 622
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
623 624
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
625 626
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
627 628 629
		if (*err)
			goto failed_out;

630 631 632 633 634 635 636 637
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
638

639 640 641 642 643 644
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
645 646 647 648 649 650 651 652 653
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
654
			break;
655
		}
656 657
	}

658 659 660 661 662
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
663 664 665 666 667 668 669 670 671 672
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
673 674 675 676 677 678 679 680
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
681

682 683 684 685 686 687 688 689 690
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
691 692 693 694
			/*
			 * save the new block number
			 * for the first direct block
			 */
695 696
			new_blocks[index] = current_block;
		}
697
		blk_allocated += ar.len;
698 699
	}
allocated:
700
	/* total number of blocks allocated for direct blocks */
701
	ret = blk_allocated;
702 703 704
	*err = 0;
	return ret;
failed_out:
705
	for (i = 0; i < index; i++)
706
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
707 708 709 710
	return ret;
}

/**
711
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
712 713 714 715 716 717 718 719 720 721
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
722
 *	the same format as ext4_get_branch() would do. We are calling it after
723 724
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
725
 *	picture as after the successful ext4_get_block(), except that in one
726 727 728 729 730 731
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
732
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733 734
 *	as described above and return 0.
 */
735
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736 737 738
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
739 740 741 742 743 744
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
745 746
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
747

748
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
767
		err = ext4_journal_get_create_access(handle, bh);
768
		if (err) {
769 770
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
771 772 773 774 775 776 777 778
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
779
		if (n == indirect_blks) {
780 781 782 783 784 785
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
786
			for (i = 1; i < num; i++)
787 788 789 790 791 792
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

793 794
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
795 796 797 798 799 800 801
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
802
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
803
	for (i = 1; i <= n ; i++) {
804
		/*
805 806 807
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
808
		 */
809 810
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
811
	}
812 813
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
814

815
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
816 817 818 819 820

	return err;
}

/**
821
 * ext4_splice_branch - splice the allocated branch onto inode.
822 823 824
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
825
 *	ext4_alloc_branch)
826 827 828 829 830 831 832 833
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
834
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
835 836
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
837 838 839
{
	int i;
	int err = 0;
840
	ext4_fsblk_t current_block;
841 842 843 844 845 846 847 848

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
849
		err = ext4_journal_get_write_access(handle, where->bh);
850 851 852 853 854 855 856 857 858 859 860 861 862 863
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
864
			*(where->p + i) = cpu_to_le32(current_block++);
865 866 867 868 869 870 871 872 873 874 875
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
876
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
877 878
		 */
		jbd_debug(5, "splicing indirect only\n");
879 880
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
881 882 883 884 885 886
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
887
		ext4_mark_inode_dirty(handle, inode);
888 889 890 891 892 893
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
894
		/*
895 896 897
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
898
		 */
899 900
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
901
	}
902 903
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
904 905 906 907 908

	return err;
}

/*
909
 * The ext4_ind_map_blocks() function handles non-extents inodes
910
 * (i.e., using the traditional indirect/double-indirect i_blocks
911
 * scheme) for ext4_map_blocks().
912
 *
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
929
 *
930 931 932 933 934
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
935
 */
936 937
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
938
			       int flags)
939 940
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
941
	ext4_lblk_t offsets[4];
942 943
	Indirect chain[4];
	Indirect *partial;
944
	ext4_fsblk_t goal;
945 946 947 948
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
949
	ext4_fsblk_t first_block = 0;
950

951
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
952
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
953
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
954
				   &blocks_to_boundary);
955 956 957 958

	if (depth == 0)
		goto out;

959
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
960 961 962 963 964 965

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
966
		while (count < map->m_len && count <= blocks_to_boundary) {
967
			ext4_fsblk_t blk;
968 969 970 971 972 973 974 975

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
976
		goto got_it;
977 978 979
	}

	/* Next simple case - plain lookup or failed read of indirect block */
980
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
981 982 983
		goto cleanup;

	/*
984
	 * Okay, we need to do block allocation.
985
	*/
986
	goal = ext4_find_goal(inode, map->m_lblk, partial);
987 988 989 990 991 992 993 994

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
995
	count = ext4_blks_to_allocate(partial, indirect_blks,
996
				      map->m_len, blocks_to_boundary);
997
	/*
998
	 * Block out ext4_truncate while we alter the tree
999
	 */
1000
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1001 1002
				&count, goal,
				offsets + (partial - chain), partial);
1003 1004

	/*
1005
	 * The ext4_splice_branch call will free and forget any buffers
1006 1007 1008 1009 1010 1011
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1012
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1013
					 partial, indirect_blks, count);
1014
	if (err)
1015 1016
		goto cleanup;

1017
	map->m_flags |= EXT4_MAP_NEW;
1018 1019

	ext4_update_inode_fsync_trans(handle, inode, 1);
1020
got_it:
1021 1022 1023
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1024
	if (count > blocks_to_boundary)
1025
		map->m_flags |= EXT4_MAP_BOUNDARY;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1039 1040
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1041
{
1042
	return &EXT4_I(inode)->i_reserved_quota;
1043
}
1044
#endif
1045

1046 1047
/*
 * Calculate the number of metadata blocks need to reserve
1048
 * to allocate a new block at @lblocks for non extent file based file
1049
 */
1050 1051
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1052
{
1053
	struct ext4_inode_info *ei = EXT4_I(inode);
1054
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1055
	int blk_bits;
1056

1057 1058
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1059

1060
	lblock -= EXT4_NDIR_BLOCKS;
1061

1062 1063 1064 1065 1066 1067 1068
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1069
	blk_bits = order_base_2(lblock);
1070
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1071 1072 1073 1074
}

/*
 * Calculate the number of metadata blocks need to reserve
1075
 * to allocate a block located at @lblock
1076
 */
1077
static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1078
{
1079
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1080
		return ext4_ext_calc_metadata_amount(inode, lblock);
1081

1082
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1083 1084
}

1085 1086 1087 1088
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1089 1090
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1091 1092
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093 1094 1095
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1096
	trace_ext4_da_update_reserve_space(inode, used);
1097 1098 1099 1100 1101 1102 1103 1104
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1105

1106 1107 1108
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1109 1110
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1111
	ei->i_allocated_meta_blocks = 0;
1112

1113 1114 1115 1116 1117 1118
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1119 1120
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1121
		ei->i_reserved_meta_blocks = 0;
1122
		ei->i_da_metadata_calc_len = 0;
1123
	}
1124
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1125

1126 1127
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1128
		dquot_claim_block(inode, used);
1129
	else {
1130 1131 1132
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1133
		 * not re-claim the quota for fallocated blocks.
1134
		 */
1135
		dquot_release_reservation_block(inode, used);
1136
	}
1137 1138 1139 1140 1141 1142

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1143 1144
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1145
		ext4_discard_preallocations(inode);
1146 1147
}

1148
static int __check_block_validity(struct inode *inode, const char *func,
1149 1150
				unsigned int line,
				struct ext4_map_blocks *map)
1151
{
1152 1153
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1154 1155 1156 1157
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1158 1159 1160 1161 1162
		return -EIO;
	}
	return 0;
}

1163
#define check_block_validity(inode, map)	\
1164
	__check_block_validity((inode), __func__, __LINE__, (map))
1165

1166
/*
1167 1168
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1202 1203 1204 1205 1206 1207 1208 1209 1210
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1211 1212 1213 1214 1215
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1216 1217
			if (num >= max_pages) {
				done = 1;
1218
				break;
1219
			}
1220 1221 1222 1223 1224 1225
		}
		pagevec_release(&pvec);
	}
	return num;
}

1226
/*
1227
 * The ext4_map_blocks() function tries to look up the requested blocks,
1228
 * and returns if the blocks are already mapped.
1229 1230 1231 1232 1233
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1234 1235
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1248 1249
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1250 1251
{
	int retval;
1252

1253 1254 1255 1256
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1257
	/*
1258 1259
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1260 1261
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1262
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1263
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1264
	} else {
1265
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1266
	}
1267
	up_read((&EXT4_I(inode)->i_data_sem));
1268

1269
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1270
		int ret = check_block_validity(inode, map);
1271 1272 1273 1274
		if (ret != 0)
			return ret;
	}

1275
	/* If it is only a block(s) look up */
1276
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1277 1278 1279 1280 1281 1282 1283 1284 1285
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1286
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1287 1288
		return retval;

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1299
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1300

1301
	/*
1302 1303 1304 1305
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1306 1307
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1308 1309 1310 1311 1312 1313 1314

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1315
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1316
		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1317 1318 1319 1320
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1321
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1322
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1323
	} else {
1324
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1325

1326
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1327 1328 1329 1330 1331
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1332
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1333
		}
1334

1335 1336 1337 1338 1339 1340 1341
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1342
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1343 1344
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1345
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1346
		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1347

1348
	up_write((&EXT4_I(inode)->i_data_sem));
1349
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1350
		int ret = check_block_validity(inode, map);
1351 1352 1353
		if (ret != 0)
			return ret;
	}
1354 1355 1356
	return retval;
}

1357 1358 1359
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1360 1361
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1362
{
1363
	handle_t *handle = ext4_journal_current_handle();
1364
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1365
	int ret = 0, started = 0;
1366
	int dio_credits;
1367

1368 1369 1370 1371
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1372
		/* Direct IO write... */
1373 1374 1375
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1376
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1377
		if (IS_ERR(handle)) {
1378
			ret = PTR_ERR(handle);
1379
			return ret;
1380
		}
J
Jan Kara 已提交
1381
		started = 1;
1382 1383
	}

1384
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1385
	if (ret > 0) {
1386 1387 1388
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1389
		ret = 0;
1390
	}
J
Jan Kara 已提交
1391 1392
	if (started)
		ext4_journal_stop(handle);
1393 1394 1395
	return ret;
}

1396 1397 1398 1399 1400 1401 1402
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1403 1404 1405
/*
 * `handle' can be NULL if create is zero
 */
1406
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1407
				ext4_lblk_t block, int create, int *errp)
1408
{
1409 1410
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1411 1412 1413 1414
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1415 1416 1417 1418
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1430
	}
1431 1432 1433
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1448
		}
1449 1450 1451 1452 1453 1454 1455
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1456
	}
1457 1458 1459 1460 1461 1462
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1463 1464
}

1465
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1466
			       ext4_lblk_t block, int create, int *err)
1467
{
1468
	struct buffer_head *bh;
1469

1470
	bh = ext4_getblk(handle, inode, block, create, err);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1484 1485 1486 1487 1488 1489 1490
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1491 1492 1493 1494 1495 1496 1497
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1498 1499
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1500
	     block_start = block_end, bh = next) {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1518
 * close off a transaction and start a new one between the ext4_get_block()
1519
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1520 1521
 * prepare_write() is the right place.
 *
1522 1523
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1524 1525 1526 1527
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1528
 * By accident, ext4 can be reentered when a transaction is open via
1529 1530 1531 1532 1533 1534
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1535
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1536 1537 1538 1539 1540
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1541
				       struct buffer_head *bh)
1542
{
1543 1544 1545
	int dirty = buffer_dirty(bh);
	int ret;

1546 1547
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * __block_prepare_write() could have dirtied some buffers. Clean
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
	 * by __block_prepare_write() isn't a real problem here as we clear
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1574 1575
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1576
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1577 1578
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1579
{
1580
	struct inode *inode = mapping->host;
1581
	int ret, needed_blocks;
1582 1583
	handle_t *handle;
	int retries = 0;
1584
	struct page *page;
1585
	pgoff_t index;
1586
	unsigned from, to;
N
Nick Piggin 已提交
1587

1588
	trace_ext4_write_begin(inode, pos, len, flags);
1589 1590 1591 1592 1593
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1594
	index = pos >> PAGE_CACHE_SHIFT;
1595 1596
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1597 1598

retry:
1599 1600 1601 1602
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1603
	}
1604

1605 1606 1607 1608
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1609
	page = grab_cache_page_write_begin(mapping, index, flags);
1610 1611 1612 1613 1614 1615 1616
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1617
	if (ext4_should_dioread_nolock(inode))
1618
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1619
	else
1620
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1621 1622

	if (!ret && ext4_should_journal_data(inode)) {
1623 1624 1625
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1626 1627

	if (ret) {
1628 1629
		unlock_page(page);
		page_cache_release(page);
1630
		/*
1631
		 * __block_write_begin may have instantiated a few blocks
1632 1633
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1634 1635 1636
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1637
		 */
1638
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1639 1640 1641 1642
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1643
			ext4_truncate_failed_write(inode);
1644
			/*
1645
			 * If truncate failed early the inode might
1646 1647 1648 1649 1650 1651 1652
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1653 1654
	}

1655
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1656
		goto retry;
1657
out:
1658 1659 1660
	return ret;
}

N
Nick Piggin 已提交
1661 1662
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1663 1664 1665 1666
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1667
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1668 1669
}

1670
static int ext4_generic_write_end(struct file *file,
1671 1672 1673
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1716 1717 1718 1719
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1720
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1721 1722
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1723
static int ext4_ordered_write_end(struct file *file,
1724 1725 1726
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1727
{
1728
	handle_t *handle = ext4_journal_current_handle();
1729
	struct inode *inode = mapping->host;
1730 1731
	int ret = 0, ret2;

1732
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1733
	ret = ext4_jbd2_file_inode(handle, inode);
1734 1735

	if (ret == 0) {
1736
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1737
							page, fsdata);
1738
		copied = ret2;
1739
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740 1741 1742 1743 1744
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1745 1746
		if (ret2 < 0)
			ret = ret2;
1747
	}
1748
	ret2 = ext4_journal_stop(handle);
1749 1750
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1751

1752
	if (pos + len > inode->i_size) {
1753
		ext4_truncate_failed_write(inode);
1754
		/*
1755
		 * If truncate failed early the inode might still be
1756 1757 1758 1759 1760 1761 1762 1763
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1764
	return ret ? ret : copied;
1765 1766
}

N
Nick Piggin 已提交
1767
static int ext4_writeback_write_end(struct file *file,
1768 1769 1770
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1771
{
1772
	handle_t *handle = ext4_journal_current_handle();
1773
	struct inode *inode = mapping->host;
1774 1775
	int ret = 0, ret2;

1776
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1777
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1778
							page, fsdata);
1779
	copied = ret2;
1780
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1781 1782 1783 1784 1785 1786
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1787 1788
	if (ret2 < 0)
		ret = ret2;
1789

1790
	ret2 = ext4_journal_stop(handle);
1791 1792
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1793

1794
	if (pos + len > inode->i_size) {
1795
		ext4_truncate_failed_write(inode);
1796
		/*
1797
		 * If truncate failed early the inode might still be
1798 1799 1800 1801 1802 1803 1804
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1805
	return ret ? ret : copied;
1806 1807
}

N
Nick Piggin 已提交
1808
static int ext4_journalled_write_end(struct file *file,
1809 1810 1811
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1812
{
1813
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1814
	struct inode *inode = mapping->host;
1815 1816
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1817
	unsigned from, to;
1818
	loff_t new_i_size;
1819

1820
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1821 1822 1823 1824 1825 1826 1827 1828
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1829 1830

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1831
				to, &partial, write_end_fn);
1832 1833
	if (!partial)
		SetPageUptodate(page);
1834 1835
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1836
		i_size_write(inode, pos+copied);
1837
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1838 1839
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1840
		ret2 = ext4_mark_inode_dirty(handle, inode);
1841 1842 1843
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1844

1845
	unlock_page(page);
1846
	page_cache_release(page);
1847
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1848 1849 1850 1851 1852 1853
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1854
	ret2 = ext4_journal_stop(handle);
1855 1856
	if (!ret)
		ret = ret2;
1857
	if (pos + len > inode->i_size) {
1858
		ext4_truncate_failed_write(inode);
1859
		/*
1860
		 * If truncate failed early the inode might still be
1861 1862 1863 1864 1865 1866
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1867 1868

	return ret ? ret : copied;
1869
}
1870

1871 1872 1873 1874
/*
 * Reserve a single block located at lblock
 */
static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1875
{
A
Aneesh Kumar K.V 已提交
1876
	int retries = 0;
1877
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878
	struct ext4_inode_info *ei = EXT4_I(inode);
1879
	unsigned long md_needed;
1880
	int ret;
1881 1882 1883 1884 1885 1886

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1887
repeat:
1888
	spin_lock(&ei->i_block_reservation_lock);
1889
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1890
	trace_ext4_da_reserve_space(inode, md_needed);
1891
	spin_unlock(&ei->i_block_reservation_lock);
1892

1893
	/*
1894 1895 1896
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1897
	 */
1898
	ret = dquot_reserve_block(inode, 1);
1899 1900
	if (ret)
		return ret;
1901 1902 1903 1904
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1905
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1906
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1907 1908 1909 1910
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1911 1912
		return -ENOSPC;
	}
1913
	spin_lock(&ei->i_block_reservation_lock);
1914
	ei->i_reserved_data_blocks++;
1915 1916
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1917

1918 1919 1920
	return 0;       /* success */
}

1921
static void ext4_da_release_space(struct inode *inode, int to_free)
1922 1923
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1924
	struct ext4_inode_info *ei = EXT4_I(inode);
1925

1926 1927 1928
	if (!to_free)
		return;		/* Nothing to release, exit */

1929
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1930

L
Li Zefan 已提交
1931
	trace_ext4_da_release_space(inode, to_free);
1932
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1933
		/*
1934 1935 1936 1937
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1938
		 */
1939 1940 1941 1942 1943 1944
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1945
	}
1946
	ei->i_reserved_data_blocks -= to_free;
1947

1948 1949 1950 1951 1952 1953
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1954 1955
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1956
		ei->i_reserved_meta_blocks = 0;
1957
		ei->i_da_metadata_calc_len = 0;
1958
	}
1959

1960
	/* update fs dirty data blocks counter */
1961
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1962 1963

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1964

1965
	dquot_release_reservation_block(inode, to_free);
1966 1967 1968
}

static void ext4_da_page_release_reservation(struct page *page,
1969
					     unsigned long offset)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1986
	ext4_da_release_space(page->mapping->host, to_release);
1987
}
1988

1989 1990 1991 1992 1993 1994
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1995
 * them with writepage() call back
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
static int mpage_da_submit_io(struct mpage_da_data *mpd)
{
2008 2009 2010 2011 2012
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2013 2014 2015 2016
	loff_t size = i_size_read(inode);
	unsigned int len;
	struct buffer_head *page_bufs = NULL;
	int journal_data = ext4_should_journal_data(inode);
2017 2018

	BUG_ON(mpd->next_page <= mpd->first_page);
2019 2020 2021
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2022
	 * If we look at mpd->b_blocknr we would only be looking
2023 2024
	 * at the currently mapped buffer_heads.
	 */
2025 2026 2027
	index = mpd->first_page;
	end = mpd->next_page - 1;

2028
	pagevec_init(&pvec, 0);
2029
	while (index <= end) {
2030
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2031 2032 2033
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2034
			int commit_write = 0;
2035 2036
			struct page *page = pvec.pages[i];

2037 2038 2039
			index = page->index;
			if (index > end)
				break;
2040 2041 2042 2043 2044

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2045 2046 2047 2048 2049
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
			/*
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
			 * block_prepare_write.  If this fails,
			 * redirty the page and move on.
			 */
			if (!page_has_buffers(page)) {
				if (block_prepare_write(page, 0, len,
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
			page_bufs = page_buffers(page);
			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
					      ext4_bh_delay_or_unwritten)) {
2070
				/*
2071 2072
				 * We couldn't do block allocation for
				 * some reason.
2073
				 */
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
				goto redirty_page;
			}

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

			if (journal_data && PageChecked(page))
				err = __ext4_journalled_writepage(page, len);
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
				err = block_write_full_page(page,
					    noalloc_get_block_write, mpd->wbc);

			if (!err)
2093
				mpd->pages_written++;
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
	return ret;
}

/*
 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
 *
 * the function goes through all passed space and put actual disk
2110
 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2111
 */
2112 2113
static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
				 struct ext4_map_blocks *map)
2114 2115 2116
{
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2117 2118
	int blocks = map->m_len;
	sector_t pblock = map->m_pblk, cur_logical;
2119
	struct buffer_head *head, *bh;
2120
	pgoff_t index, end;
2121 2122 2123
	struct pagevec pvec;
	int nr_pages, i;

2124 2125
	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);

	while (index <= end) {
		/* XXX: optimize tail */
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			index = page->index;
			if (index > end)
				break;
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			BUG_ON(!page_has_buffers(page));

			bh = page_buffers(page);
			head = bh;

			/* skip blocks out of the range */
			do {
2152
				if (cur_logical >= map->m_lblk)
2153 2154 2155 2156 2157
					break;
				cur_logical++;
			} while ((bh = bh->b_this_page) != head);

			do {
2158
				if (cur_logical > map->m_lblk + (blocks - 1))
2159
					break;
2160

2161
				if (buffer_delay(bh) || buffer_unwritten(bh)) {
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);

					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					} else {
						/*
						 * unwritten already should have
						 * blocknr assigned. Verify that
						 */
						clear_buffer_unwritten(bh);
						BUG_ON(bh->b_blocknr != pblock);
					}

2177
				} else if (buffer_mapped(bh))
2178 2179
					BUG_ON(bh->b_blocknr != pblock);

2180
				if (map->m_flags & EXT4_MAP_UNINIT)
2181
					set_buffer_uninit(bh);
2182 2183 2184 2185 2186 2187 2188 2189 2190
				cur_logical++;
				pblock++;
			} while ((bh = bh->b_this_page) != head);
		}
		pagevec_release(&pvec);
	}
}


2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2209
			if (page->index > end)
2210 2211 2212 2213 2214 2215 2216
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2217 2218
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2219 2220 2221 2222
	}
	return;
}

2223 2224 2225
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2238 2239 2240
	return;
}

2241
/*
2242 2243
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2244
 *
2245
 * @mpd - bh describing space
2246 2247 2248 2249
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2250
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2251
{
2252
	int err, blks, get_blocks_flags;
2253
	struct ext4_map_blocks map;
2254 2255 2256 2257
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2258 2259

	/*
2260 2261
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2262
	 */
2263 2264 2265 2266 2267
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2268 2269 2270 2271

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2272
	/*
2273
	 * Call ext4_map_blocks() to allocate any delayed allocation
2274 2275 2276 2277 2278 2279 2280 2281
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2282
	 * want to change *many* call functions, so ext4_map_blocks()
2283 2284 2285 2286 2287 2288
	 * will set the magic i_delalloc_reserved_flag once the
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2289
	 */
2290 2291
	map.m_lblk = next;
	map.m_len = max_blocks;
2292
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2293 2294
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2295
	if (mpd->b_state & (1 << BH_Delay))
2296 2297
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2298
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2299
	if (blks < 0) {
2300 2301
		struct super_block *sb = mpd->inode->i_sb;

2302
		err = blks;
2303
		/*
2304 2305 2306 2307
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2308 2309
		 */
		if (err == -EAGAIN)
2310
			goto submit_io;
2311 2312

		if (err == -ENOSPC &&
2313
		    ext4_count_free_blocks(sb)) {
2314
			mpd->retval = err;
2315
			goto submit_io;
2316 2317
		}

2318
		/*
2319 2320 2321 2322 2323
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2324
		 */
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2336
		}
2337
		/* invalidate all the pages */
2338
		ext4_da_block_invalidatepages(mpd, next,
2339
				mpd->b_size >> mpd->inode->i_blkbits);
2340
		return;
2341
	}
2342 2343
	BUG_ON(blks == 0);

2344 2345 2346
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2347

2348 2349 2350
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2351

2352 2353 2354 2355
	/*
	 * If blocks are delayed marked, we need to
	 * put actual blocknr and drop delayed bit
	 */
2356 2357
	if ((mpd->b_state & (1 << BH_Delay)) ||
	    (mpd->b_state & (1 << BH_Unwritten)))
2358
		mpage_put_bnr_to_bhs(mpd, &map);
2359

2360 2361 2362
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2363 2364
			/* This only happens if the journal is aborted */
			return;
2365 2366 2367
	}

	/*
2368
	 * Update on-disk size along with block allocation.
2369 2370 2371 2372 2373 2374
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2375 2376 2377 2378 2379
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2380 2381
	}

2382 2383 2384
submit_io:
	mpage_da_submit_io(mpd);
	mpd->io_done = 1;
2385 2386
}

2387 2388
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2400 2401
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2402 2403
{
	sector_t next;
2404
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2405

2406 2407 2408 2409
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2410
	 * ext4_map_blocks() multiple times in a loop
2411 2412 2413 2414
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2415
	/* check if thereserved journal credits might overflow */
2416
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2437 2438 2439
	/*
	 * First block in the extent
	 */
2440 2441 2442 2443
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2444 2445 2446
		return;
	}

2447
	next = mpd->b_blocknr + nrblocks;
2448 2449 2450
	/*
	 * Can we merge the block to our big extent?
	 */
2451 2452
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2453 2454 2455
		return;
	}

2456
flush_it:
2457 2458 2459 2460
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2461
	mpage_da_map_and_submit(mpd);
2462
	return;
2463 2464
}

2465
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2466
{
2467
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2468 2469
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
				struct writeback_control *wbc, void *data)
{
	struct mpage_da_data *mpd = data;
	struct inode *inode = mpd->inode;
2484
	struct buffer_head *bh, *head;
2485 2486 2487 2488 2489 2490 2491 2492
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2493
		 * and start IO on them
2494 2495
		 */
		if (mpd->next_page != mpd->first_page) {
2496
			mpage_da_map_and_submit(mpd);
2497 2498 2499 2500 2501 2502
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2513 2514 2515
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2516 2517 2518 2519 2520 2521 2522
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2523 2524
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2525 2526
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2527 2528 2529 2530 2531 2532 2533 2534
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2535 2536 2537 2538
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2539
			 * with the page in ext4_writepage
2540
			 */
2541
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2542 2543 2544
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2545 2546
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2547 2548 2549 2550 2551 2552 2553 2554 2555
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2556 2557
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2558
			}
2559 2560 2561 2562 2563 2564 2565 2566
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2567 2568 2569
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2570 2571 2572 2573 2574 2575 2576
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2577 2578
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2579
				  struct buffer_head *bh, int create)
2580
{
2581
	struct ext4_map_blocks map;
2582
	int ret = 0;
2583 2584 2585 2586
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2587 2588

	BUG_ON(create == 0);
2589 2590 2591 2592
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2593 2594 2595 2596 2597 2598

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2599 2600 2601 2602 2603 2604
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2605 2606 2607 2608
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
2609
		ret = ext4_da_reserve_space(inode, iblock);
2610 2611 2612 2613
		if (ret)
			/* not enough space to reserve */
			return ret;

2614 2615 2616 2617
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2618 2619
	}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2634
}
2635

2636 2637 2638
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
2639 2640
 * callback function for block_prepare_write() and block_write_full_page().
 * These functions should only try to map a single block at a time.
2641 2642 2643 2644 2645
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2646 2647 2648
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2649 2650
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2651 2652
				   struct buffer_head *bh_result, int create)
{
2653
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2654
	return _ext4_get_block(inode, iblock, bh_result, 0);
2655 2656
}

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2679
	ClearPageChecked(page);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2705
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2706 2707 2708 2709
out:
	return ret;
}

2710 2711 2712
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2713
/*
2714 2715 2716 2717 2718 2719 2720 2721 2722
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2723 2724 2725 2726 2727
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2753
 */
2754
static int ext4_writepage(struct page *page,
2755
			  struct writeback_control *wbc)
2756
{
T
Theodore Ts'o 已提交
2757
	int ret = 0, commit_write = 0;
2758
	loff_t size;
2759
	unsigned int len;
2760
	struct buffer_head *page_bufs = NULL;
2761 2762
	struct inode *inode = page->mapping->host;

2763
	trace_ext4_writepage(inode, page);
2764 2765 2766 2767 2768
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2769

T
Theodore Ts'o 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778
	/*
	 * If the page does not have buffers (for whatever reason),
	 * try to create them using block_prepare_write.  If this
	 * fails, redirty the page and move on.
	 */
	if (!page_buffers(page)) {
		if (block_prepare_write(page, 0, len,
					noalloc_get_block_write)) {
		redirty_page:
2779 2780 2781 2782
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2783 2784 2785 2786 2787
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2788
		/*
T
Theodore Ts'o 已提交
2789 2790 2791 2792 2793 2794
		 * We don't want to do block allocation So redirty the
		 * page and return We may reach here when we do a
		 * journal commit via
		 * journal_submit_inode_data_buffers.  If we don't
		 * have mapping block we just ignore them. We can also
		 * reach here via shrink_page_list
2795
		 */
T
Theodore Ts'o 已提交
2796 2797 2798
		goto redirty_page;
	}
	if (commit_write)
2799
		/* now mark the buffer_heads as dirty and uptodate */
2800
		block_commit_write(page, 0, len);
2801

2802
	if (PageChecked(page) && ext4_should_journal_data(inode))
2803 2804 2805 2806
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2807
		return __ext4_journalled_writepage(page, len);
2808

T
Theodore Ts'o 已提交
2809
	if (buffer_uninit(page_bufs)) {
2810 2811 2812 2813
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2814 2815
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2816 2817 2818 2819

	return ret;
}

2820
/*
2821 2822 2823 2824 2825
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2826
 */
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2838
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2839 2840 2841 2842 2843
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			      PAGECACHE_TAG_DIRTY,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2963
static int ext4_da_writepages(struct address_space *mapping,
2964
			      struct writeback_control *wbc)
2965
{
2966 2967
	pgoff_t	index;
	int range_whole = 0;
2968
	handle_t *handle = NULL;
2969
	struct mpage_da_data mpd;
2970
	struct inode *inode = mapping->host;
2971 2972
	int pages_written = 0;
	long pages_skipped;
2973
	unsigned int max_pages;
2974
	int range_cyclic, cycled = 1, io_done = 0;
2975 2976
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2977
	loff_t range_start = wbc->range_start;
2978
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2979

2980
	trace_ext4_da_writepages(inode, wbc);
2981

2982 2983 2984 2985 2986
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2987
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2988
		return 0;
2989 2990 2991 2992 2993

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2994
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2995 2996 2997 2998 2999
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
3000
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
3001 3002
		return -EROFS;

3003 3004
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
3005

3006 3007
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
3008
		index = mapping->writeback_index;
3009 3010 3011 3012 3013 3014
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
	} else
3015
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3034 3035 3036 3037 3038 3039
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3050 3051 3052
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3053 3054
	pages_skipped = wbc->pages_skipped;

3055
retry:
3056
	while (!ret && wbc->nr_to_write > 0) {
3057 3058 3059 3060 3061 3062 3063 3064

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3065
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3066

3067 3068 3069 3070
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3071
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3072
			       "%ld pages, ino %lu; err %d", __func__,
3073
				wbc->nr_to_write, inode->i_ino, ret);
3074 3075
			goto out_writepages;
		}
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3094
		ret = write_cache_pages_da(mapping, wbc, &mpd);
3095
		/*
3096
		 * If we have a contiguous extent of pages and we
3097 3098 3099 3100
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3101
			mpage_da_map_and_submit(&mpd);
3102 3103
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3104
		trace_ext4_da_write_pages(inode, &mpd);
3105
		wbc->nr_to_write -= mpd.pages_written;
3106

3107
		ext4_journal_stop(handle);
3108

3109
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3110 3111 3112 3113
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3114
			jbd2_journal_force_commit_nested(sbi->s_journal);
3115 3116 3117
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3118 3119 3120 3121
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3122 3123
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3124
			ret = 0;
3125
			io_done = 1;
3126
		} else if (wbc->nr_to_write)
3127 3128 3129 3130 3131 3132
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3133
	}
3134 3135 3136 3137 3138 3139 3140
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3141
	if (pages_skipped != wbc->pages_skipped)
3142 3143
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3144
			 "with nr_to_write = %ld ret = %d",
3145
			 __func__, wbc->nr_to_write, ret);
3146 3147 3148

	/* Update index */
	index += pages_written;
3149
	wbc->range_cyclic = range_cyclic;
3150 3151 3152 3153 3154 3155
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
		mapping->writeback_index = index;
3156

3157
out_writepages:
3158
	wbc->nr_to_write -= nr_to_writebump;
3159
	wbc->range_start = range_start;
3160
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3161
	return ret;
3162 3163
}

3164 3165 3166 3167 3168 3169 3170 3171 3172
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3173
	 * counters can get slightly wrong with percpu_counter_batch getting
3174 3175 3176 3177 3178 3179 3180 3181 3182
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3183 3184
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3185 3186 3187
		 */
		return 1;
	}
3188 3189 3190 3191 3192 3193 3194
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3195 3196 3197
	return 0;
}

3198
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3199 3200
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3201
{
3202
	int ret, retries = 0;
3203 3204 3205 3206 3207 3208
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3209 3210 3211 3212 3213 3214 3215

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3216
	trace_ext4_da_write_begin(inode, pos, len, flags);
3217
retry:
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3229 3230 3231
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3232

3233
	page = grab_cache_page_write_begin(mapping, index, flags);
3234 3235 3236 3237 3238
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3239 3240
	*pagep = page;

3241
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3242 3243 3244 3245
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3246 3247 3248 3249 3250 3251
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3252
			ext4_truncate_failed_write(inode);
3253 3254
	}

3255 3256
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3257 3258 3259 3260
out:
	return ret;
}

3261 3262 3263 3264 3265
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3266
					    unsigned long offset)
3267 3268 3269 3270 3271 3272 3273 3274 3275
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3276
	for (i = 0; i < idx; i++)
3277 3278
		bh = bh->b_this_page;

3279
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3280 3281 3282 3283
		return 0;
	return 1;
}

3284
static int ext4_da_write_end(struct file *file,
3285 3286 3287
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3288 3289 3290 3291 3292
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3293
	unsigned long start, end;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3307

3308
	trace_ext4_da_write_end(inode, pos, len, copied);
3309
	start = pos & (PAGE_CACHE_SIZE - 1);
3310
	end = start + copied - 1;
3311 3312 3313 3314 3315 3316 3317 3318

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3330

3331 3332 3333
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3334 3335 3336 3337 3338
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3339
		}
3340
	}
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3362
	ext4_da_page_release_reservation(page, offset);
3363 3364 3365 3366 3367 3368 3369

out:
	ext4_invalidatepage(page, offset);

	return;
}

3370 3371 3372 3373 3374
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3375 3376
	trace_ext4_alloc_da_blocks(inode);

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3387
	 *
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3407
	 *
3408 3409 3410 3411 3412 3413
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3414

3415 3416 3417 3418 3419
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3420
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3421 3422 3423 3424 3425 3426 3427 3428
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3429
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3430 3431 3432 3433 3434
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3445 3446
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3458
		 * NB. EXT4_STATE_JDATA is not set on files other than
3459 3460 3461 3462 3463 3464
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3465
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3466
		journal = EXT4_JOURNAL(inode);
3467 3468 3469
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3470 3471 3472 3473 3474

		if (err)
			return 0;
	}

3475
	return generic_block_bmap(mapping, block, ext4_get_block);
3476 3477
}

3478
static int ext4_readpage(struct file *file, struct page *page)
3479
{
3480
	return mpage_readpage(page, ext4_get_block);
3481 3482 3483
}

static int
3484
ext4_readpages(struct file *file, struct address_space *mapping,
3485 3486
		struct list_head *pages, unsigned nr_pages)
{
3487
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3488 3489
}

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
static void ext4_free_io_end(ext4_io_end_t *io)
{
	BUG_ON(!io);
	if (io->page)
		put_page(io->page);
	iput(io->inode);
	kfree(io);
}

static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3519
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3520
{
3521
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3522

3523 3524 3525 3526 3527
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3528 3529 3530 3531 3532 3533
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3534 3535 3536 3537
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3538 3539
}

3540
static int ext4_releasepage(struct page *page, gfp_t wait)
3541
{
3542
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3543 3544 3545 3546

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3547 3548 3549 3550
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3551 3552 3553
}

/*
3554 3555
 * O_DIRECT for ext3 (or indirect map) based files
 *
3556 3557 3558 3559 3560
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3561 3562
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3563
 */
3564
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3565 3566
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3567 3568 3569
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3570
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3571
	handle_t *handle;
3572 3573 3574
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3575
	int retries = 0;
3576 3577 3578 3579 3580

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3581 3582 3583 3584 3585 3586
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3587
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3588 3589 3590 3591
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3592 3593
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3594
			ext4_journal_stop(handle);
3595 3596 3597
		}
	}

3598
retry:
3599
	if (rw == READ && ext4_should_dioread_nolock(inode))
3600
		ret = __blockdev_direct_IO(rw, iocb, inode,
3601 3602
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3603 3604
				 ext4_get_block, NULL, NULL, 0);
	else {
3605 3606
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3607
				 offset, nr_segs,
3608
				 ext4_get_block, NULL);
3609 3610 3611 3612 3613 3614 3615 3616 3617

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3618 3619
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3620

J
Jan Kara 已提交
3621
	if (orphan) {
3622 3623
		int err;

J
Jan Kara 已提交
3624 3625 3626 3627 3628 3629 3630
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3631 3632 3633
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3634 3635 3636
			goto out;
		}
		if (inode->i_nlink)
3637
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3638
		if (ret > 0) {
3639 3640 3641 3642 3643 3644 3645 3646
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3647
				 * ext4_mark_inode_dirty() to userspace.  So
3648 3649
				 * ignore it.
				 */
3650
				ext4_mark_inode_dirty(handle, inode);
3651 3652
			}
		}
3653
		err = ext4_journal_stop(handle);
3654 3655 3656 3657 3658 3659 3660
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3661 3662 3663 3664 3665
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3666
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3667 3668
		   struct buffer_head *bh_result, int create)
{
3669
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3670
		   inode->i_ino, create);
3671 3672
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3673 3674
}

3675
static void dump_completed_IO(struct inode * inode)
3676 3677 3678 3679
{
#ifdef	EXT4_DEBUG
	struct list_head *cur, *before, *after;
	ext4_io_end_t *io, *io0, *io1;
3680
	unsigned long flags;
3681

3682 3683
	if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
		ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3684 3685 3686
		return;
	}

3687
	ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3688
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3689
	list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3690 3691 3692 3693 3694 3695 3696 3697 3698
		cur = &io->list;
		before = cur->prev;
		io0 = container_of(before, ext4_io_end_t, list);
		after = cur->next;
		io1 = container_of(after, ext4_io_end_t, list);

		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
			    io, inode->i_ino, io0, io1);
	}
3699
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3700 3701
#endif
}
3702 3703 3704 3705

/*
 * check a range of space and convert unwritten extents to written.
 */
3706
static int ext4_end_io_nolock(ext4_io_end_t *io)
3707 3708 3709
{
	struct inode *inode = io->inode;
	loff_t offset = io->offset;
3710
	ssize_t size = io->size;
3711 3712
	int ret = 0;

3713
	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3714 3715 3716 3717 3718 3719
		   "list->prev 0x%p\n",
	           io, inode->i_ino, io->list.next, io->list.prev);

	if (list_empty(&io->list))
		return ret;

3720
	if (io->flag != EXT4_IO_UNWRITTEN)
3721 3722
		return ret;

3723
	ret = ext4_convert_unwritten_extents(inode, offset, size);
3724
	if (ret < 0) {
3725
		printk(KERN_EMERG "%s: failed to convert unwritten"
3726 3727 3728 3729 3730
			"extents to written extents, error is %d"
			" io is still on inode %lu aio dio list\n",
                       __func__, ret, inode->i_ino);
		return ret;
	}
3731

3732 3733
	if (io->iocb)
		aio_complete(io->iocb, io->result, 0);
3734 3735 3736
	/* clear the DIO AIO unwritten flag */
	io->flag = 0;
	return ret;
3737
}
3738

3739 3740 3741
/*
 * work on completed aio dio IO, to convert unwritten extents to extents
 */
3742
static void ext4_end_io_work(struct work_struct *work)
3743
{
3744 3745 3746 3747 3748
	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
	struct inode		*inode = io->inode;
	struct ext4_inode_info	*ei = EXT4_I(inode);
	unsigned long		flags;
	int			ret;
3749

3750
	mutex_lock(&inode->i_mutex);
3751
	ret = ext4_end_io_nolock(io);
3752 3753 3754
	if (ret < 0) {
		mutex_unlock(&inode->i_mutex);
		return;
3755
	}
3756 3757 3758 3759 3760

	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	if (!list_empty(&io->list))
		list_del_init(&io->list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3761
	mutex_unlock(&inode->i_mutex);
3762
	ext4_free_io_end(io);
3763
}
3764

3765 3766 3767
/*
 * This function is called from ext4_sync_file().
 *
3768 3769
 * When IO is completed, the work to convert unwritten extents to
 * written is queued on workqueue but may not get immediately
3770 3771
 * scheduled. When fsync is called, we need to ensure the
 * conversion is complete before fsync returns.
3772 3773 3774 3775 3776
 * The inode keeps track of a list of pending/completed IO that
 * might needs to do the conversion. This function walks through
 * the list and convert the related unwritten extents for completed IO
 * to written.
 * The function return the number of pending IOs on success.
3777
 */
3778
int flush_completed_IO(struct inode *inode)
3779 3780
{
	ext4_io_end_t *io;
3781 3782
	struct ext4_inode_info *ei = EXT4_I(inode);
	unsigned long flags;
3783 3784 3785
	int ret = 0;
	int ret2 = 0;

3786
	if (list_empty(&ei->i_completed_io_list))
3787 3788
		return ret;

3789
	dump_completed_IO(inode);
3790 3791 3792
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	while (!list_empty(&ei->i_completed_io_list)){
		io = list_entry(ei->i_completed_io_list.next,
3793 3794
				ext4_io_end_t, list);
		/*
3795
		 * Calling ext4_end_io_nolock() to convert completed
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		 * IO to written.
		 *
		 * When ext4_sync_file() is called, run_queue() may already
		 * about to flush the work corresponding to this io structure.
		 * It will be upset if it founds the io structure related
		 * to the work-to-be schedule is freed.
		 *
		 * Thus we need to keep the io structure still valid here after
		 * convertion finished. The io structure has a flag to
		 * avoid double converting from both fsync and background work
		 * queue work.
		 */
3808
		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3809
		ret = ext4_end_io_nolock(io);
3810
		spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3811 3812 3813 3814 3815
		if (ret < 0)
			ret2 = ret;
		else
			list_del_init(&io->list);
	}
3816
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3817 3818 3819
	return (ret2 < 0) ? ret2 : 0;
}

3820
static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3821 3822 3823
{
	ext4_io_end_t *io = NULL;

3824
	io = kmalloc(sizeof(*io), flags);
3825 3826

	if (io) {
3827
		igrab(inode);
3828
		io->inode = inode;
3829
		io->flag = 0;
3830 3831
		io->offset = 0;
		io->size = 0;
3832
		io->page = NULL;
3833 3834
		io->iocb = NULL;
		io->result = 0;
3835
		INIT_WORK(&io->work, ext4_end_io_work);
3836
		INIT_LIST_HEAD(&io->list);
3837 3838 3839 3840 3841 3842
	}

	return io;
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3843 3844
			    ssize_t size, void *private, int ret,
			    bool is_async)
3845 3846 3847
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3848 3849
	unsigned long flags;
	struct ext4_inode_info *ei;
3850

3851 3852
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3853
		goto out;
3854

3855 3856 3857 3858 3859 3860
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3861
	if (io_end->flag != EXT4_IO_UNWRITTEN){
3862 3863
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3864 3865 3866 3867
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3868 3869
	}

3870 3871
	io_end->offset = offset;
	io_end->size = size;
3872 3873 3874 3875
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3876 3877
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3878
	/* Add the io_end to per-inode completed aio dio list*/
3879 3880 3881 3882
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3883 3884 3885

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3886 3887
	iocb->private = NULL;
}
3888

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

	io_end->flag = EXT4_IO_UNWRITTEN;
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
		if (printk_ratelimit())
			printk(KERN_WARNING "%s: allocation fail\n", __func__);
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3954 3955 3956 3957 3958 3959 3960 3961 3962
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3963 3964 3965 3966
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3985 3986 3987
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3988 3989
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3990 3991
		 *
 		 * As to previously fallocated extents, ext4 get_block
3992 3993 3994
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3995 3996 3997 3998 3999 4000 4001 4002
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
4003
 		 */
4004 4005 4006
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
4007
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
4008 4009 4010 4011
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
4012
			 * direct IO, so that later ext4_map_blocks()
4013 4014 4015 4016 4017 4018 4019
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

4020 4021 4022
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
4023
					 ext4_get_block_write,
4024
					 ext4_end_io_dio);
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
4044 4045
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
4046
			int err;
4047 4048 4049 4050
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
4051 4052 4053 4054
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
4055
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4056
		}
4057 4058
		return ret;
	}
4059 4060

	/* for write the the end of file case, we fall back to old way */
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

4071
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4072 4073 4074 4075 4076
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

4077
/*
4078
 * Pages can be marked dirty completely asynchronously from ext4's journalling
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
4090
static int ext4_journalled_set_page_dirty(struct page *page)
4091 4092 4093 4094 4095
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

4096
static const struct address_space_operations ext4_ordered_aops = {
4097 4098
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4099
	.writepage		= ext4_writepage,
4100 4101 4102 4103 4104 4105 4106 4107 4108
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4109
	.error_remove_page	= generic_error_remove_page,
4110 4111
};

4112
static const struct address_space_operations ext4_writeback_aops = {
4113 4114
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4115
	.writepage		= ext4_writepage,
4116 4117 4118 4119 4120 4121 4122 4123 4124
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4125
	.error_remove_page	= generic_error_remove_page,
4126 4127
};

4128
static const struct address_space_operations ext4_journalled_aops = {
4129 4130
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4131
	.writepage		= ext4_writepage,
4132 4133 4134 4135 4136 4137 4138 4139
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
4140
	.error_remove_page	= generic_error_remove_page,
4141 4142
};

4143
static const struct address_space_operations ext4_da_aops = {
4144 4145
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
4146
	.writepage		= ext4_writepage,
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
4157
	.error_remove_page	= generic_error_remove_page,
4158 4159
};

4160
void ext4_set_aops(struct inode *inode)
4161
{
4162 4163 4164 4165
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
4166
		inode->i_mapping->a_ops = &ext4_ordered_aops;
4167 4168 4169
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
4170 4171
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
4172
	else
4173
		inode->i_mapping->a_ops = &ext4_journalled_aops;
4174 4175 4176
}

/*
4177
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4178 4179 4180 4181
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
4182
int ext4_block_truncate_page(handle_t *handle,
4183 4184
		struct address_space *mapping, loff_t from)
{
4185
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4186
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
4187 4188
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
4189 4190
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
4191
	struct page *page;
4192 4193
	int err = 0;

4194 4195
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4196 4197 4198
	if (!page)
		return -EINVAL;

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4223
		ext4_get_block(inode, iblock, bh, 0);
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4244
	if (ext4_should_journal_data(inode)) {
4245
		BUFFER_TRACE(bh, "get write access");
4246
		err = ext4_journal_get_write_access(handle, bh);
4247 4248 4249 4250
		if (err)
			goto unlock;
	}

4251
	zero_user(page, offset, length);
4252 4253 4254 4255

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4256
	if (ext4_should_journal_data(inode)) {
4257
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4258
	} else {
4259
		if (ext4_should_order_data(inode))
4260
			err = ext4_jbd2_file_inode(handle, inode);
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4284
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4285 4286
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4287
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4288 4289 4290
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4291
 *	This is a helper function used by ext4_truncate().
4292 4293 4294 4295 4296 4297 4298
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4299
 *	past the truncation point is possible until ext4_truncate()
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4318
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4319 4320
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4321 4322 4323 4324 4325
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4326
	/* Make k index the deepest non-null offset + 1 */
4327 4328
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4329
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4340
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4352
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4353 4354 4355 4356 4357 4358
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4359
	while (partial > p) {
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4375 4376 4377 4378 4379
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4380 4381
{
	__le32 *p;
4382
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4383 4384 4385

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4386

4387 4388
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4389 4390 4391
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4392 4393 4394
		return 1;
	}

4395 4396
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4397 4398
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4399
		}
4400
		ext4_mark_inode_dirty(handle, inode);
4401 4402
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4403 4404
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4405
			ext4_journal_get_write_access(handle, bh);
4406 4407 4408
		}
	}

4409 4410
	for (p = first; p < last; p++)
		*p = 0;
4411

4412
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4413
	return 0;
4414 4415 4416
}

/**
4417
 * ext4_free_data - free a list of data blocks
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4435
static void ext4_free_data(handle_t *handle, struct inode *inode,
4436 4437 4438
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4439
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4440 4441 4442 4443
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4444
	ext4_fsblk_t nr;		    /* Current block # */
4445 4446 4447 4448 4449 4450
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4451
		err = ext4_journal_get_write_access(handle, this_bh);
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4469 4470 4471 4472
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4473 4474 4475 4476 4477 4478 4479 4480
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4481
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4482 4483 4484
				  count, block_to_free_p, p);

	if (this_bh) {
4485
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4486 4487 4488 4489 4490 4491 4492

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4493
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4494
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4495
		else
4496 4497 4498 4499
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4500 4501 4502 4503
	}
}

/**
4504
 *	ext4_free_branches - free an array of branches
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4516
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4517 4518 4519
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4520
	ext4_fsblk_t nr;
4521 4522
	__le32 *p;

4523
	if (ext4_handle_is_aborted(handle))
4524 4525 4526 4527
		return;

	if (depth--) {
		struct buffer_head *bh;
4528
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4529 4530 4531 4532 4533 4534
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4535 4536
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4537 4538 4539 4540
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4541 4542 4543
				break;
			}

4544 4545 4546 4547 4548 4549 4550 4551
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4552 4553
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4554 4555 4556 4557 4558
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4559
			ext4_free_branches(handle, inode, bh,
4560 4561 4562
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4580
			if (ext4_handle_is_aborted(handle))
4581 4582
				return;
			if (try_to_extend_transaction(handle, inode)) {
4583
				ext4_mark_inode_dirty(handle, inode);
4584 4585
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4586 4587
			}

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4599
			ext4_free_blocks(handle, inode, 0, nr, 1,
4600 4601
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4602 4603 4604 4605 4606 4607 4608

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4609
				if (!ext4_journal_get_write_access(handle,
4610 4611 4612
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4613 4614 4615 4616
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4617 4618 4619 4620 4621 4622
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4623
		ext4_free_data(handle, inode, parent_bh, first, last);
4624 4625 4626
	}
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4640
/*
4641
 * ext4_truncate()
4642
 *
4643 4644
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4661
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4662
 * that this inode's truncate did not complete and it will again call
4663 4664
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4665
 * that's fine - as long as they are linked from the inode, the post-crash
4666
 * ext4_truncate() run will find them and release them.
4667
 */
4668
void ext4_truncate(struct inode *inode)
4669 4670
{
	handle_t *handle;
4671
	struct ext4_inode_info *ei = EXT4_I(inode);
4672
	__le32 *i_data = ei->i_data;
4673
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4674
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4675
	ext4_lblk_t offsets[4];
4676 4677 4678 4679
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4680
	ext4_lblk_t last_block;
4681 4682
	unsigned blocksize = inode->i_sb->s_blocksize;

4683
	if (!ext4_can_truncate(inode))
4684 4685
		return;

4686
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4687

4688
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4689
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4690

4691
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4692
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4693 4694
		return;
	}
A
Alex Tomas 已提交
4695

4696
	handle = start_transaction(inode);
4697
	if (IS_ERR(handle))
4698 4699 4700
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4701
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4702

4703 4704 4705
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4706

4707
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4720
	if (ext4_orphan_add(handle, inode))
4721 4722
		goto out_stop;

4723 4724 4725 4726 4727
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4728

4729
	ext4_discard_preallocations(inode);
4730

4731 4732 4733 4734 4735
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4736
	 * ext4 *really* writes onto the disk inode.
4737 4738 4739 4740
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4741 4742
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4743 4744 4745
		goto do_indirects;
	}

4746
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4747 4748 4749 4750
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4751
			ext4_free_branches(handle, inode, NULL,
4752 4753 4754 4755 4756 4757 4758 4759 4760
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4761
			ext4_free_branches(handle, inode, partial->bh,
4762 4763 4764 4765 4766 4767
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4768
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4769 4770 4771
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4772
		brelse(partial->bh);
4773 4774 4775 4776 4777 4778
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4779
		nr = i_data[EXT4_IND_BLOCK];
4780
		if (nr) {
4781 4782
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4783
		}
4784 4785
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4786
		if (nr) {
4787 4788
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4789
		}
4790 4791
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4792
		if (nr) {
4793 4794
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4795
		}
4796
	case EXT4_TIND_BLOCK:
4797 4798 4799
		;
	}

4800
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4801
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4802
	ext4_mark_inode_dirty(handle, inode);
4803 4804 4805 4806 4807 4808

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4809
		ext4_handle_sync(handle);
4810 4811 4812 4813 4814
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4815
	 * ext4_delete_inode(), and we allow that function to clean up the
4816 4817 4818
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4819
		ext4_orphan_del(handle, inode);
4820

4821
	ext4_journal_stop(handle);
4822 4823 4824
}

/*
4825
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4826 4827 4828 4829
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4830 4831
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4832
{
4833 4834 4835 4836 4837 4838
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4839
	iloc->bh = NULL;
4840 4841
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4842

4843 4844 4845
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4846 4847
		return -EIO;

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4858
	if (!bh) {
4859 4860
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4861 4862 4863 4864
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4888
			int i, start;
4889

4890
			start = inode_offset & ~(inodes_per_block - 1);
4891

4892 4893
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4906
			for (i = start; i < start + inodes_per_block; i++) {
4907 4908
				if (i == inode_offset)
					continue;
4909
				if (ext4_test_bit(i, bitmap_bh->b_data))
4910 4911 4912
					break;
			}
			brelse(bitmap_bh);
4913
			if (i == start + inodes_per_block) {
4914 4915 4916 4917 4918 4919 4920 4921 4922
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4923 4924 4925 4926 4927 4928 4929 4930 4931
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4932
			/* s_inode_readahead_blks is always a power of 2 */
4933 4934 4935 4936 4937 4938 4939
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4940
				num -= ext4_itable_unused_count(sb, gdp);
4941 4942 4943 4944 4945 4946 4947
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4958 4959
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4960 4961 4962 4963 4964 4965 4966 4967 4968
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4969
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4970 4971
{
	/* We have all inode data except xattrs in memory here. */
4972
	return __ext4_get_inode_loc(inode, iloc,
4973
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4974 4975
}

4976
void ext4_set_inode_flags(struct inode *inode)
4977
{
4978
	unsigned int flags = EXT4_I(inode)->i_flags;
4979 4980

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4981
	if (flags & EXT4_SYNC_FL)
4982
		inode->i_flags |= S_SYNC;
4983
	if (flags & EXT4_APPEND_FL)
4984
		inode->i_flags |= S_APPEND;
4985
	if (flags & EXT4_IMMUTABLE_FL)
4986
		inode->i_flags |= S_IMMUTABLE;
4987
	if (flags & EXT4_NOATIME_FL)
4988
		inode->i_flags |= S_NOATIME;
4989
	if (flags & EXT4_DIRSYNC_FL)
4990 4991 4992
		inode->i_flags |= S_DIRSYNC;
}

4993 4994 4995
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
5016
}
5017

5018
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5019
				  struct ext4_inode_info *ei)
5020 5021
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
5022 5023
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
5024 5025 5026 5027 5028 5029

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
5030
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
5031 5032 5033 5034 5035
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
5036 5037 5038 5039
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
5040

5041
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
5042
{
5043 5044
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
5045 5046
	struct ext4_inode_info *ei;
	struct inode *inode;
5047
	journal_t *journal = EXT4_SB(sb)->s_journal;
5048
	long ret;
5049 5050
	int block;

5051 5052 5053 5054 5055 5056 5057
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
5058
	iloc.bh = 0;
5059

5060 5061
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
5062
		goto bad_inode;
5063
	raw_inode = ext4_raw_inode(&iloc);
5064 5065 5066
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5067
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5068 5069 5070 5071 5072
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

5073
	ei->i_state_flags = 0;
5074 5075 5076 5077 5078 5079 5080 5081 5082
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
5083
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5084
			/* this inode is deleted */
5085
			ret = -ESTALE;
5086 5087 5088 5089 5090 5091 5092 5093
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5094
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5095
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5096
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
5097 5098
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5099
	inode->i_size = ext4_isize(raw_inode);
5100
	ei->i_disksize = inode->i_size;
5101 5102 5103
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
5104 5105
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
5106
	ei->i_last_alloc_group = ~0;
5107 5108 5109 5110
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
5111
	for (block = 0; block < EXT4_N_BLOCKS; block++)
5112 5113 5114
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

5126
		read_lock(&journal->j_state_lock);
5127 5128 5129 5130 5131 5132 5133 5134
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
5135
		read_unlock(&journal->j_state_lock);
5136 5137 5138 5139
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

5140
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5141
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5142
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5143
		    EXT4_INODE_SIZE(inode->i_sb)) {
5144
			ret = -EIO;
5145
			goto bad_inode;
5146
		}
5147 5148
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
5149 5150
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
5151 5152
		} else {
			__le32 *magic = (void *)raw_inode +
5153
					EXT4_GOOD_OLD_INODE_SIZE +
5154
					ei->i_extra_isize;
5155
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5156
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5157 5158 5159 5160
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
5161 5162 5163 5164 5165
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

5166 5167 5168 5169 5170 5171 5172
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

5173
	ret = 0;
5174
	if (ei->i_file_acl &&
5175
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5176 5177
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
5178 5179
		ret = -EIO;
		goto bad_inode;
5180
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5181 5182 5183 5184 5185
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
5186
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5187 5188
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
5189
		/* Validate block references which are part of inode */
5190 5191
		ret = ext4_check_inode_blockref(inode);
	}
5192
	if (ret)
5193
		goto bad_inode;
5194

5195
	if (S_ISREG(inode->i_mode)) {
5196 5197 5198
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5199
	} else if (S_ISDIR(inode->i_mode)) {
5200 5201
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5202
	} else if (S_ISLNK(inode->i_mode)) {
5203
		if (ext4_inode_is_fast_symlink(inode)) {
5204
			inode->i_op = &ext4_fast_symlink_inode_operations;
5205 5206 5207
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5208 5209
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5210
		}
5211 5212
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5213
		inode->i_op = &ext4_special_inode_operations;
5214 5215 5216 5217 5218 5219
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5220 5221
	} else {
		ret = -EIO;
5222
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5223
		goto bad_inode;
5224
	}
5225
	brelse(iloc.bh);
5226
	ext4_set_inode_flags(inode);
5227 5228
	unlock_new_inode(inode);
	return inode;
5229 5230

bad_inode:
5231
	brelse(iloc.bh);
5232 5233
	iget_failed(inode);
	return ERR_PTR(ret);
5234 5235
}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5249
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5250
		raw_inode->i_blocks_high = 0;
5251
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5252 5253 5254 5255 5256 5257
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5258 5259 5260 5261
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5262
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5263
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5264
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5265
	} else {
5266
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5267 5268 5269 5270
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5271
	}
5272
	return 0;
5273 5274
}

5275 5276 5277 5278 5279 5280 5281
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5282
static int ext4_do_update_inode(handle_t *handle,
5283
				struct inode *inode,
5284
				struct ext4_iloc *iloc)
5285
{
5286 5287
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5288 5289 5290 5291 5292
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5293
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5294
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5295

5296
	ext4_get_inode_flags(ei);
5297
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5298
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5299 5300 5301 5302 5303 5304
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5305
		if (!ei->i_dtime) {
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5323 5324 5325 5326 5327 5328

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5329 5330
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5331
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5332
	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5333 5334
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5335 5336
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5337
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5354
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5355
			sb->s_dirt = 1;
5356
			ext4_handle_sync(handle);
5357
			err = ext4_handle_dirty_metadata(handle, NULL,
5358
					EXT4_SB(sb)->s_sbh);
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5373 5374 5375
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5376

5377 5378 5379 5380 5381
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5382
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5383 5384
	}

5385
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5386
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5387 5388
	if (!err)
		err = rc;
5389
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5390

5391
	ext4_update_inode_fsync_trans(handle, inode, 0);
5392
out_brelse:
5393
	brelse(bh);
5394
	ext4_std_error(inode->i_sb, err);
5395 5396 5397 5398
	return err;
}

/*
5399
 * ext4_write_inode()
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5416
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5433
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5434
{
5435 5436
	int err;

5437 5438 5439
	if (current->flags & PF_MEMALLOC)
		return 0;

5440 5441 5442 5443 5444 5445
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5446

5447
		if (wbc->sync_mode != WB_SYNC_ALL)
5448 5449 5450 5451 5452
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5453

5454
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5455 5456
		if (err)
			return err;
5457
		if (wbc->sync_mode == WB_SYNC_ALL)
5458 5459
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5460 5461
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5462 5463
			err = -EIO;
		}
5464
		brelse(iloc.bh);
5465 5466
	}
	return err;
5467 5468 5469
}

/*
5470
 * ext4_setattr()
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5484 5485 5486 5487 5488 5489 5490 5491
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5492
 */
5493
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5494 5495 5496 5497 5498 5499 5500 5501 5502
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5503
	if (is_quota_modification(inode, attr))
5504
		dquot_initialize(inode);
5505 5506 5507 5508 5509 5510
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5511
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5512
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5513 5514 5515 5516
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5517
		error = dquot_transfer(inode, attr);
5518
		if (error) {
5519
			ext4_journal_stop(handle);
5520 5521 5522 5523 5524 5525 5526 5527
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5528 5529
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5530 5531
	}

5532
	if (attr->ia_valid & ATTR_SIZE) {
5533
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5534 5535
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5536 5537
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5538 5539 5540
		}
	}

5541
	if (S_ISREG(inode->i_mode) &&
5542 5543
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5544
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5545 5546
		handle_t *handle;

5547
		handle = ext4_journal_start(inode, 3);
5548 5549 5550 5551 5552
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}

5553 5554 5555
		error = ext4_orphan_add(handle, inode);
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5556 5557
		if (!error)
			error = rc;
5558
		ext4_journal_stop(handle);
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5575
		/* ext4_truncate will clear the flag */
5576
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5577
			ext4_truncate(inode);
5578 5579
	}

C
Christoph Hellwig 已提交
5580 5581 5582
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5583

C
Christoph Hellwig 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5593
	if (inode->i_nlink)
5594
		ext4_orphan_del(NULL, inode);
5595 5596

	if (!rc && (ia_valid & ATTR_MODE))
5597
		rc = ext4_acl_chmod(inode);
5598 5599

err_out:
5600
	ext4_std_error(inode->i_sb, error);
5601 5602 5603 5604 5605
	if (!error)
		error = rc;
	return error;
}

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5632

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5660
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5661 5662
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5663
}
5664

5665
/*
5666 5667 5668
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5669
 *
5670
 * If datablocks are discontiguous, they are possible to spread over
5671
 * different block groups too. If they are contiuguous, with flexbg,
5672
 * they could still across block group boundary.
5673
 *
5674 5675 5676 5677
 * Also account for superblock, inode, quota and xattr blocks
 */
int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5678 5679
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5706 5707
	if (groups > ngroups)
		groups = ngroups;
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5722 5723
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5724
 *
5725
 * This could be called via ext4_write_begin()
5726
 *
5727
 * We need to consider the worse case, when
5728
 * one new block per extent.
5729
 */
A
Alex Tomas 已提交
5730
int ext4_writepage_trans_blocks(struct inode *inode)
5731
{
5732
	int bpp = ext4_journal_blocks_per_page(inode);
5733 5734
	int ret;

5735
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5736

5737
	/* Account for data blocks for journalled mode */
5738
	if (ext4_should_journal_data(inode))
5739
		ret += bpp;
5740 5741
	return ret;
}
5742 5743 5744 5745 5746

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5747
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5748 5749 5750 5751 5752 5753 5754 5755 5756
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5757
/*
5758
 * The caller must have previously called ext4_reserve_inode_write().
5759 5760
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5761
int ext4_mark_iloc_dirty(handle_t *handle,
5762
			 struct inode *inode, struct ext4_iloc *iloc)
5763 5764 5765
{
	int err = 0;

5766 5767 5768
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5769 5770 5771
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5772
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5773
	err = ext4_do_update_inode(handle, inode, iloc);
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5784 5785
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5786
{
5787 5788 5789 5790 5791 5792 5793 5794 5795
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5796 5797
		}
	}
5798
	ext4_std_error(inode->i_sb, err);
5799 5800 5801
	return err;
}

5802 5803 5804 5805
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5806 5807 5808 5809
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5822 5823
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5856
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5857
{
5858
	struct ext4_iloc iloc;
5859 5860 5861
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5862 5863

	might_sleep();
5864
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5865 5866
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5867
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5881 5882
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5883 5884
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5885
					ext4_warning(inode->i_sb,
5886 5887 5888
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5889 5890
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5891 5892 5893 5894
				}
			}
		}
	}
5895
	if (!err)
5896
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5897 5898 5899 5900
	return err;
}

/*
5901
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5902 5903 5904 5905 5906
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5907
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5908 5909 5910 5911 5912 5913
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5914
void ext4_dirty_inode(struct inode *inode)
5915 5916 5917
{
	handle_t *handle;

5918
	handle = ext4_journal_start(inode, 2);
5919 5920
	if (IS_ERR(handle))
		goto out;
5921 5922 5923

	ext4_mark_inode_dirty(handle, inode);

5924
	ext4_journal_stop(handle);
5925 5926 5927 5928 5929 5930 5931 5932
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5933
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5934 5935 5936
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5937
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5938
{
5939
	struct ext4_iloc iloc;
5940 5941 5942

	int err = 0;
	if (handle) {
5943
		err = ext4_get_inode_loc(inode, &iloc);
5944 5945
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5946
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5947
			if (!err)
5948
				err = ext4_handle_dirty_metadata(handle,
5949
								 NULL,
5950
								 iloc.bh);
5951 5952 5953
			brelse(iloc.bh);
		}
	}
5954
	ext4_std_error(inode->i_sb, err);
5955 5956 5957 5958
	return err;
}
#endif

5959
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5975
	journal = EXT4_JOURNAL(inode);
5976 5977
	if (!journal)
		return 0;
5978
	if (is_journal_aborted(journal))
5979 5980
		return -EROFS;

5981 5982
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5993
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5994
	else
5995
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5996
	ext4_set_aops(inode);
5997

5998
	jbd2_journal_unlock_updates(journal);
5999 6000 6001

	/* Finally we can mark the inode as dirty. */

6002
	handle = ext4_journal_start(inode, 1);
6003 6004 6005
	if (IS_ERR(handle))
		return PTR_ERR(handle);

6006
	err = ext4_mark_inode_dirty(handle, inode);
6007
	ext4_handle_sync(handle);
6008 6009
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
6010 6011 6012

	return err;
}
6013 6014 6015 6016 6017 6018

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

6019
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6020
{
6021
	struct page *page = vmf->page;
6022 6023 6024
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
6025
	void *fsdata;
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

6050 6051 6052 6053 6054 6055 6056
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
6057 6058
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
6059 6060
					ext4_bh_unmapped)) {
			unlock_page(page);
6061
			goto out_unlock;
6062
		}
6063
	}
6064
	unlock_page(page);
6065 6066 6067 6068 6069 6070 6071 6072
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6073
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6074 6075 6076
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6077
			len, len, page, fsdata);
6078 6079 6080 6081
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
6082 6083
	if (ret)
		ret = VM_FAULT_SIGBUS;
6084 6085 6086
	up_read(&inode->i_alloc_sem);
	return ret;
}