Configuration.tex 345.6 KB
Newer Older
V
vit9696 已提交
1 2 3 4 5 6 7 8 9 10 11 12
\documentclass[]{article}

\usepackage{lmodern}
\usepackage{amssymb,amsmath}
\usepackage{ifxetex,ifluatex}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{upquote}
\usepackage{microtype}
\usepackage[unicode=true]{hyperref}
\usepackage{longtable,booktabs}
\usepackage{footnote}
13
\usepackage{listings}
14
\usepackage{mathtools}
V
vit9696 已提交
15 16 17 18
\usepackage{parskip}
\usepackage[margin=0.7in]{geometry}
\usepackage{titlesec}
\usepackage[yyyymmdd,hhmmss]{datetime}
V
vit9696 已提交
19
\usepackage{textcomp}
V
vit9696 已提交
20 21
\usepackage{tikz}

22
\setcounter{tocdepth}{2}
V
vit9696 已提交
23 24 25 26
\usetikzlibrary{trees}
\tikzstyle{every node}=[draw=black,thick,anchor=west]
\tikzstyle{selected}=[draw=blue]
\tikzstyle{optional}=[dashed,fill=gray!50]
V
vit9696 已提交
27 28 29

\renewcommand{\dateseparator}{.}

30 31 32 33 34 35 36 37
\makeatletter
\newcommand*{\bdiv}{%
  \nonscript\mskip-\medmuskip\mkern5mu%
  \mathbin{\operator@font div}\penalty900\mkern5mu%
  \nonscript\mskip-\medmuskip
}
\makeatother

38
% Newer LaTeX versions should not add ligatures to listings, but for some reason
D
dakanji 已提交
39
% it is not the case for me. As a result, certain PDF viewers copy wrong data.
V
vit9696 已提交
40 41 42 43 44
\lstdefinestyle{ocbash}{
  language=bash,
  frame=tb,
  columns=fullflexible,
  captionpos=b,
45 46
  basicstyle=\ttfamily\normalsize,
  keepspaces=true,
47
  morekeywords={git, make, build, ioreg, grep, nvram, sort, sudo, diskutil, gfxutil, strings, dd, cut, python},
V
vit9696 已提交
48
  literate =
V
vit9696 已提交
49
    {"}{{\textquotedbl}}1
V
vit9696 已提交
50 51
    {'}{{\textquotesingle}}1
    {-}{{-}}1
V
vit9696 已提交
52 53
    {~}{{\texttildelow}}1
    {*}{{*}}1
54 55
    {fl}{{f{}l}}2
    {fi}{{f{}i}}2
V
vit9696 已提交
56 57 58
    ,
}

V
vit9696 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
\PassOptionsToPackage{hyphens}{url} % url is loaded by hyperref

\makesavenoteenv{long table} % Fix footnotes in tables

% set default figure placement to htbp
\makeatletter
\def\fps@figure{htbp}
\makeatother

\providecommand{\tightlist}{%
  \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}

\newcommand{\sectionbreak}{\clearpage}

G
Goldfish64 已提交
74 75 76 77 78
% Fix spacing for subsections in table of contents.
\makeatletter
\renewcommand{\l@subsection}{\@dottedtocline{2}{1.5em}{2.8em}}
\makeatother

V
vit9696 已提交
79 80 81 82
\begin{document}

\begin{titlepage}
   \begin{center}
V
vit9696 已提交
83
       \vspace*{2.0in}
V
vit9696 已提交
84 85 86

       \Huge

V
vit9696 已提交
87 88 89 90 91 92
       \IfFileExists{Logos/Logo.pdf}
         {\includegraphics[width=160pt, height=160pt]{Logos/Logo.pdf}}
         {\includegraphics[width=160pt, height=160pt]{../Logos/Logo.pdf}}

       \sffamily

V
vit9696 已提交
93 94 95 96
       \textbf{OpenCore}

       \vspace{0.2in}

A
Andrey1970AppleLife 已提交
97
       Reference Manual (0.7.0)
V
vit9696 已提交
98 99 100 101 102 103 104 105 106

       \vspace{0.2in}

        {[}\today{]}

       \normalsize

       \vfill

V
vit9696 已提交
107 108
       \rmfamily

A
Andrey1970AppleLife 已提交
109
       Copyright \textcopyright 2018-2021 vit9696
V
vit9696 已提交
110 111 112 113 114 115 116 117

   \end{center}
\end{titlepage}

\tableofcontents

\section{Introduction}\label{introduction}

118
This document provides information on the format of the
V
vit9696 已提交
119
\href{https://github.com/acidanthera/OpenCorePkg}{OpenCore} user
120
configuration file used to set up the correct functioning of the macOS
V
vit9696 已提交
121 122
operating system. It is to be read as the official clarification of expected
OpenCore behaviour. All deviations, if found in published OpenCore releases,
D
dakanji 已提交
123
shall be considered to be documentation or implementation issues which should be
124 125
reported via the \href{https://github.com/acidanthera/bugtracker}{Acidanthera Bugtracker}.
An errata sheet is available in
V
vit9696 已提交
126
\href{https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf}{OpenCorePkg repository}.
V
vit9696 已提交
127

128 129 130 131
This document is structured as a specification and is not meant to provide a step-by-step
guide to configuring an end-user Board Support Package (BSP). The intended audience
of the document is anticipated to be programmers and engineers with a basic understanding of macOS internals
and UEFI functionality. For these reasons, this document is available exclusively in English,
V
vit9696 已提交
132 133 134
and all other sources or translations of this document are unofficial and may
contain errors.

D
dakanji 已提交
135
Third-party articles, utilities, books, and similar, may be more useful for a wider audience as
136
they could provide guide-like material. However, they are subject to their authors' preferences,
137
misinterpretations of this document, and unavoidable obsolescence.
138
In cases of using such sources, such as \href{https://dortania.github.io}{Dortania}'s
V
vit9696 已提交
139
\href{https://dortania.github.io/OpenCore-Install-Guide}{OpenCore Install Guide}
V
vit9696 已提交
140
and \href{https://dortania.github.io/getting-started}{related material},
141
please refer back to this document on every decision made and re-evaluate potential implications.
V
vit9696 已提交
142

143 144
Please note that regardless of the sources used, users are required to fully understand every
OpenCore configuration option, and the principles behind them, before posting issues to the
V
vit9696 已提交
145 146
\href{https://github.com/acidanthera/bugtracker}{Acidanthera Bugtracker}.

V
vit9696 已提交
147
\emph{Note}: Creating this document would not have been possible without the invaluable
P
PMheart 已提交
148
contributions from other people: Andrey1970, Goldfish64, dakanji, PMheart, and several others,
V
vit9696 已提交
149 150 151
with the full list available in
\href{https://github.com/acidanthera/OpenCorePkg/commits/master/Docs}{OpenCorePkg history}.

V
vit9696 已提交
152
\subsection{Generic Terms}\label{generic-terms}
V
vit9696 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

\begin{itemize}
\item
  \texttt{plist} --- Subset of ASCII Property List format written in
  XML, also know as XML plist format version 1. Uniform Type Identifier
  (UTI): \texttt{com.apple.property-list}. Plists consist of
  \texttt{plist\ objects}, which are combined to form a hierarchical
  structure. Due to plist format not being well-defined, all the
  definitions of this document may only be applied after plist is
  considered valid by running \texttt{plutil\ -lint}. External
  references: https://www.apple.com/DTDs/PropertyList-1.0.dtd,
  \texttt{man\ plutil}.
\item
  \texttt{plist\ type} --- plist collections (\texttt{plist\ array},
  \texttt{plist\ dictionary}, \texttt{plist\ key}) and primitives
  (\texttt{plist\ string}, \texttt{plist\ data}, \texttt{plist\ date},
  \texttt{plist\ boolean}, \texttt{plist\ integer},
  \texttt{plist\ real}).
\item
  \texttt{plist\ object} --- definite realisation of
  \texttt{plist\ type}, which may be interpreted as value.
\item
  \texttt{plist\ array} --- array-like collection, conforms to
  \texttt{array}. Consists of zero or more \texttt{plist\ objects}.
\item
  \texttt{plist\ dictionary} --- map-like (associative array)
  collection, conforms to \texttt{dict}. Consists of zero or more
  \texttt{plist\ keys}.
\item
  \texttt{plist\ key} --- contains one \texttt{plist\ object} going by
  the name of \texttt{plist\ key}, conforms to \texttt{key}. Consists of
  printable 7-bit ASCII characters.
\item
  \texttt{plist\ string} --- printable 7-bit ASCII string, conforms to
  \texttt{string}.
\item
  \texttt{plist\ data} --- base64-encoded blob, conforms to
  \texttt{data}.
\item
  \texttt{plist\ date} --- ISO-8601 date, conforms to \texttt{date},
  unsupported.
\item
  \texttt{plist\ boolean} --- logical state object, which is either true
  (1) or false (0), conforms to \texttt{true} and \texttt{false}.
\item
  \texttt{plist\ integer} --- possibly signed integer number in base 10,
  conforms to \texttt{integer}. Fits in 64-bit unsigned integer in two's
  complement representation, unless a smaller signed or unsigned
  integral type is explicitly mentioned in specific
  \texttt{plist\ object} description.
\item
  \texttt{plist\ real} --- floating point number, conforms to
  \texttt{real}, unsupported.
\item
D
dakanji 已提交
207
  \texttt{plist\ multidata} --- value cast to data by the implementation.
V
vit9696 已提交
208
  Permits passing \texttt{plist\ string}, in which case the result is
D
dakanji 已提交
209
  represented by a null-terminated sequence of bytes (C string),
V
vit9696 已提交
210 211 212 213 214 215 216 217
  \texttt{plist\ integer}, in which case the result is represented by
  \emph{32-bit} little endian sequence of bytes in two's complement
  representation, \texttt{plist\ boolean}, in which case the value is
  one byte: \texttt{01} for \texttt{true} and \texttt{00} for
  \texttt{false}, and \texttt{plist\ data} itself. All other types or
  larger integers invoke undefined behaviour.
\end{itemize}

V
vit9696 已提交
218
\section{Configuration}\label{configuration-overview}
V
vit9696 已提交
219 220 221 222 223 224

\subsection{Configuration Terms}\label{configuration-terms}

\begin{itemize}
\item
  \texttt{OC\ config} --- OpenCore Configuration file in \texttt{plist}
D
dakanji 已提交
225
  format named \texttt{config.plist}. It provides an extensible way
V
vit9696 已提交
226
  to configure OpenCore and is structured to be separated into multiple
D
dakanji 已提交
227 228
  named sections situated under the root \texttt{plist\ dictionary}. These
  sections may have \texttt{plist\ array} or
V
vit9696 已提交
229 230 231 232 233 234
  \texttt{plist\ dictionary} types and are described in corresponding
  sections of this document.
\item
  \texttt{valid\ key} --- \texttt{plist\ key} object of
  \texttt{OC\ config} described in this document or its future
  revisions. Besides explicitly described \texttt{valid\ keys}, keys
D
dakanji 已提交
235 236 237 238 239
  starting with the \texttt{\#} symbol (e.g. \texttt{\#Hello}) are also
  considered \texttt{valid\ keys} and while they behave as comments, effectively
  discarding their values, they are still required to be valid
  \texttt{plist\ objects}. All other \texttt{plist\ keys} are not valid,
  and their presence results in \texttt{undefined\ behaviour}.
V
vit9696 已提交
240 241 242
\item
  \texttt{valid\ value} --- valid \texttt{plist\ object} of
  \texttt{OC\ config} described in this document that matches all the
D
dakanji 已提交
243
  additional requirements in specific \texttt{plist\ object} descriptions
V
vit9696 已提交
244 245 246 247 248
  if any.
\item
  \texttt{invalid\ value} --- valid \texttt{plist\ object} of
  \texttt{OC\ config} described in this document that is of other
  \texttt{plist\ type}, does not conform to additional requirements
D
dakanji 已提交
249
  found in specific \texttt{plist\ object} descriptions (e.g.~value
V
vit9696 已提交
250
  range), or missing from the corresponding collection.
D
dakanji 已提交
251
  \texttt{Invalid\ values} are read with or without an error message as
V
vit9696 已提交
252 253 254
  any possible value of this \texttt{plist\ object} in an undetermined
  manner (i.e.~the values may not be same across the reboots). Whilst
  reading an \texttt{invalid\ value} is equivalent to reading certain
D
dakanji 已提交
255 256
  defined \texttt{valid\ values}, applying incompatible values to the host
  system may result in \texttt{undefined\ behaviour}.
V
vit9696 已提交
257 258 259 260 261 262 263 264 265 266 267
\item
  \texttt{optional\ value} --- \texttt{valid\ value} of
  \texttt{OC\ config} described in this document that reads in a certain
  defined manner provided in specific \texttt{plist\ object} description
  (instead of \texttt{invalid\ value}) when not present in
  \texttt{OC\ config}. All other cases of \texttt{invalid\ value} do
  still apply. Unless explicitly marked as \texttt{optional\ value}, any
  other value is required to be present and reads to
  \texttt{invalid\ value} if missing.
\item
  \texttt{fatal\ behaviour} --- behaviour leading to boot termination.
D
dakanji 已提交
268
  Implementations shall prevent the boot process from continuing until
D
dakanji 已提交
269
  the host system is restarted. It is permitted, but not required, to
D
dakanji 已提交
270
  execute cold reboots or to show warning messages in such cases.
V
vit9696 已提交
271 272
\item
  \texttt{undefined\ behaviour} --- behaviour not prescribed by this
D
dakanji 已提交
273 274 275 276
  document. Implementations may take any measures including, but not
  limited to, measures associated with \texttt{fatal\ behaviour}, assumptions
  of any state or value, or disregarding any associated states or values. This is
  however subject to such measures not negatively impacting upon system integrity.
V
vit9696 已提交
277 278 279 280
\end{itemize}

\subsection{Configuration Processing}\label{configuration-processing}

D
dakanji 已提交
281
The \texttt{OC\ config} file is guaranteed to be processed at least once if found.
282
Subject to the OpenCore bootstrapping mechanism, the presence of multiple
D
dakanji 已提交
283 284 285 286
\texttt{OC\ config} files may lead to the reading of any of them. It is
permissible for no \texttt{OC\ Config} file to be present on disk. In such cases,
if the implementation does not abort the boot process, all values shall follow the
rules of \texttt{invalid\ values} and \texttt{optional\ values}.
V
vit9696 已提交
287

D
dakanji 已提交
288
The \texttt{OC\ config} file has restrictions on size, nesting levels, and number of keys:
V
vit9696 已提交
289

D
dakanji 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
\begin{itemize}
\tightlist
\item
  The \texttt{OC\ config} file size shall not exceed \texttt{32\ MBs}.
\item
  The \texttt{OC\ config} file shall not have more than \texttt{32} nesting levels.
\item
  The \texttt{OC\ config} file may have up to \texttt{32,768} XML nodes within
  each \texttt{plist\ object}.
  \begin{itemize}
  \tightlist
    \item One \texttt{plist\ dictionary} item is counted as a pair of nodes
  \end{itemize} \medskip
\end{itemize}

Reading malformed \texttt{OC\ config} files results in
\texttt{undefined\ behaviour}. Examples of malformed \texttt{OC\ config} files
include the following:
V
vit9696 已提交
308 309 310 311

\begin{itemize}
\tightlist
\item
D
dakanji 已提交
312
  \texttt{OC\ config} files that do not conform to \texttt{DTD PLIST 1.0}.
V
vit9696 已提交
313
\item
D
dakanji 已提交
314 315
  \texttt{OC\ config} files with unsupported or non-conformant \texttt{plist\ objects} found
  in this document.
V
vit9696 已提交
316
\item
D
dakanji 已提交
317
  \texttt{OC\ config} files violating restrictions on size, nesting levels, and number of keys.
V
vit9696 已提交
318 319
\end{itemize}

D
dakanji 已提交
320 321 322 323 324
It is recommended, but not required, to abort loading malformed
\texttt{OC\ config} files and to continue as if an \texttt{OC\ config} file is
not present. For forward compatibility, it is recommended, but not required,
for the implementation to warn about the use of \texttt{invalid\ values}.

325
The recommended approach to interpreting \texttt{invalid\ values}
D
dakanji 已提交
326
is to conform to the following convention where applicable:
V
vit9696 已提交
327

328
\begin{center}
329
\begin{tabular}{|l|l|}
330 331 332
\hline
\textbf{Type} & \textbf{Value} \\
\hline
V
vit9696 已提交
333
\texttt{plist\ string} & Empty string
334 335
(\texttt{\textless{}string\textgreater{}\textless{}/string\textgreater{}}) \\
\hline
V
vit9696 已提交
336
\texttt{plist\ data} & Empty data
337 338
(\texttt{\textless{}data\textgreater{}\textless{}/data\textgreater{}}) \\
\hline
V
vit9696 已提交
339
\texttt{plist\ integer} & 0
340 341
(\texttt{\textless{}integer\textgreater{}0\textless{}/integer\textgreater{}}) \\
\hline
V
vit9696 已提交
342
\texttt{plist\ boolean} & False
343 344
(\texttt{\textless{}false/\textgreater{}}) \\
\hline
V
vit9696 已提交
345
\texttt{plist\ tristate} & False
346 347 348 349
(\texttt{\textless{}false/\textgreater{}}) \\
\hline
\end{tabular}
\end{center}
V
vit9696 已提交
350 351 352

\subsection{Configuration Structure}\label{configuration-structure}

D
dakanji 已提交
353 354 355 356 357 358
The \texttt{OC\ config} file is separated into subsections, as described in
separate sections of this document, and is designed so as to attempt not to
enable anything by default as well as to provide kill switches via an \texttt{Enable}
property for \texttt{plist dict} entries that represent optional plugins and similar.

The file is structured to group related elements in subsections as follows:
V
vit9696 已提交
359 360 361 362

\begin{itemize}
\tightlist
\item
363 364 365
  \texttt{Add} provides support for data addition. Existing data will
  not be overridden, and needs to be handled separately with
  \texttt{Delete} if necessary.
V
vit9696 已提交
366
\item
367
  \texttt{Delete} provides support for data removal.
V
vit9696 已提交
368 369 370
\item
  \texttt{Patch} provides support for data modification.
\item
D
dakanji 已提交
371
  \texttt{Quirks} provides support for specific workarounds.
V
vit9696 已提交
372 373 374 375 376 377 378 379
\end{itemize}

Root configuration entries consist of the following:

\begin{itemize}
\tightlist
\item
  \hyperref[acpi]{\texttt{ACPI}}
380 381
\item
  \hyperref[booter]{\texttt{Booter}}
V
vit9696 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
\item
  \hyperref[devprops]{\texttt{DeviceProperties}}
\item
  \hyperref[kernel]{\texttt{Kernel}}
\item
  \hyperref[misc]{\texttt{Misc}}
\item
  \hyperref[nvram]{\texttt{NVRAM}}
\item
  \hyperref[platforminfo]{\texttt{PlatformInfo}}
\item
  \hyperref[uefi]{\texttt{UEFI}}
\end{itemize}

D
dakanji 已提交
396 397 398 399
Basic validation of an \texttt{OC\ config} file is possible using
the \texttt{ocvalidate} utility. Please note that the version of \texttt{ocvalidate}
used must match the OpenCore release and that nothwithstanding this, it may not
detect all configuration issues present in an \texttt{OC\ config} file.
400

D
dakanji 已提交
401 402 403 404
\emph{Note}: To maintain system integrity, properties typically have predefined values even
when such predefined values are not specified in the \texttt{OC\ config} file. However, all
properties must be explicitly specified in the \texttt{OC\ config} file and this behaviour
should not be relied on.
V
vit9696 已提交
405

V
vit9696 已提交
406
\section{Setup}\label{setup-overview}
V
vit9696 已提交
407

V
vit9696 已提交
408
\subsection{Directory Structure}\label{directory-structure}
V
vit9696 已提交
409

410
\begin{center}
V
vit9696 已提交
411
\begin{tikzpicture}[%
412 413
  grow via three points={one child at (0.5,-0.6) and
  two children at (0.5,-0.6) and (0.5,-1.2)},
V
vit9696 已提交
414
  edge from parent path={(\tikzparentnode.south) |- (\tikzchildnode.west)}]
415 416 417 418
  \node {ESP}
    child { node {EFI}
      child { node {BOOT}
        child { node [selected] {BOOTx64.efi}}
V
vit9696 已提交
419
      }
420
      child [missing] {}
421 422
      child { node {OC}
        child { node {ACPI}
423 424 425
          child { node [optional] {DSDT.aml}}
          child { node [optional] {SSDT-1.aml}}
          child { node [optional] {MYTABLE.aml}}
426 427 428 429
        }
        child [missing] {}
        child [missing] {}
        child [missing] {}
A
Andrey1970AppleLife 已提交
430
        child [missing] {}
431 432 433 434 435 436 437 438 439 440 441 442
        child { node {Drivers}
          child { node [optional] {MyDriver.efi}}
          child { node [optional] {OtherDriver.efi}}
        }
        child [missing] {}
        child [missing] {}
        child { node {Kexts}
          child { node [optional] {MyKext.kext}}
          child { node [optional] {OtherKext.kext}}
        }
        child [missing] {}
        child [missing] {}
443 444
        child { node [optional] {Resources}
          child { node [optional] {Audio}}
A
Andrey1970AppleLife 已提交
445 446 447
          child { node [optional] {Font}}
          child { node [optional] {Image}}
          child { node [optional] {Label}}
448 449
        }
        child [missing] {}
A
Andrey1970AppleLife 已提交
450 451 452
        child [missing] {}
        child [missing] {}
        child [missing] {}
453 454 455 456 457 458
        child { node  {Tools}
          child { node [optional] {Tool.efi}}
        }
        child [missing] {}
        child { node [selected] {OpenCore.efi}}
        child { node {config.plist}}
A
Andrey1970AppleLife 已提交
459
        child { node [optional] {vault.plist}}
460
        child { node [optional] {vault.sig}}
461
      }
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    }
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
482 483
    child [missing] {}
    child [missing] {}
A
Andrey1970AppleLife 已提交
484 485 486 487
    child [missing] {}
    child [missing] {}
    child [missing] {}
    child [missing] {}
V
vit9696 已提交
488
    child { node [optional] {boot}}
489
    child { node [optional] {nvram.plist}}
490
    child { node [optional] {opencore-YYYY-MM-DD-HHMMSS.txt}}
A
Andrey1970AppleLife 已提交
491
    child { node [optional] {panic-YYYY-MM-DD-HHMMSS.txt}}
A
Andrey1970AppleLife 已提交
492
    child { node [optional] {SysReport}}
493
  ;
V
vit9696 已提交
494
\end{tikzpicture}
495 496 497 498 499
\break
\label{fig:DS}
Figure 1. Directory Structure
\end{center}

D
dakanji 已提交
500 501 502
When directory boot is used, the directory structure used should follow
the descriptions in the \hyperref[fig:DS]{Directory Structure} figure.
Available entries include:
V
vit9696 已提交
503 504 505 506

\begin{itemize}
\tightlist
\item
507 508
  \texttt{BOOTx64.efi} or \texttt{BOOTIa32.efi} \\
  Initial bootstrap loaders, which load \texttt{OpenCore.efi}. \texttt{BOOTx64.efi}
D
dakanji 已提交
509 510 511
  is loaded by the firmware by default consistent with the UEFI specification. However,
  it may also be renamed and put in a custom location to allow OpenCore coexist alongside
  operating systems, such as Windows, that use \texttt{BOOTx64.efi} files as their loaders.
512
  Refer to the \texttt{LauncherOption} property for details.
513 514
\item
  \texttt{boot} \\
D
dakanji 已提交
515 516
  Duet bootstrap loader, which initialises the UEFI environment on legacy BIOS firmware
  and loads \texttt{OpenCore.efi} similarly to other bootstrap loaders. A modern Duet
517 518 519 520
  bootstrap loader will default to \texttt{OpenCore.efi} on the same partition when
  present.
\item
  \texttt{ACPI} \\
V
vit9696 已提交
521
  Directory used for storing supplemental ACPI information
D
dakanji 已提交
522
  for the \hyperref[acpi]{\texttt{ACPI}} section.
V
vit9696 已提交
523
\item
524
  \texttt{Drivers} \\
V
vit9696 已提交
525 526 527
  Directory used for storing supplemental \texttt{UEFI}
  drivers for \hyperref[uefi]{\texttt{UEFI}} section.
\item
528
  \texttt{Kexts} \\
V
vit9696 已提交
529
  Directory used for storing supplemental kernel information
D
dakanji 已提交
530
  for the \hyperref[kernel]{\texttt{Kernel}} section.
531
\item
532
  \texttt{Resources} \\
D
dakanji 已提交
533
  Directory used for storing media resources such as audio files
D
dakanji 已提交
534
  for screen reader support. Refer to the \hyperref[uefiaudioprops]{\texttt{UEFI Audio Properties}}
535 536
  section for details. This directory also contains image files
  for graphical user interface. Refer to the \hyperref[ueficanopy]{OpenCanopy} section for details.
V
vit9696 已提交
537
\item
538
  \texttt{Tools} \\
V
vit9696 已提交
539 540
  Directory used for storing supplemental tools.
\item
541
  \texttt{OpenCore.efi} \\
542
  Main booter application responsible for operating system loading. The directory
D
dakanji 已提交
543 544 545 546
  \texttt{OpenCore.efi} resides in is called the \texttt{root directory}, which is
  set to \texttt{EFI\textbackslash OC} by default. When launching \texttt{OpenCore.efi}
  directly or through a custom launcher however, other directories containing
  \texttt{OpenCore.efi} files are also supported.
V
vit9696 已提交
547
\item
548
  \texttt{config.plist} \\
V
vit9696 已提交
549
  \texttt{OC Config}.
A
Andrey1970AppleLife 已提交
550 551 552
\item
  \texttt{vault.plist} \\
  Hashes for all files potentially loadable by \texttt{OC Config}.
V
vit9696 已提交
553
\item
554
  \texttt{vault.sig} \\
V
vit9696 已提交
555
  Signature for \texttt{vault.plist}.
556 557 558
\item
  \texttt{SysReport} \\
  Directory containing system reports generated by \texttt{SysReport} option.
V
vit9696 已提交
559
\item
560
  \texttt{nvram.plist} \\
V
vit9696 已提交
561 562
  OpenCore variable import file.
\item
563
  \texttt{opencore-YYYY-MM-DD-HHMMSS.txt} \\
V
vit9696 已提交
564
  OpenCore log file.
A
Andrey1970AppleLife 已提交
565 566 567
\item
  \texttt{panic-YYYY-MM-DD-HHMMSS.txt} \\
  Kernel panic log file.
V
vit9696 已提交
568 569
\end{itemize}

570 571
\emph{Note}: It is not guaranteed that paths longer than
\texttt{OC\_STORAGE\_SAFE\_PATH\_MAX} (128 characters including
572
the \texttt{\\0}-terminator) will be accessible within OpenCore.
573

574 575
\subsection{Installation and Upgrade}\label{configuration-install}

576
To install OpenCore, replicate the
577
\hyperref[configuration-structure]{Configuration Structure} described
D
dakanji 已提交
578 579
in the previous section in the EFI volume of a GPT partition. While
corresponding sections of this document provide some information
D
dakanji 已提交
580
regarding external resources such as ACPI tables, UEFI drivers,
581
or kernel extensions (kexts), completeness of the matter is out of
V
vit9696 已提交
582 583 584
the scope of this document. Information about kernel extensions may
be found in a separate
\href{https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md}{Kext List}
585 586
document available in the OpenCore repository. Vaulting information is provided in
the \hyperref[miscsecurityprops]{Security Properties} section of this document.
587

588
The \texttt{OC\ config} file, as with any property list file, can be edited with
D
dakanji 已提交
589 590
any text editor, such as nano or vim. However, specialised software
may provide a better experience. On macOS, the preferred GUI application is
591
\href{https://developer.apple.com/xcode}{Xcode}. For a lightweight
592
cross-platform and open-source alternative, the
593 594 595
\href{https://github.com/corpnewt/ProperTree}{ProperTree} editor can be
utilised.

596 597 598 599 600 601 602 603 604 605 606
It is strongly advised not to use any software that is aware of the internal
configration structure as it constantly gets out of date and will cause
incorrect configuration to be generated. If it is a must desprite the
warning one should make sure to only use stable versions of OpenCore
with explicit support for the particular version in the app. The choice
of open-source implementations with transparent binary generation
is encouraged (e.g. \href{https://github.com/ic005k/QtOpenCoreConfig}{OCAT}),
since other tools may contain malware. Remember that a configuration
made for a different hardware setup shall never be used on another hardware
setup.

D
dakanji 已提交
607 608 609 610 611 612
For BIOS booting, a third-party UEFI environment provider is required and
\texttt{OpenDuetPkg} is one such UEFI environment provider for legacy systems.
To run OpenCore on such a legacy system, \texttt{OpenDuetPkg} can be installed
with a dedicated tool --- BootInstall (bundled with OpenCore).
\href{https://github.com/corpnewt/gibMacOS}{Third-party utilities} can be used
to perform this on systems other than macOS.
613

614
For upgrade purposes, refer to the \texttt{Differences.pdf} document which provides
D
dakanji 已提交
615 616 617
information about changes to the configuration (as compared to the previous release)
as well as to the \texttt{Changelog.md} document (which contains a list of
modifications across all published updates).
618

619 620
\subsection{Contribution}\label{configuration-comp}

D
dakanji 已提交
621 622 623 624 625
OpenCore can be compiled as a standard
\href{https://github.com/tianocore/tianocore.github.io/wiki/EDK-II}{EDK II}
package and requires the
\href{https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags}{EDK II Stable}
package. The currently supported EDK II release is hosted in
626 627
\href{https://github.com/acidanthera/audk}{acidanthera/audk}. Required patches
for this package can be found in the \texttt{Patches} directory.
628 629

The only officially supported toolchain is \texttt{XCODE5}. Other toolchains
630 631
might work but are neither supported nor recommended. Contributions of clean
patches are welcome. Please do follow
632 633 634
\href{https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C}{EDK II C Codestyle}.

To compile with \texttt{XCODE5}, besides \href{https://developer.apple.com/xcode}{Xcode},
635
users should also install \href{https://www.nasm.us}{NASM} and
V
vit9696 已提交
636
\href{https://github.com/acidanthera/ocbuild/tree/master/external}{MTOC}.
637 638
The latest Xcode version is recommended for use despite the toolchain name.
An example command sequence is as follows:
639

V
vit9696 已提交
640
\begin{lstlisting}[caption=Compilation Commands, label=compile, style=ocbash]
641
git clone --depth=1 https://github.com/acidanthera/audk UDK
642
cd UDK
643 644
git submodule update --init --recommend-shallow
git clone --depth=1 https://github.com/acidanthera/OpenCorePkg
645
source edksetup.sh
V
vit9696 已提交
646
make -C BaseTools
647 648 649
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc
\end{lstlisting}

V
vit9696 已提交
650 651 652
For IDE usage Xcode projects are available in the root of the repositories. Another
approach could be \href{https://www.sublimetext.com}{Sublime Text} with
\href{https://niosus.github.io/EasyClangComplete}{EasyClangComplete} plugin.
653
Add \texttt{.clang\_complete} file with similar content to the UDK root:
V
vit9696 已提交
654 655 656 657 658

\begin{lstlisting}[caption=ECC Configuration, label=eccfile, style=ocbash]
-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
659 660 661
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
V
vit9696 已提交
662 663 664
-I/UefiPackages/OpenCorePkg/Include/AMI
-I/UefiPackages/OpenCorePkg/Include/Acidanthera
-I/UefiPackages/OpenCorePkg/Include/Apple
V
vit9696 已提交
665 666
-I/UefiPackages/OpenCorePkg/Include/Apple/X64
-I/UefiPackages/OpenCorePkg/Include/Duet
V
vit9696 已提交
667 668 669
-I/UefiPackages/OpenCorePkg/Include/Generic
-I/UefiPackages/OpenCorePkg/Include/Intel
-I/UefiPackages/OpenCorePkg/Include/Microsoft
670
-I/UefiPackages/OpenCorePkg/Include/Nvidia
V
vit9696 已提交
671
-I/UefiPackages/OpenCorePkg/Include/VMware
672
-I/UefiPackages/OvmfPkg/Include
673
-I/UefiPackages/ShellPkg/Include
V
vit9696 已提交
674
-I/UefiPackages/UefiCpuPkg/Include
V
vit9696 已提交
675 676 677 678 679 680 681 682 683 684 685
-IInclude
-include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar
-Wall
-Wextra
-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare
686
-Wno-varargs
V
vit9696 已提交
687
-Wno-unused-const-variable
688
-DOC_TARGET_NOOPT=1
V
vit9696 已提交
689
-DNO_MSABI_VA_FUNCS=1
V
vit9696 已提交
690
\end{lstlisting}
V
vit9696 已提交
691

V
vit9696 已提交
692
\textbf{Warning}: Tool developers modifying \texttt{config.plist} or any other OpenCore
D
dakanji 已提交
693 694
files must ensure that their tools check the \texttt{opencore-version} NVRAM variable
(see the \hyperref[miscdebugprops]{Debug Properties} section below) and warn users
695
if the version listed is unsupported or prerelease. The OpenCore configuration may change
D
dakanji 已提交
696
across releases and such tools shall ensure that they carefully follow this document. Failure
697
to do so may result in such tools being considered to be malware and blocked by any means.
V
vit9696 已提交
698

699 700
\subsection{Coding conventions}\label{configuration-conv}

D
dakanji 已提交
701 702 703 704 705 706
As with any other project, we have conventions that we follow during development.
All third-party contributors are advised to adhere to the conventions listed below
before submitting patches. To minimise abortive work and the potential rejection of
submissions, third-party contributors should initially raise issues to the
\href{https://github.com/acidanthera/bugtracker}{Acidanthera Bugtracker}
for feedback before submitting patches.
707

D
dakanji 已提交
708
\textbf{Organisation}. The codebase is contained in the \texttt{OpenCorePkg} repository,
V
vit9696 已提交
709
which is the primary EDK II package.
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
\begin{itemize}
\tightlist
\item Whenever changes are required in multiple repositories, separate pull requests should
be sent to each.
\item Committing the changes should happen firstly to dependent repositories, secondly to
primary repositories to avoid automatic build errors.
\item Each unique commit should compile with \texttt{XCODE5} and preferably with other
toolchains. In the majority of the cases it can be checked by accessing the
\href{https://travis-ci.com/acidanthera}{CI interface}. Ensuring that static analysis finds
no warnings is preferred.
\item External pull requests and tagged commits must be validated. That said, commits in
master may build but may not necessarily work.
\item Internal branches should be named as follows: \texttt{author-name-date}, e.g.
\texttt{vit9696-ballooning-20191026}.
\item Commit messages should be prefixed with the primary module (e.g. library or code module) the
changes were made in. For example, \texttt{OcGuardLib: Add OC\_ALIGNED macro}. For non-library changes
\texttt{Docs} or \texttt{Build} prefixes are used.
\end{itemize}

\textbf{Design}. The codebase is written in a subset of freestanding C11 (C17) supported by
most modern toolchains used by EDK II. Applying common software development practices or requesting
clarification is recommended if any particular case is not discussed below.
\begin{itemize}
\tightlist
\item Never rely on undefined behaviour and try to avoid implementation defined behaviour unless
explicitly covered below (feel free to create an issue when a relevant case is not present).
\item Use \texttt{OcGuardLib} to ensure safe integral arithmetics avoiding overflows. Unsigned
wraparound should be relied on with care and reduced to the necessary amount.
\item Check pointers for correct alignment with \texttt{OcGuardLib} and do not rely on the architecture
being able to dereference unaligned pointers.
\item Use flexible array members instead of zero-length or one-length arrays where necessary.
\item Use static assertions (\texttt{STATIC\_ASSERT}) for type and value assumptions, and runtime
assertions (\texttt{ASSERT}) for precondition and invariant sanity checking. Do not use runtime
assertions to check for errors as they should never alter control flow and potentially be excluded.
\item Assume \texttt{UINT32}/\texttt{INT32} to be \texttt{int}-sized and use \texttt{\%u},
\texttt{\%d}, and \texttt{\%x} to print them.
\item Assume \texttt{UINTN}/\texttt{INTN} to be of unspecified size, and cast them to
\texttt{UINT64}/\texttt{INT64} for printing with \texttt{\%Lu}, \texttt{\%Ld} and so on as normal.
\item Do not rely on integer promotions for numeric literals. Use explicit casts when the type is
implementation-dependent or suffixes when type size is known. Assume \texttt{U} for \texttt{UINT32}
and \texttt{ULL} for \texttt{UINT64}.
\item Do ensure unsigned arithmetics especially in bitwise maths, shifts in particular.
\item \texttt{sizeof} operator should take variables instead of types where possible to be error prone.
Use \texttt{ARRAY\_SIZE} to obtain array size in elements. Use \texttt{L\_STR\_LEN} and
\texttt{L\_STR\_SIZE} macros from \texttt{OcStringLib} to obtain string literal sizes to ensure compiler
optimisation.
\item Do not use \texttt{goto} keyword. Prefer early \texttt{return}, \texttt{break}, or \texttt{continue}
after failing to pass error checking instead of nesting conditionals.
\item Use \texttt{EFIAPI}, force UEFI calling convention, only in protocols, external callbacks between
modules, and functions with variadic arguments.
\item Provide inline documentation to every added function, at least describing its inputs, outputs,
precondition, postcondition, and giving a brief description.
\item Do not use \texttt{RETURN\_STATUS}. Assume \texttt{EFI\_STATUS} to be a matching superset that is
to be always used when \texttt{BOOLEAN} is not enough.
\item Security violations should halt the system or cause a forced reboot.
\end{itemize}

D
dakanji 已提交
767 768 769
\textbf{Codestyle}. The codebase follows the
\href{https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C}{EDK II codestyle}
with a few changes and clarifications.
770 771 772 773 774 775
\begin{itemize}
\tightlist
\item Write inline documentation for the functions and variables only once: in headers, where a header prototype
is available, and inline for \texttt{static} variables and functions.
\item Use line length of 120 characters or less, preferably 100 characters.
\item Use spaces after casts, e.g. \texttt{(VOID *)(UINTN) Variable}.
776 777
\item Use two spaces to indent function arguments when splitting lines.
\item Prefix public functions with either \texttt{Oc} or another distinct name.
778
\item Do not prefix private \texttt{static} functions, but prefix private \texttt{non-static} functions with \texttt{Internal}.
779 780 781 782
\item Use SPDX license headers as shown in
\href{https://github.com/acidanthera/bugtracker/issues/483}{acidanthera/bugtracker\#483}.
\end{itemize}

V
vit9696 已提交
783 784 785
\subsection{Debugging}\label{configuration-debug}

The codebase incorporates EDK II debugging and few custom features to improve the experience.
786 787 788 789 790 791 792 793 794
\begin{itemize}
\tightlist
\item Use module prefixes, 2-5 letters followed by a colon (\texttt{:}), for debug messages. For \texttt{OpenCorePkg}
use \texttt{OC:}, for libraries and drivers use their own unique prefixes.
\item Do not use dots (\texttt{.}) in the end of debug messages and separate \texttt{EFI\_STATUS}, printed by
\texttt{\%r}, with a hyphen (e.g. \texttt{OCRAM: Allocation of \%u bytes failed - \%r\textbackslash n}).
\item Use \texttt{DEBUG\_CODE\_BEGIN ()} and \texttt{DEBUG\_CODE\_END ()} constructions to guard debug checks
that may potentially reduce the performance of release builds and are otherwise unnecessary.
\item Use \texttt{DEBUG} macro to print debug messages during normal functioning, and \texttt{RUNTIME\_DEBUG} for
795
debugging after \texttt{EXIT\_BOOT\_SERVICES}.
796 797
\item Use \texttt{DEBUG\_VERBOSE} debug level to leave debug messages for future debugging of the code, which
are currently not necessary. By default \texttt{DEBUG\_VERBOSE} messages are ignored even in \texttt{DEBUG} builds.
D
dakanji 已提交
798 799 800 801 802 803
\item Use \texttt{DEBUG\_INFO} debug level for all non critical messages (including errors)
and \texttt{DEBUG\_BULK\_INFO}
for extensive messages that should not appear in NVRAM log that is heavily limited in size.
These messages are ignored in \texttt{RELEASE} builds.
\item Use \texttt{DEBUG\_ERROR} to print critical human visible messages that may potentially halt the boot process,
and \texttt{DEBUG\_WARN} for all other human visible errors, \texttt{RELEASE} builds included.
804 805
\end{itemize}

D
dakanji 已提交
806 807 808
The \href{https://git-scm.com/docs/git-bisect}{\texttt{git-bisect}} functionality may be useful when trying
to find problematic changes. Unofficial sources of \texttt{per-commit} OpenCore binary builds,
such as \href{https://dortania.github.io/builds}{Dortania}, may also be useful.
V
vit9696 已提交
809

V
vit9696 已提交
810 811 812 813 814 815
\section{ACPI}\label{acpi}

\subsection{Introduction}\label{acpiintro}

ACPI (Advanced Configuration and Power Interface) is an open standard to
discover and configure computer hardware.
816
The \href{https://uefi.org/specifications}{ACPI specification} defines
V
vit9696 已提交
817
standard tables (e.g.~\texttt{DSDT}, \texttt{SSDT}, \texttt{FACS}, \texttt{DMAR})
818
and various methods (e.g. \texttt{\_DSM}, \texttt{\_PRW}) for implementation.
819 820
Modern hardware needs few changes to maintain ACPI compatibility and some
options for such changes are provided as part of OpenCore.
V
vit9696 已提交
821

D
dakanji 已提交
822 823
To compile and disassemble ACPI tables, the \href{https://github.com/acpica/acpica}{iASL compiler}
developed by \href{https://www.acpica.org}{ACPICA} can be used. A GUI front-end to iASL compiler
V
vit9696 已提交
824 825
can be downloaded from \href{https://github.com/acidanthera/MaciASL/releases}{Acidanthera/MaciASL}.

V
vit9696 已提交
826 827 828 829 830 831 832 833 834 835 836
ACPI changes apply globally (to every operating system) with the following effective order:

\begin{itemize}
\tightlist
\item \texttt{Patch} is processed.
\item \texttt{Delete} is processed.
\item \texttt{Add} is processed.
\item \texttt{Quirks} are processed.
\end{itemize}

Applying the changes globally resolves the problems of incorrect operating system
D
dakanji 已提交
837 838 839
detection (consistent with the ACPI specification, not possible before the operating
system boots), operating system chainloading, and difficult ACPI debugging. Hence,
more attention may be required when writing changes to \texttt{\_OSI}.
V
vit9696 已提交
840 841 842 843 844

Applying the patches early makes it possible to write so called ``proxy'' patches,
where the original method is patched in the original table and is implemented in
the patched table.

D
dakanji 已提交
845
There are several sources of ACPI tables and workarounds. Commonly used
V
vit9696 已提交
846
ACPI tables are provided with OpenCore, VirtualSMC, VoodooPS2, and WhateverGreen
D
dakanji 已提交
847 848
releases. Besides those, several third-party instructions may be found on
the AppleLife \href{https://applelife.ru/forums/xakintosh.67}{Laboratory}
V
vit9696 已提交
849 850 851 852 853
and \href{https://applelife.ru/forums/dsdt.129}{DSDT} subforums
(e.g. \href{https://applelife.ru/posts/498967}{Battery register splitting} guide).
A slightly more user-friendly explanation of some tables included with OpenCore
can also be found in \href{https://dortania.github.io}{Dortania}'s
\href{https://dortania.github.io/Getting-Started-With-ACPI}{Getting started with ACPI} guide.
D
dakanji 已提交
854
For more exotic cases, there are several alternatives such as
V
vit9696 已提交
855
\href{https://github.com/daliansky}{daliansky}'s
856
\href{https://github.com/daliansky/OC-little}{ACPI sample collection}
857 858
(\href{https://github.com/5T33Z0/OC-Little-Translated}{English Translation by 5T33Z0 et al}).
Please note however, that suggested solutions from third parties may be outdated or may contain errors.
V
vit9696 已提交
859

V
vit9696 已提交
860 861 862 863 864 865
\subsection{Properties}\label{acpiprops}

\begin{enumerate}
\item
  \texttt{Add}\\
  \textbf{Type}: \texttt{plist\ array}\\
866
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
867
  \textbf{Description}: Load selected tables from the \texttt{OC/ACPI}
V
vit9696 已提交
868 869
  directory.

D
dakanji 已提交
870
  To be filled with \texttt{plist\ dict} values, describing each add entry.
871
  Refer to the \hyperref[acpipropsadd]{Add Properties} section below for details.
V
vit9696 已提交
872 873

\item
874
  \texttt{Delete}\\
V
vit9696 已提交
875
  \textbf{Type}: \texttt{plist\ array}\\
876
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
877
  \textbf{Description}: Remove selected tables from the ACPI stack.
V
vit9696 已提交
878

D
dakanji 已提交
879
  To be filled with \texttt{plist\ dict} values, describing each delete entry.
880
  Refer to the \hyperref[acpipropsdelete]{Delete Properties} section below for details.
V
vit9696 已提交
881 882 883 884

\item
  \texttt{Patch}\\
  \textbf{Type}: \texttt{plist\ array}\\
885
  \textbf{Failsafe}: Empty\\
886 887
  \textbf{Description}: Perform binary patches in ACPI tables before
  table addition or removal.
V
vit9696 已提交
888

D
dakanji 已提交
889
  To be filled with \texttt{plist\ dictionary} values describing each patch entry.
890
  Refer to the \hyperref[acpipropspatch]{Patch Properties} section below for details.
V
vit9696 已提交
891 892 893 894 895

\item
  \texttt{Quirks}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Apply individual ACPI quirks described
D
dakanji 已提交
896
  in the \hyperref[acpipropsquirks]{Quirks Properties} section below.
V
vit9696 已提交
897 898 899

\end{enumerate}

900 901 902 903 904 905
\subsection{Add Properties}\label{acpipropsadd}

\begin{enumerate}
\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
906
  \textbf{Failsafe}: Empty\\
907
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
908
  reference for the entry. Whether this value is used is implementation defined.
909 910 911 912

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
913
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
914
  \textbf{Description}: Set to \texttt{true} to add this ACPI table.
915 916 917 918

\item
  \texttt{Path}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
919
  \textbf{Failsafe}: Empty\\
920 921 922 923
  \textbf{Description}: File paths meant to be loaded as ACPI tables.
  Example values include \texttt{DSDT.aml}, \texttt{SubDir/SSDT-8.aml},
  \texttt{SSDT-USBX.aml}, etc.

D
dakanji 已提交
924 925
  The ACPI table load order follows the item order in the array. ACPI tables
  are loaded from the \texttt{OC/ACPI} directory.
926

D
dakanji 已提交
927 928 929
  \textbf{Note}: All tables apart from tables with a \texttt{DSDT} table identifier
  (determined by parsing data, not by filename) insert new tables into the ACPI stack.
  \texttt{DSDT} tables perform a replacement of DSDT tables instead.
930 931 932

\end{enumerate}

933
\subsection{Delete Properties}\label{acpipropsdelete}
V
vit9696 已提交
934 935

\begin{enumerate}
936 937 938
\item
  \texttt{All}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
D
dakanji 已提交
939 940 941
  \textbf{Failsafe}: \texttt{false} (Only delete the first matched table)\\
  \textbf{Description}: Set to \texttt{true} to delete all ACPI tables matching the
  condition.
942

V
vit9696 已提交
943 944 945
\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
946
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
947
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
948
  reference for the entry. Whether this value is used is implementation defined.
V
vit9696 已提交
949 950 951 952

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
953
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
954
  \textbf{Description}: Set to \texttt{true} to remove this ACPI table.
V
vit9696 已提交
955 956 957 958

\item
  \texttt{OemTableId}\\
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
D
dakanji 已提交
959 960
  \textbf{Failsafe}: All zero (Match any table OEM ID)\\
  \textbf{Description}: Match table OEM ID equal to this value.
V
vit9696 已提交
961 962

\item
963
  \texttt{TableLength}\\
V
vit9696 已提交
964
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
965 966
  \textbf{Failsafe}: \texttt{0} (Match any table size)\\
  \textbf{Description}: Match table size equal to this value.
V
vit9696 已提交
967

968 969 970
\item
  \texttt{TableSignature}\\
  \textbf{Type}: \texttt{plist\ data}, 4 bytes\\
D
dakanji 已提交
971 972
  \textbf{Failsafe}: All zero (Match any table signature)\\
  \textbf{Description}: Match table signature equal to this value.
973

D
dakanji 已提交
974 975 976
  \emph{Note}: Do not use table signatures when the sequence
  must be replaced in multiple places. This is particularly relevant
  when performing different types of renames.
977

V
vit9696 已提交
978 979 980 981 982 983
\end{enumerate}

\subsection{Patch Properties}\label{acpipropspatch}

\begin{enumerate}

984 985 986 987 988 989 990
\item
  \texttt{Base}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: Empty (Ignored)\\
  \textbf{Description}: Selects ACPI path base for patch lookup (or immediate
  replacement) by obtaining the offset to the provided path.

991
  Only fully-qualified absolute paths are supported (e.g. \texttt{\textbackslash \_SB.PCI0.LPCB.HPET}).
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
  Currently supported object types are: \texttt{Device}, \texttt{Field}, \texttt{Method}.

  \emph{Note}: Use with care, not all OEM tables can be parsed. Use \texttt{ACPIe}
  utility to debug. \texttt{ACPIe} compiled  with \texttt{DEBUG=1 make} command
  produces helpful ACPI lookup tracing.

\item
  \texttt{BaseSkip}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0} (Do not skip any occurrences)\\
  \textbf{Description}: Number of found \texttt{Base} occurrences to skip before
  finds and replacements are applied.

V
vit9696 已提交
1005 1006 1007
\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1008
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
1009
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
1010
  reference for the entry. Whether this value is used is implementation defined.
V
vit9696 已提交
1011 1012 1013 1014

\item
  \texttt{Count}\\
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
1015 1016
  \textbf{Failsafe}: \texttt{0} (Apply patch to all occurrences found)\\
  \textbf{Description}: Number of occurrences to patch.
V
vit9696 已提交
1017 1018 1019 1020

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1021
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1022
  \textbf{Description}: Set to \texttt{true} to apply this ACPI patch.
V
vit9696 已提交
1023 1024 1025 1026

\item
  \texttt{Find}\\
  \textbf{Type}: \texttt{plist\ data}\\
1027
  \textbf{Failsafe}: Empty\\
1028
  \textbf{Description}: Data to find. Must be equal to \texttt{Replace} in size if set.
V
vit9696 已提交
1029

1030 1031 1032
  \emph{Note}: Can be empty, when \texttt{Base} is specified, immediate replacement
  after \texttt{Base} lookup happens in this case.

V
vit9696 已提交
1033 1034 1035
\item
  \texttt{Limit}\\
  \textbf{Type}: \texttt{plist\ integer}\\
1036
  \textbf{Failsafe}: \texttt{0} (Search entire ACPI table)\\
1037
  \textbf{Description}: Maximum number of bytes to search for.
V
vit9696 已提交
1038 1039 1040 1041

\item
  \texttt{Mask}\\
  \textbf{Type}: \texttt{plist\ data}\\
1042
  \textbf{Failsafe}: Empty (Ignored)\\
V
vit9696 已提交
1043
  \textbf{Description}: Data bitwise mask used during find comparison.
1044 1045
  Allows fuzzy search by ignoring not masked (set to zero) bits.
  Must be equal to \texttt{Replace} in size if set.
V
vit9696 已提交
1046 1047 1048 1049

\item
  \texttt{OemTableId}\\
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
D
dakanji 已提交
1050 1051
  \textbf{Failsafe}: All zero (Match any table OEM ID)\\
  \textbf{Description}: Match table OEM ID equal to this value.
V
vit9696 已提交
1052 1053 1054 1055

\item
  \texttt{Replace}\\
  \textbf{Type}: \texttt{plist\ data}\\
1056
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
1057 1058 1059 1060 1061
  \textbf{Description}: Replacement data of one or more bytes.

\item
  \texttt{ReplaceMask}\\
  \textbf{Type}: \texttt{plist\ data}\\
1062
  \textbf{Failsafe}: Empty (Ignored)\\
V
vit9696 已提交
1063
  \textbf{Description}: Data bitwise mask used during replacement.
1064 1065
  Allows fuzzy replacement by updating masked (set to non-zero) bits.
  Must be equal to \texttt{Replace} in size if set.
V
vit9696 已提交
1066 1067 1068 1069

\item
  \texttt{Skip}\\
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
1070 1071 1072
  \textbf{Failsafe}: \texttt{0} (Do not skip any occurrences)\\
  \textbf{Description}: Number of found occurrences to skip before
  replacements are applied.
V
vit9696 已提交
1073 1074 1075 1076

\item
  \texttt{TableLength}\\
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
1077 1078
  \textbf{Failsafe}: \texttt{0} (Match any table size)\\
  \textbf{Description}: Match table size equal to this value.
V
vit9696 已提交
1079 1080 1081

\item
  \texttt{TableSignature}\\
V
vit9696 已提交
1082
  \textbf{Type}: \texttt{plist\ data}, 4 bytes\\
D
dakanji 已提交
1083 1084
  \textbf{Failsafe}: All zero (Match any table signature)\\
  \textbf{Description}: Match table signature equal to this value.
V
vit9696 已提交
1085 1086 1087

\end{enumerate}

D
dakanji 已提交
1088
In most cases, ACPI patches are not useful and are harmful:
V
vit9696 已提交
1089 1090 1091 1092 1093

\begin{itemize}
\item
  Avoid renaming devices with ACPI patches. This may fail or perform
  improper renaming of unrelated devices (e.g. \texttt{EC} and
D
dakanji 已提交
1094 1095
  \texttt{EC0}), be unnecessary, or even fail to rename devices in certain tables. For
  ACPI consistency it is much safer to rename devices at the I/O Registry
V
vit9696 已提交
1096 1097 1098
  level, as done by
  \href{https://github.com/acidanthera/WhateverGreen}{WhateverGreen}.
\item
D
dakanji 已提交
1099
  Avoid patching \texttt{\_OSI} to support a higher feature set level
D
dakanji 已提交
1100
  whenever possible. While this enables a number of workarounds on APTIO
1101 1102
  firmware, it typically results in a need for additional patches. These are
  not usually needed on modern firmware and smaller patches work well on
D
dakanji 已提交
1103
  firmware that does. However, laptop vendors often rely on this method to
D
dakanji 已提交
1104
  determine the availability of functions such as modern I2C input support, thermal
1105 1106
  adjustment and custom feature additions.
\item
D
dakanji 已提交
1107
  Avoid patching embedded controller event \texttt{\_Qxx} just to enable
D
dakanji 已提交
1108
  brightness keys. The conventional process to find these keys typically involves
D
dakanji 已提交
1109 1110
  significant modifications to DSDT and SSDT files and in addition, the debug kext
  is not stable on newer systems. Please use the built-in brightness key discovery in
1111
  \href{https://github.com/acidanthera/BrightnessKeys}{BrightnessKeys} instead.
V
vit9696 已提交
1112
\item
1113
  Avoid making ad hoc changes such as renaming \texttt{\_PRW} or \texttt{\_DSM}
V
vit9696 已提交
1114 1115 1116
  whenever possible.
\end{itemize}

D
dakanji 已提交
1117
Some cases where patching is actually useful include:
V
vit9696 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126

\begin{itemize}
\item
  Refreshing \texttt{HPET} (or another device) method header to avoid
  compatibility checks by \texttt{\_OSI} on legacy hardware. \texttt{\_STA}
  method with \texttt{if ((OSFL () == Zero)) \{ If (HPTE)  ...  Return (Zero)}
  content may be forced to always return 0xF by replacing
  \texttt{A0 10 93 4F 53 46 4C 00} with \texttt{A4 0A 0F A3 A3 A3 A3 A3}.
\item
D
dakanji 已提交
1127 1128 1129 1130
  To provide a custom method implementation within an SSDT, to inject
  shutdown fixes on certain computers for instance, the original method can
  be replaced with a dummy name by patching \texttt{\_PTS} with \texttt{ZPTS}
  and adding a callback to the original method.
V
vit9696 已提交
1131 1132
\end{itemize}

D
dakanji 已提交
1133
The Tianocore \href{https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h}{AcpiAml.h} source file may help with better understanding ACPI opcodes.
V
vit9696 已提交
1134

V
vit9696 已提交
1135
\emph{Note}: Patches of different \texttt{Find} and \texttt{Replace} lengths
1136 1137
are unsupported as they may corrupt ACPI tables and make the system unstable
due to area relocation. If such changes are needed, the utilisation of ``proxy''
D
dakanji 已提交
1138
patching or the padding of \texttt{NOP} to the remaining area could be considered.
V
vit9696 已提交
1139

V
vit9696 已提交
1140 1141 1142 1143 1144 1145 1146
\subsection{Quirks Properties}\label{acpipropsquirks}

\begin{enumerate}

\item
  \texttt{FadtEnableReset}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1147
  \textbf{Failsafe}: \texttt{false}\\
V
vit9696 已提交
1148
  \textbf{Description}: Provide reset register and flag in FADT table to enable
V
vit9696 已提交
1149 1150
  reboot and shutdown.

D
dakanji 已提交
1151 1152
  Mainly required on legacy hardware and a few newer laptops.
  Can also fix power-button shortcuts. Not recommended unless required.
V
vit9696 已提交
1153 1154 1155 1156

\item
  \texttt{NormalizeHeaders}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1157
  \textbf{Failsafe}: \texttt{false}\\
V
vit9696 已提交
1158
  \textbf{Description}: Cleanup ACPI header fields to workaround macOS
D
dakanji 已提交
1159
  ACPI implementation flaws that result in boot crashes. Reference:
V
vit9696 已提交
1160
  \href{https://alextjam.es/debugging-appleacpiplatform/}{Debugging
D
dakanji 已提交
1161 1162
  AppleACPIPlatform on 10.13} by Alex James (also known as theracermaster).
  The issue was fixed in macOS Mojave (10.14).
V
vit9696 已提交
1163 1164 1165 1166

\item
  \texttt{RebaseRegions}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1167
  \textbf{Failsafe}: \texttt{false}\\
V
vit9696 已提交
1168 1169 1170
  \textbf{Description}: Attempt to heuristically relocate ACPI memory
  regions. Not recommended.

D
dakanji 已提交
1171
  ACPI tables are often generated dynamically by the underlying firmware
V
vit9696 已提交
1172
  implementation. Among the position-independent code, ACPI tables may
D
dakanji 已提交
1173
  contain the physical addresses of MMIO areas used for device
D
dakanji 已提交
1174
  configuration, typically grouped by region (e.g.
V
vit9696 已提交
1175 1176
  \texttt{OperationRegion}). Changing firmware settings or hardware
  configuration, upgrading or patching the firmware inevitably leads to
D
dakanji 已提交
1177 1178
  changes in dynamically generated ACPI code, which sometimes results in
  the shift of the addresses in the aforementioned \texttt{OperationRegion}
V
vit9696 已提交
1179 1180
  constructions.

D
dakanji 已提交
1181
  For this reason, the application of modifications to ACPI tables is extremely
1182
  risky. The best approach is to make as few changes as possible to ACPI tables
D
dakanji 已提交
1183 1184 1185
  and to avoid replacing any tables, particularly DSDT tables. When this cannot be
  avoided, ensure that any custom DSDT tables are based on the most recent DSDT
  tables or attempt to remove reads and writes for the affected areas.
V
vit9696 已提交
1186

D
dakanji 已提交
1187 1188 1189 1190 1191
  When nothing else helps, this option could be tried to avoid stalls at
  \texttt{PCI\ Configuration\ Begin} phase of macOS booting by attempting to fix
  the ACPI addresses. It is not a magic bullet however, and only works with the
  most typical cases. Do not use unless absolutely required as it can have the
  opposite effect on certain platforms and result in boot failures.
V
vit9696 已提交
1192

1193 1194 1195
\item
  \texttt{ResetHwSig}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1196
  \textbf{Failsafe}: \texttt{false}\\
1197 1198 1199
  \textbf{Description}: Reset \texttt{FACS} table \texttt{HardwareSignature}
  value to \texttt{0}.

D
dakanji 已提交
1200
  This works around firmware that fail to maintain hardware signature across
1201 1202
  the reboots and cause issues with waking from hibernation.

1203 1204 1205
\item
  \texttt{ResetLogoStatus}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1206
  \textbf{Failsafe}: \texttt{false}\\
1207 1208 1209
  \textbf{Description}: Reset \texttt{BGRT} table \texttt{Displayed}
  status field to \texttt{false}.

D
dakanji 已提交
1210
  This works around firmware that provide a \texttt{BGRT} table but
1211 1212
  fail to handle screen updates afterwards.

V
vit9696 已提交
1213 1214 1215
\end{enumerate}


1216 1217 1218 1219
\section{Booter}\label{booter}

\subsection{Introduction}\label{booterintro}

D
dakanji 已提交
1220 1221 1222 1223 1224 1225 1226
This section allows the application of different types of UEFI modifications to
operating system bootloaders, primarily the Apple bootloader (\texttt{boot.efi}).
The modifications currently provide various patches and environment alterations for
different firmware types. Some of these features were originally implemented as part
of \href{https://github.com/acidanthera/AptioFixPkg}{\text{AptioMemoryFix.efi}},
which is no longer maintained. Refer to the \hyperref[troubleshootingtricks]{Tips and Tricks}
section for instructions on migration.
1227

D
dakanji 已提交
1228 1229
If this is used for the first time on customised firmware, the following requirements
should be met before starting:
1230 1231 1232

\begin{itemize}
\tightlist
1233
\item Most up-to-date UEFI firmware (check the motherboard vendor website).
1234 1235 1236
\item \texttt{Fast Boot} and \texttt{Hardware Fast Boot} disabled in firmware
  settings if present.
\item \texttt{Above 4G Decoding} or similar enabled in firmware
D
dakanji 已提交
1237 1238
  settings if present. Note that on some motherboards, notably the ASUS WS-X299-PRO, this
  option results in adverse effects and must be disabled. While no other motherboards
1239 1240
  with the same issue are known, this option should be checked first whenever erratic boot
  failures are encountered.
1241
\item \texttt{DisableIoMapper} quirk enabled, or \texttt{VT-d} disabled in
1242
  firmware settings if present, or ACPI DMAR table deleted.
1243
\item \textbf{No} `slide` boot argument present in NVRAM or anywhere else.
1244 1245
  It is not necessary unless the system cannot be booted at all or
  \texttt{No slide values are usable! Use custom slide!} message can be seen in the log.
1246
\item \texttt{CFG Lock} (MSR \texttt{0xE2} write protection) disabled in
1247 1248
  firmware settings if present. Refer to the \hyperref[kernelpropsquirks]{ControlMsrE2}
  notes for details.
1249
\item \texttt{CSM} (Compatibility Support Module) disabled in firmware settings
1250
  if present. On NVIDIA 6xx/AMD 2xx or older, GOP ROM may have to be flashed first. Use
1251 1252
  \href{https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html}{GopUpdate}
  (see the second post) or \href{http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163}{AMD UEFI GOP MAKER}
1253
  in case of any potential confusion.
1254 1255 1256 1257
\item \texttt{EHCI/XHCI Hand-off} enabled in firmware settings \texttt{only} if boot
  stalls unless USB devices are disconnected.
\item \texttt{VT-x}, \texttt{Hyper Threading}, \texttt{Execute Disable Bit} enabled
  in firmware settings if present.
1258
\item While it may not be required, sometimes
1259
  \texttt{Thunderbolt support}, \texttt{Intel SGX}, and \texttt{Intel Platform Trust}
1260
  may have to be disabled in firmware settings present.
1261 1262
\end{itemize}

D
dakanji 已提交
1263 1264
When debugging sleep issues, Power Nap and automatic power off (which appear to sometimes cause
wake to black screen or boot loop issues on older platforms) may be temporarily disabled.
1265
The specific issues may vary, but ACPI tables should typically be looked at first.
D
dakanji 已提交
1266

1267
Here is an example of a defect found on some
1268
\href{http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645}{Z68 motherboards}.
D
dakanji 已提交
1269
To turn Power Nap and the others off, run the following commands in Terminal:
1270 1271 1272 1273 1274 1275
\begin{lstlisting}[label=powernap, style=ocbash]
sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0
\end{lstlisting}

D
dakanji 已提交
1276 1277
\emph{Note}: These settings may be reset by hardware changes and in certain other circumstances.
To view their current state, use the \texttt{pmset -g} command in Terminal.
1278

1279 1280 1281 1282
\subsection{Properties}\label{booterprops}

\begin{enumerate}

V
vit9696 已提交
1283 1284 1285
\item
  \texttt{MmioWhitelist}\\
  \textbf{Type}: \texttt{plist\ array}\\
D
dakanji 已提交
1286
  \textbf{Description}: To be filled with \texttt{plist\ dict} values,
V
vit9696 已提交
1287
  describing addresses critical for particular firmware functioning when
D
dakanji 已提交
1288
  \texttt{DevirtualiseMmio} quirk is in use.
1289
  Refer to the \hyperref[booterpropsmmio]{MmioWhitelist Properties} section below for details.
1290

1291 1292 1293 1294 1295
\item
  \texttt{Patch}\\
  \textbf{Type}: \texttt{plist\ array}\\
  \textbf{Failsafe}: Empty\\
  \textbf{Description}: Perform binary patches in booter.
1296

D
dakanji 已提交
1297
  To be filled with \texttt{plist\ dictionary} values, describing each
1298
  patch. Refer to the \hyperref[booterpropspatch]{Patch Properties} section below for details.
V
vit9696 已提交
1299

1300 1301 1302 1303
\item
  \texttt{Quirks}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Apply individual booter quirks described
D
dakanji 已提交
1304
  in the \hyperref[booterpropsquirks]{Quirks Properties} section below.
1305 1306 1307

\end{enumerate}

V
vit9696 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
\subsection{MmioWhitelist Properties}\label{booterpropsmmio}

\begin{enumerate}

\item
  \texttt{Address}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Exceptional MMIO address, which memory descriptor should be left
  virtualised (unchanged) by \texttt{DevirtualiseMmio}. This means that the firmware will
  be able to directly communicate with this memory region during operating system functioning,
  because the region this value is in will be assigned a virtual address.

  The addresses written here must be part of the memory map, have \texttt{EfiMemoryMappedIO}
D
dakanji 已提交
1322 1323
  type and \texttt{EFI\_MEMORY\_RUNTIME} attribute (highest bit) set. The debug log can be used
  to find the list of the candidates.
V
vit9696 已提交
1324 1325 1326 1327

\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1328
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
1329
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
1330
  reference for the entry. Whether this value is used is implementation defined.
V
vit9696 已提交
1331 1332 1333 1334 1335

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1336
  \textbf{Description}: Exclude MMIO address from the devirtualisation procedure.
V
vit9696 已提交
1337 1338 1339

\end{enumerate}

1340 1341 1342 1343 1344 1345
\subsection{Patch Properties}\label{booterpropspatch}

\begin{enumerate}
\item
  \texttt{Arch}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1346 1347
  \textbf{Failsafe}: \texttt{Any} (Apply to any supported architecture)\\
  \textbf{Description}: Booter patch architecture (\texttt{i386}, \texttt{x86\_64}).
1348 1349 1350 1351

\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1352
  \textbf{Failsafe}: Empty\\
1353
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
1354
  reference for the entry. Whether this value is used is implementation defined.
1355 1356 1357 1358

\item
  \texttt{Count}\\
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
1359 1360
  \textbf{Failsafe}: \texttt{0} (Apply to all occurrences found)\\
  \textbf{Description}: Number of patch occurrences to apply.
1361 1362 1363 1364 1365

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1366
  \textbf{Description}: Set to \texttt{true} to activate this booter patch.
1367 1368 1369 1370

\item
  \texttt{Find}\\
  \textbf{Type}: \texttt{plist\ data}\\
1371
  \textbf{Failsafe}: Empty\\
1372
  \textbf{Description}: Data to find. Must be equal to \texttt{Replace} in size if set.
1373 1374 1375 1376

\item
  \texttt{Identifier}\\
  \textbf{Type}: \texttt{plist\ string}\\
1377
  \textbf{Failsafe}:  \texttt{Any} (Match any booter)\\
1378
  \textbf{Description}: \texttt{Apple} for macOS booter (typically \texttt{boot.efi});
1379
  or a name with a suffix, such as \texttt{bootmgfw.efi}, for a specific booter.
1380 1381 1382 1383

\item
  \texttt{Limit}\\
  \textbf{Type}: \texttt{plist\ integer}\\
1384
  \textbf{Failsafe}: \texttt{0} (Search the entire booter)\\
1385
  \textbf{Description}: Maximum number of bytes to search for.
1386 1387 1388 1389

\item
  \texttt{Mask}\\
  \textbf{Type}: \texttt{plist\ data}\\
1390
  \textbf{Failsafe}: Empty (Ignored)\\
1391
  \textbf{Description}: Data bitwise mask used during find comparison.
1392
  Allows fuzzy search by ignoring not masked (set to zero) bits.
1393
  Must be equal to \texttt{Find} in size if set.
1394 1395 1396 1397

\item
  \texttt{Replace}\\
  \textbf{Type}: \texttt{plist\ data}\\
1398
  \textbf{Failsafe}: Empty\\
1399 1400 1401 1402 1403
  \textbf{Description}: Replacement data of one or more bytes.

\item
  \texttt{ReplaceMask}\\
  \textbf{Type}: \texttt{plist\ data}\\
1404
  \textbf{Failsafe}: Empty (Ignored)\\
1405
  \textbf{Description}: Data bitwise mask used during replacement.
1406 1407
  Allows fuzzy replacement by updating masked (set to non-zero) bits.
  Must be equal to \texttt{Replace} in size if set.
1408 1409 1410 1411

\item
  \texttt{Skip}\\
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
1412 1413 1414
  \textbf{Failsafe}: \texttt{0} (Do not skip any occurrences)\\
  \textbf{Description}: Number of found occurrences to skip before
  replacements are applied.
1415 1416 1417

\end{enumerate}

1418 1419 1420 1421
\subsection{Quirks Properties}\label{booterpropsquirks}

\begin{enumerate}

1422 1423 1424 1425 1426 1427
\item
  \texttt{AllowRelocationBlock}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Allows booting macOS through a relocation block.

D
dakanji 已提交
1428 1429 1430
  The relocation block is a scratch buffer allocated in the lower 4 GB used
  for loading the kernel and related structures by EfiBoot on firmware where
  the lower memory region is otherwise occupied by (assumed) non-runtime data.
1431
  Right before kernel startup, the relocation block is copied back to lower
D
dakanji 已提交
1432 1433
  addresses. Similarly, all the other addresses pointing to the relocation
  block are also carefully adjusted. The relocation block can be used when:
1434 1435 1436 1437 1438 1439 1440 1441

  \begin{itemize}
    \tightlist
    \item No better slide exists (all the memory is used)
    \item \texttt{slide=0} is forced (by an argument or safe mode)
    \item KASLR (slide) is unsupported (this is macOS 10.7 or older)
  \end{itemize}

D
dakanji 已提交
1442 1443 1444 1445
  This quirk requires \texttt{ProvideCustomSlide} to be enabled and
  typically also requires enabling \texttt{AvoidRuntimeDefrag} to function
  correctly. Hibernation is not supported when booting with a relocation
  block, which will only be used if required when the quirk is enabled.
1446 1447

  \emph{Note}: While this quirk is required to run older macOS versions
D
dakanji 已提交
1448
  on platforms with used lower memory, it is not compatible with some
D
dakanji 已提交
1449
  hardware and macOS 11. In such cases, consider using
1450 1451
  \texttt{EnableSafeModeSlide} instead.

1452 1453 1454 1455 1456 1457 1458
\item
  \texttt{AvoidRuntimeDefrag}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Protect from boot.efi runtime memory defragmentation.

  This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.)
D
dakanji 已提交
1459 1460 1461 1462
  support on firmware that uses SMM backing for certain services such as variable
  storage. SMM may try to access memory by physical addresses in non-SMM areas but
  this may sometimes have been moved by boot.efi. This option prevents boot.efi
  from moving such data.
1463

D
dakanji 已提交
1464
  \emph{Note}: Most types of firmware, apart from Apple and VMware, need this quirk.
1465

1466 1467 1468 1469
\item
  \texttt{DevirtualiseMmio}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
  \textbf{Description}: Remove runtime attribute from certain MMIO regions.

  This quirk reduces the stolen memory footprint in the memory map by removing
  the runtime bit for known memory regions. This quirk may result in an increase
  of KASLR slides available but without additional measures, it is not necessarily
  compatible with the target board. This quirk typically frees between 64 and 256
  megabytes of memory, present in the debug log, and on some platforms, is the only way
  to boot macOS, which otherwise fails with allocation errors at the bootloader stage.

  This option is useful on all types of firmware, except for some very old
  ones such as Sandy Bridge. On certain firmware, a list of addresses that need
  virtual addresses for proper NVRAM and hibernation functionality may be required.
D
dakanji 已提交
1482
  Use the \texttt{MmioWhitelist} section for this.
1483 1484 1485 1486 1487 1488 1489

\item
  \texttt{DisableSingleUser}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Disable single user mode.

1490
  This is a security option that restricts the activation of single user mode
D
dakanji 已提交
1491 1492 1493 1494 1495
  by ignoring the \texttt{CMD+S} hotkey and the \texttt{-s} boot argument. The
  behaviour with this quirk enabled is supposed to match T2-based model behaviour.
  Refer to this
  \href{https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573}{archived article}
  to understand how to use single user mode with this quirk enabled.
1496

1497 1498 1499 1500 1501 1502
\item
  \texttt{DisableVariableWrite}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Protect from macOS NVRAM write access.

1503
  This is a security option that restricts NVRAM access in macOS.
1504
  This quirk requires \texttt{OC\_FIRMWARE\_RUNTIME} protocol implemented
V
vit9696 已提交
1505
  in \texttt{OpenRuntime.efi}.
1506

D
dakanji 已提交
1507
  \emph{Note}: This quirk can also be used as an ad hoc workaround for defective UEFI
D
dakanji 已提交
1508 1509
  runtime services implementations that are unable to write variables to NVRAM
  and results in operating system failures.
1510 1511 1512 1513 1514 1515 1516

\item
  \texttt{DiscardHibernateMap}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Reuse original hibernate memory map.

D
dakanji 已提交
1517 1518 1519 1520
  This option forces the XNU kernel to ignore a newly supplied memory map and assume
  that it did not change after waking from hibernation. This behaviour is required by
   Windows to work. Windows mandates
  \href{https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi#hibernation-state-s4-transition-requirements}{preserving}
1521 1522
  runtime memory size and location after S4 wake.

D
dakanji 已提交
1523
  \emph{Note}: This may be used to workaround defective memory map implementations on older,
D
dakanji 已提交
1524 1525
  rare legacy hardware. Examples of such hardware are Ivy Bridge laptops with Insyde firmware
  such as the Acer V3-571G. Do not use this option without a full understanding of the implications.
1526 1527 1528 1529 1530 1531 1532

\item
  \texttt{EnableSafeModeSlide}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Patch bootloader to have KASLR enabled in safe mode.

D
dakanji 已提交
1533 1534 1535
  This option is relevant to users with issues booting to safe mode
  (e.g. by holding \texttt{shift} or with using the \texttt{-x} boot argument). By
  default, safe mode forces \texttt{0} slide as if the system was launched with the
D
dakanji 已提交
1536 1537 1538 1539 1540 1541 1542 1543
  \texttt{slide=0} boot argument.

  \begin{itemize}
    \tightlist
    \item This quirk attempts to patch the \texttt{boot.efi} file to remove this limitation
    and to allow using other values (from \texttt{1} to \texttt{255} inclusive).
    \item This quirk requires enabling \texttt{ProvideCustomSlide}.
    \end{itemize}
1544

D
dakanji 已提交
1545 1546
  \emph{Note}: The need for this option is dependent on the availability of safe mode.
  It can be enabled when booting to safe mode fails.
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

\item
  \texttt{EnableWriteUnprotector}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Permit write access to UEFI runtime services code.

  This option bypasses \texttt{R\^X} permissions in code pages of UEFI runtime
  services by removing write protection (\texttt{WP}) bit from \texttt{CR0}
  register during their execution. This quirk requires \texttt{OC\_FIRMWARE\_RUNTIME}
V
vit9696 已提交
1557
  protocol implemented in \texttt{OpenRuntime.efi}.
1558

D
dakanji 已提交
1559
  \emph{Note}: This quirk may potentially weaken firmware security. Please use
1560
  \texttt{RebuildAppleMemoryMap} if the firmware supports memory attributes table (MAT).
D
dakanji 已提交
1561
  Refer to the \texttt{OCABC: MAT support is 1/0} log entry to determine whether MAT is supported.
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
\item
  \texttt{ForceBooterSignature}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Set macOS \texttt{boot-signature} to OpenCore launcher.

  Booter signature, essentially a SHA-1 hash of the loaded image, is used by Mac EFI
  to verify the authenticity of the bootloader when waking from hibernation. This
  option forces macOS to use OpenCore launcher SHA-1 hash as a booter signature to let
  OpenCore shim hibernation wake on Mac EFI firmware.

  \emph{Note}: OpenCore launcher path is determined from \texttt{LauncherPath} property.

1576 1577 1578 1579 1580 1581
\item
  \texttt{ForceExitBootServices}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Retry \texttt{ExitBootServices} with new memory map on failure.

D
dakanji 已提交
1582 1583 1584
  Try to ensure that the \texttt{ExitBootServices} call succeeds. If required, an
  outdated \texttt{MemoryMap} key argument can be used by obtaining the current
  memory map and retrying the \texttt{ExitBootServices} call.
1585

D
dakanji 已提交
1586 1587
  \emph{Note}: The need for this quirk is determined by early boot crashes of the
  firmware. Do not use this option without a full understanding of the implications.
1588 1589

\item
1590
  \texttt{ProtectMemoryRegions}\\
1591 1592
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
1593
  \textbf{Description}: Protect memory regions from incorrect access.
1594

D
dakanji 已提交
1595
  Some types of firmware incorrectly map certain memory regions:
1596

1597 1598
  \begin{itemize}
    \tightlist
D
dakanji 已提交
1599
    \item The CSM region can be marked as boot services code, or data, which
D
dakanji 已提交
1600
      leaves it as free memory for the XNU kernel.
D
dakanji 已提交
1601 1602
    \item MMIO regions can be marked as reserved memory and stay unmapped.
      They may however be required to be accessible at runtime for NVRAM support.
1603 1604
  \end{itemize}

D
dakanji 已提交
1605
  This quirk attempts to fix the types of these regions, e.g. ACPI NVS for
1606 1607
  CSM or MMIO for MMIO.

D
dakanji 已提交
1608 1609 1610
  \emph{Note}: The need for this quirk is determined by artifacts, sleep
  wake issues, and boot failures. This quirk is typically only required by
  very old firmware.
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620
\item
  \texttt{ProtectSecureBoot}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Protect UEFI Secure Boot variables from being written.

  Reports security violation during attempts to write to \texttt{db}, \texttt{dbx},
  \texttt{PK}, and \texttt{KEK} variables from the operating system.

D
dakanji 已提交
1621 1622
  \emph{Note}: This quirk attempts to avoid issues with NVRAM implementations with
  fragmentation issues, such as on the \texttt{MacPro5,1} as well as on certain
D
dakanji 已提交
1623
  Insyde firmware without garbage collection or with defective garbage collection.
1624

1625 1626 1627 1628 1629 1630
\item
  \texttt{ProtectUefiServices}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Protect UEFI services from being overridden by the firmware.

D
dakanji 已提交
1631
  Some modern firmware, including on virtual machines such as VMware,
1632
  may update pointers to UEFI services during driver loading and related actions.
D
dakanji 已提交
1633
  Consequently, this directly obstructs other quirks that affect memory management,
D
dakanji 已提交
1634
  such as \texttt{DevirtualiseMmio}, \texttt{ProtectMemoryRegions}, or \texttt{RebuildAppleMemoryMap},
D
dakanji 已提交
1635
  and may also obstruct other quirks depending on the scope of such.
1636

D
dakanji 已提交
1637 1638
  \emph{Note}: On VMware, the need for this quirk may be determined by the appearance of the
  ``Your Mac OS guest might run unreliably with more than one virtual core.'' message.
1639

1640 1641 1642 1643 1644 1645
\item
  \texttt{ProvideCustomSlide}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Provide custom KASLR slide on low memory.

1646
  This option performs memory map analysis of the firmware and checks whether
1647 1648
  all slides (from \texttt{1} to \texttt{255}) can be used. As \texttt{boot.efi}
  generates this value randomly with \texttt{rdrand} or pseudo randomly \texttt{rdtsc},
D
dakanji 已提交
1649 1650 1651 1652
  there is a chance of boot failure when it chooses a conflicting slide. In cases where
  potential conflicts exist, this option forces macOS to select a pseudo random value
  from the available values. This also ensures that the \texttt{slide=} argument is
  never passed to the operating system (for security reasons).
1653

D
dakanji 已提交
1654 1655
  \emph{Note}: The need for this quirk is determined by the \texttt{OCABC: Only N/256
  slide values are usable!} message in the debug log.
1656

1657 1658 1659 1660 1661 1662
\item
  \texttt{ProvideMaxSlide}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Provide maximum KASLR slide when higher ones are unavailable.

D
dakanji 已提交
1663 1664 1665 1666 1667
  This option overrides the maximum slide of 255 by a user specified value between 1 and 254
  (inclusive) when \texttt{ProvideCustomSlide} is enabled. It is assumed that modern firmware
  allocates pool memory from top to bottom, effectively resulting in free memory when slide
  scanning is used later as temporary memory during kernel loading. When such memory is not
  available, this option stops the evaluation of higher slides.
1668

D
dakanji 已提交
1669 1670
  \emph{Note}: The need for this quirk is determined by random boot failures
  when \texttt{ProvideCustomSlide} is enabled and the randomized slide falls
D
dakanji 已提交
1671 1672
  into the unavailable range. When \texttt{AppleDebug} is enabled, the
  debug log typically contains messages such as \texttt{AAPL: [EB|`LD:LKC] \} Err(0x9)}.
D
dakanji 已提交
1673 1674
  To find the optimal value, append \texttt{slide=X}, where \texttt{X} is the slide value,
  to the \texttt{boot-args} and select the largest one that does not result in boot failures.
1675

1676 1677 1678 1679
\item
  \texttt{RebuildAppleMemoryMap}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1680
  \textbf{Description}: Generate macOS compatible Memory Map.
1681

D
dakanji 已提交
1682
  The Apple kernel has several limitations on parsing the UEFI memory map:
1683 1684 1685

  \begin{itemize}
  \tightlist
D
dakanji 已提交
1686 1687
  \item The Memory map size must not exceed 4096 bytes as the Apple kernel maps
    it as a single 4K page. As some types of firmware can have very large memory maps,
D
dakanji 已提交
1688
    potentially over 100 entries, the Apple kernel will crash on boot.
D
dakanji 已提交
1689 1690 1691 1692 1693
  \item The Memory attributes table is ignored. \texttt{EfiRuntimeServicesCode}
    memory statically gets \texttt{RX} permissions while all other memory types
    get \texttt{RW} permissions. As some firmware drivers may write to global
    variables at runtime, the Apple kernel will crash at calling UEFI runtime services
    unless the driver \texttt{.data} section has a \texttt{EfiRuntimeServicesData}
1694 1695 1696
    type.
  \end{itemize}

D
dakanji 已提交
1697 1698
  To workaround these limitations, this quirk applies memory attribute table
  permissions to the memory map passed to the Apple kernel and optionally attempts
1699 1700 1701
  to unify contiguous slots of similar types if the resulting memory map exceeds
  4 KB.

D
dakanji 已提交
1702 1703
  \emph{Note 1}: Since several types of firmware come with incorrect memory protection
  tables, this quirk often comes paired with \texttt{SyncRuntimePermissions}.
1704

D
dakanji 已提交
1705
  \emph{Note 2}: The need for this quirk is determined by early boot failures.
D
dakanji 已提交
1706
  This quirk replaces \texttt{EnableWriteUnprotector} on firmware supporting
D
dakanji 已提交
1707
  Memory Attribute Tables (MAT). This quirk is typically unnecessary when using
D
dakanji 已提交
1708 1709
  \texttt{OpenDuetPkg} but may be required to boot macOS 10.6, and earlier, for
  reasons that are as yet unclear.
1710

1711 1712 1713 1714 1715 1716
\item
  \texttt{SetupVirtualMap}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Setup virtual memory at \texttt{SetVirtualAddresses}.

D
dakanji 已提交
1717 1718
  Some types of firmware access memory by virtual addresses after a \texttt{SetVirtualAddresses}
  call, resulting in early boot crashes. This quirk workarounds the problem by
1719 1720 1721
  performing early boot identity mapping of assigned virtual addresses to physical
  memory.

D
dakanji 已提交
1722
  \emph{Note}: The need for this quirk is determined by early boot failures.
1723

1724 1725 1726 1727 1728 1729
\item
  \texttt{SignalAppleOS}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Report macOS being loaded through OS Info for any OS.

D
dakanji 已提交
1730 1731 1732
  This quirk is useful on Mac firmware, which loads different operating systems
  with different hardware configurations. For example, it is supposed to enable
  Intel GPU in Windows and Linux in some dual-GPU MacBook models.
1733

1734 1735 1736 1737
\item
  \texttt{SyncRuntimePermissions}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1738
  \textbf{Description}: Update memory permissions for the runtime environment.
1739

D
dakanji 已提交
1740
  Some types of firmware fail to properly handle runtime permissions:
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
  \begin{itemize}
    \tightlist
    \item They incorrectly mark \texttt{OpenRuntime} as not executable in the memory map.
    \item They incorrectly mark \texttt{OpenRuntime} as not executable in the memory
    attributes table.
    \item They lose entries from the memory attributes table after \texttt{OpenRuntime}
    is loaded.
    \item They mark items in the memory attributes table as read-write-execute.
  \end{itemize}

1751
  This quirk attempts to update the memory map and memory attributes table to correct this.
1752

D
dakanji 已提交
1753 1754
  \emph{Note}: The need for this quirk is indicated by early boot failures.
  Only firmware released after 2017 is typically affected.
1755

1756 1757
\end{enumerate}

V
vit9696 已提交
1758 1759 1760 1761 1762
\section{DeviceProperties}\label{devprops}

\subsection{Introduction}\label{devpropsintro}

Device configuration is provided to macOS with a dedicated buffer,
A
Andrey1970AppleLife 已提交
1763
called \texttt{EfiDevicePathPropertyDatabase}. This buffer is a serialised
V
vit9696 已提交
1764 1765
map of DevicePaths to a map of property names and their values.

V
vit9696 已提交
1766 1767
Property data can be debugged with
\href{https://github.com/acidanthera/gfxutil}{gfxutil}.
D
dakanji 已提交
1768
To obtain current property data, use the following command in macOS:
V
vit9696 已提交
1769 1770 1771 1772 1773 1774 1775
\begin{lstlisting}[label=gfxutil, style=ocbash]
ioreg -lw0 -p IODeviceTree -n efi -r -x | grep device-properties |
  sed 's/.*<//;s/>.*//' > /tmp/device-properties.hex &&
  gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
  cat /tmp/device-properties.plist
\end{lstlisting}

G
Goldfish64 已提交
1776
Device properties are part of the \texttt{IODeviceTree} (\texttt{gIODT})
D
dakanji 已提交
1777
plane of the macOS I/O Registry. This plane has several construction stages
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
relevant for the platform initialisation. While the early construction
stage is performed by the XNU kernel in the \texttt{IODeviceTreeAlloc}
method, the majority of the construction is performed by the platform expert,
implemented in \texttt{AppleACPIPlatformExpert.kext}.

AppleACPIPlatformExpert incorporates two stages of \texttt{IODeviceTree}
construction implemented by calling \\
\texttt{AppleACPIPlatformExpert::mergeDeviceProperties}:

\begin{enumerate}
  \tightlist
  \item During ACPI table initialisation through the recursive ACPI namespace scanning
  by the calls to \\
  \texttt{AppleACPIPlatformExpert::createDTNubs}.
  \item During IOService registration (\texttt{IOServices::registerService}) callbacks
  implemented as a part of \\
  \texttt{AppleACPIPlatformExpert::platformAdjustService}
  function and its private worker method \\
  \texttt{AppleACPIPlatformExpert::platformAdjustPCIDevice}
  specific to the PCI devices.
\end{enumerate}

The application of the stages depends on the device presence in ACPI tables.
The first stage applies very early but exclusively to the devices present in ACPI tables.
The second stage applies to all devices much later after the PCI configuration
and may repeat the first stage if the device was not present in ACPI.

D
dakanji 已提交
1805
For all kernel extensions that may inspect the \texttt{IODeviceTree} plane without probing,
D
dakanji 已提交
1806 1807 1808
such as \texttt{Lilu} and its plugins (e.g. \texttt{WhateverGreen}), it is especially
important to ensure device presence in the ACPI tables. A failure to do so may result
\textbf{in erratic behaviour} caused by ignoring the injected device properties
1809 1810 1811
as they were not constructed at the first stage. See \texttt{SSDT-IMEI.dsl} and
\texttt{SSDT-BRG0.dsl} for an example.

V
vit9696 已提交
1812 1813 1814 1815 1816 1817 1818
\subsection{Properties}\label{devpropsprops}

\begin{enumerate}
\item
  \texttt{Add}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Sets device properties from a map (\texttt{plist\ dict})
G
Goldfish64 已提交
1819
  of device paths to a map (\texttt{plist\ dict}) of variable names and their values
1820
  in \texttt{plist\ multidata} format.
V
vit9696 已提交
1821

1822 1823 1824 1825 1826
  \emph{Note 1}: Device paths must be provided in canonic string format
  (e.g. \texttt{PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x0)}).

  \emph{Note 2}: Existing properties will not be changed unless deleted
  in the \texttt{DeviceProperties\ Delete} section.
V
vit9696 已提交
1827 1828

\item
1829
  \texttt{Delete}\\
V
vit9696 已提交
1830 1831
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Removes device properties from a map (\texttt{plist\ dict})
G
Goldfish64 已提交
1832
  of device paths to an array (\texttt{plist\ array}) of variable names in
V
vit9696 已提交
1833 1834
  \texttt{plist\ string} format.

1835 1836 1837 1838
  \emph{Note}: Currently, existing properties may only exist on firmware
  with DeviceProperties drivers (e.g. Apple). Hence, there is typically
  no reason to delete variables unless a new driver has been installed.

V
vit9696 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
\end{enumerate}

\subsection{Common Properties}\label{devpropscommon}

Some known properties include:

\begin{itemize}
\tightlist
\item
  \texttt{device-id}
  \break
  User-specified device identifier used for I/O Kit matching. Has 4 byte data type.
\item
  \texttt{vendor-id}
  \break
  User-specified vendor identifier used for I/O Kit matching. Has 4 byte data type.
\item
  \texttt{AAPL,ig-platform-id}
  \break
  Intel GPU framebuffer identifier used for framebuffer selection on Ivy Bridge and newer.
  Has 4 byte data type.
\item
  \texttt{AAPL,snb-platform-id}
  \break
  Intel GPU framebuffer identifier used for framebuffer selection on Sandy Bridge.
  Has 4 byte data type.
\item
  \texttt{layout-id}
  \break
  Audio layout used for AppleHDA layout selection. Has 4 byte data type.
\end{itemize}


\section{Kernel}\label{kernel}

\subsection{Introduction}\label{kernelintro}

D
dakanji 已提交
1876
This section allows the application of different kinds of kernelspace modifications on
V
vit9696 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
Apple Kernel (\href{https://opensource.apple.com/source/xnu}{XNU}). The modifications
currently provide driver (kext) injection, kernel and driver patching, and driver
blocking.

\subsection{Properties}\label{kernelprops}

\begin{enumerate}
\item
  \texttt{Add}\\
  \textbf{Type}: \texttt{plist\ array}\\
1887
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
1888
  \textbf{Description}: Load selected kernel extensions (kexts) from the \texttt{OC/Kexts} directory.
V
vit9696 已提交
1889

D
dakanji 已提交
1890
  To be filled with \texttt{plist\ dict} values, describing each kext. Refer to
D
dakanji 已提交
1891
  the \hyperref[kernelpropsadd]{Add Properties} section below for details.
V
vit9696 已提交
1892

D
dakanji 已提交
1893 1894
  \emph{Note 1}: The load order is based on the order in which the kexts appear in
  the array. Hence, dependencies must appear before kexts that depend on them.
V
vit9696 已提交
1895

D
dakanji 已提交
1896 1897
  \emph{Note 2}: To track the dependency order, inspect the \texttt{OSBundleLibraries}
  key in the \texttt{Info.plist} file of the kext being added. Any kext included
D
dakanji 已提交
1898
  under the key is a dependency that must appear before the kext being added.
D
dakanji 已提交
1899

D
dakanji 已提交
1900 1901 1902
  \emph{Note 3}: Kexts may have inner kexts (\texttt{Plugins}) included in the bundle.
  Such \texttt{Plugins} must be added separately and follow the same global ordering
  rules as other kexts.
V
vit9696 已提交
1903

V
vit9696 已提交
1904 1905 1906
\item
  \texttt{Block}\\
  \textbf{Type}: \texttt{plist\ array}\\
1907
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
1908
  \textbf{Description}: Remove selected kernel extensions (kexts) from the prelinked kernel.
V
vit9696 已提交
1909

D
dakanji 已提交
1910
  To be filled with \texttt{plist\ dictionary} values, describing each blocked kext.
1911
  Refer to the \hyperref[kernelpropsblock]{Block Properties} section below for details.
V
vit9696 已提交
1912

1913 1914 1915
\item
  \texttt{Emulate}\\
  \textbf{Type}: \texttt{plist\ dict}\\
D
dakanji 已提交
1916 1917
  \textbf{Description}: Emulate certain hardware in kernelspace via parameters
  described in the \hyperref[kernelpropsemu]{Emulate Properties} section below.
1918

1919 1920 1921 1922
\item
  \texttt{Force}\\
  \textbf{Type}: \texttt{plist\ array}\\
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
1923
  \textbf{Description}: Load kernel extensions (kexts) from the system volume if they are not cached.
1924

D
dakanji 已提交
1925
  To be filled with \texttt{plist\ dict} values, describing each kext.
1926
  Refer to the \hyperref[kernelpropsforce]{Force Properties} section below for details.
D
dakanji 已提交
1927 1928
  This section resolves the problem of injecting kexts that depend on other
  kexts, which are not otherwise cached. The issue typically affects older
D
dakanji 已提交
1929
  operating systems, where various dependency kexts, such as \texttt{IOAudioFamily}
1930 1931
  or \texttt{IONetworkingFamily} may not be present in the kernel cache by default.

D
dakanji 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940
  \emph{Note 1}: The load order is based on the order in which the kexts appear in
  the array. Hence, dependencies must appear before kexts that depend on them.

  \emph{Note 2}: \texttt{Force} happens before \texttt{Add}.

  \emph{Note 3}: The signature of the ``forced'' kext is not checked in any way.
  This makes using this feature extremely dangerous and undesirable for secure boot.

  \emph{Note 4}: This feature may not work on encrypted partitions in newer operating systems.
1941

V
vit9696 已提交
1942 1943 1944
\item
  \texttt{Patch}\\
  \textbf{Type}: \texttt{plist\ array}\\
1945
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
1946
  \textbf{Description}: Perform binary patches in kernel and drivers prior to
1947
  driver addition and removal.
V
vit9696 已提交
1948

D
dakanji 已提交
1949
  To be filled with \texttt{plist\ dictionary} values, describing each patch.
1950
  Refer to the \hyperref[kernelpropspatch]{Patch Properties} section below for details.
V
vit9696 已提交
1951 1952 1953 1954 1955

\item
  \texttt{Quirks}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Apply individual kernel and driver quirks described
D
dakanji 已提交
1956
  in the \hyperref[kernelpropsquirks]{Quirks Properties} section below.
V
vit9696 已提交
1957

1958 1959 1960 1961
\item
  \texttt{Scheme}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Define kernelspace operation mode via parameters
D
dakanji 已提交
1962
  described in the \hyperref[kernelpropsscheme]{Scheme Properties} section below.
1963 1964


V
vit9696 已提交
1965 1966 1967 1968 1969
\end{enumerate}

\subsection{Add Properties}\label{kernelpropsadd}

\begin{enumerate}
1970 1971 1972
\item
  \texttt{Arch}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1973 1974
  \textbf{Failsafe}: \texttt{Any} (Apply to any supported architecture)\\
  \textbf{Description}: Kext architecture (\texttt{i386}, \texttt{x86\_64}).
1975

V
vit9696 已提交
1976
\item
1977
  \texttt{BundlePath}\\
V
vit9696 已提交
1978
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1979
  \textbf{Failsafe}: Empty\\
1980 1981
  \textbf{Description}: Kext bundle path (e.g. \texttt{Lilu.kext}
  or \texttt{MyKext.kext/Contents/PlugIns/MySubKext.kext}).
V
vit9696 已提交
1982 1983 1984 1985

\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1986
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
1987
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
1988
  reference for the entry. Whether this value is used is implementation defined.
V
vit9696 已提交
1989 1990 1991 1992

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
1993
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
1994
  \textbf{Description}: Set to \texttt{true} to add this kernel extension.
V
vit9696 已提交
1995 1996 1997 1998

\item
  \texttt{ExecutablePath}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
1999
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2000 2001 2002 2003
  \textbf{Description}: Kext executable path relative to bundle
  (e.g. \texttt{Contents/MacOS/Lilu}).

\item
2004
  \texttt{MaxKernel}\\
V
vit9696 已提交
2005
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2006
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
2007
  \textbf{Description}: Adds kernel extension on specified macOS version or older.
2008

V
vit9696 已提交
2009 2010 2011
  \hypertarget{kernmatch}Kernel version can be obtained with \texttt{uname -r} command,
  and should look like 3 numbers separated by dots, for example \texttt{18.7.0} is the
  kernel version for \texttt{10.14.6}. Kernel version interpretation is implemented as follows:
2012 2013
  \begin{align*}
    \begin{aligned}
M
Michael Belyaev 已提交
2014
      ParseDarwinVersion(\kappa,\lambda,\mu)&=\kappa \cdot10000 &&
2015
        \text{Where }\kappa\in(0,99)\text{ is kernel version major} \\
V
vit9696 已提交
2016
      &+ \lambda\cdot100 &&
2017
        \text{Where }\lambda\in(0,99)\text{ is kernel version minor} \\
V
vit9696 已提交
2018
      &+ \mu &&
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        \text{Where }\mu\in(0,99)\text{ is kernel version patch}
    \end{aligned}
  \end{align*}
  Kernel version comparison is implemented as follows:
  \begin{align*}
    \alpha&=\begin{cases}
      \vspace{-0.5cm}\mbox{\hspace{8cm}} & \mbox{\hspace{5cm}} \\
      ParseDarwinVersion(\texttt{MinKernel}), & \text{If } \texttt{MinKernel} \text{ is valid} \\
      0 & Otherwise
    \end{cases} \\
    \beta&=\begin{cases}
      \vspace{-0.5cm}\mbox{\hspace{8cm}} & \mbox{\hspace{5cm}} \\
      ParseDarwinVersion(\texttt{MaxKernel}), & \text{If } \texttt{MaxKernel} \text{ is valid} \\
      \infty & Otherwise
    \end{cases} \\
    \gamma&=\begin{cases}
      \vspace{-0.5cm}\mbox{\hspace{8cm}} & \mbox{\hspace{5cm}} \\
      ParseDarwinVersion(FindDarwinVersion()), & \text{If valid } \texttt{"Darwin Kernel Version"} \text{ is found} \\
      \infty & Otherwise
    \end{cases} \\
    & \hspace{5cm} f(\alpha,\beta,\gamma)=\alpha\leq\gamma\leq\beta
  \end{align*}
  Here $ParseDarwinVersion$ argument is assumed to be 3 integers obtained by splitting Darwin kernel version
  string from left to right by the \texttt{.} symbol. $FindDarwinVersion$ function looks up
  Darwin kernel version by locating \texttt{"Darwin Kernel Version $\kappa$.$\lambda$.$\mu$"} string
  in the kernel image.

\item
  \texttt{MinKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2049
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
2050
  \textbf{Description}: Adds kernel extension on specified macOS version or newer.
2051

D
dakanji 已提交
2052
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
V
vit9696 已提交
2053 2054 2055 2056

\item
  \texttt{PlistPath}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2057
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2058 2059 2060 2061 2062 2063 2064 2065
  \textbf{Description}: Kext \texttt{Info.plist} path relative to bundle
  (e.g. \texttt{Contents/Info.plist}).

\end{enumerate}

\subsection{Block Properties}\label{kernelpropsblock}

\begin{enumerate}
2066 2067 2068
\item
  \texttt{Arch}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2069 2070
  \textbf{Failsafe}: \texttt{Any} (Apply to any supported architecture)\\
  \textbf{Description}: Kext block architecture (\texttt{i386}, \texttt{x86\_64}).
2071

V
vit9696 已提交
2072 2073 2074
\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2075
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2076
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
2077
  reference for the entry. Whether this value is used is implementation defined.
V
vit9696 已提交
2078 2079 2080 2081

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2082
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
2083
  \textbf{Description}: Set to \texttt{true} to block this kernel extension.
V
vit9696 已提交
2084 2085 2086 2087

\item
  \texttt{Identifier}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2088
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2089 2090 2091 2092
  \textbf{Description}: Kext bundle identifier
    (e.g. \texttt{com.apple.driver.AppleTyMCEDriver}).

\item
2093 2094
  \texttt{MaxKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2095
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
2096
  \textbf{Description}: Blocks kernel extension on specified macOS version or older.
2097

D
dakanji 已提交
2098
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
2099 2100 2101

\item
  \texttt{MinKernel}\\
V
vit9696 已提交
2102
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2103
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
2104
  \textbf{Description}: Blocks kernel extension on specified macOS version or newer.
2105

D
dakanji 已提交
2106
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
V
vit9696 已提交
2107 2108 2109

\end{enumerate}

2110 2111 2112 2113 2114
\subsection{Emulate Properties}\label{kernelpropsemu}

\begin{enumerate}
\item
  \texttt{Cpuid1Data}\\
A
Andrey1970AppleLife 已提交
2115
  \textbf{Type}: \texttt{plist\ data}, 16 bytes\\
2116
  \textbf{Failsafe}: All zero\\
2117
  \textbf{Description}: Sequence of \texttt{EAX}, \texttt{EBX}, \texttt{ECX},
2118 2119
  \texttt{EDX} values to replace \texttt{CPUID (1)} call in XNU kernel.

D
dakanji 已提交
2120
  This property primarily meets three requirements:
2121 2122 2123

  \begin{itemize}
    \tightlist
D
dakanji 已提交
2124 2125
    \item Enabling support for an unsupported CPU model (e.g. Intel Pentium).
    \item Enabling support for a CPU model not yet supported by a specific version of macOS (typically old versions).
2126 2127
    \item Enabling XCPM support for an unsupported CPU variant.
  \end{itemize}
2128

2129 2130 2131
  \emph{Note 1}: It may also be the case that the CPU model is supported but there is no power management supported
  (e.g. virtual machines). In this case, \texttt{MinKernel} and \texttt{MaxKernel} can be set to restrict CPU virtualisation and dummy power
  management patches to the particular macOS kernel version.
2132

2133 2134 2135
  \emph{Note 2}: Only the value of \texttt{EAX}, which represents the full CPUID,
  typically needs to be accounted for and remaining bytes should be left as zeroes.
  The byte order is Little Endian. For example, \texttt{C3 06 03 00} stands for CPUID
V
vit9696 已提交
2136
  \texttt{0x0306C3} (Haswell).
2137

2138
  \emph{Note 3}: For XCPM support it is recommended to use the following combinations.
2139 2140 2141

  \begin{itemize}
    \tightlist
V
vit9696 已提交
2142
    \item Haswell-E (\texttt{0x0306F2}) to Haswell (\texttt{0x0306C3}):\\
2143 2144 2145 2146
    \texttt{Cpuid1Data}: \texttt{C3 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00}\\
    \texttt{Cpuid1Mask}: \texttt{FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00}
    \item Broadwell-E (\texttt{0x0406F1}) to Broadwell (\texttt{0x0306D4}):\\
    \texttt{Cpuid1Data}: \texttt{D4 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00}\\
2147 2148 2149
    \texttt{Cpuid1Mask}: \texttt{FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00}
    \item Rocket Lake (\texttt{0x0A0670}) to Comet Lake (\texttt{0x0906EB}):\\
    \texttt{Cpuid1Data}: \texttt{EB 06 09 00 00 00 00 00 00 00 00 00 00 00 00 00}\\
2150 2151 2152
    \texttt{Cpuid1Mask}: \texttt{FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00}
  \end{itemize}

D
dakanji 已提交
2153
  \emph{Note 4}: Be aware that the following configurations are unsupported by XCPM (at least out of the box):
V
vit9696 已提交
2154 2155 2156 2157

  \begin{itemize}
    \tightlist
    \item Consumer Ivy Bridge (\texttt{0x0306A9}) as Apple disabled XCPM for Ivy Bridge
2158
      and recommends legacy power management for these CPUs. \texttt{\_xcpm\_bootstrap}
2159
      should manually be patched to enforce XCPM on these CPUs instead of this option.
V
vit9696 已提交
2160
    \item Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS.
D
dakanji 已提交
2161
      Legacy workarounds for older models can be found in the \texttt{Special NOTES} section of
V
vit9696 已提交
2162 2163
      \href{https://github.com/acidanthera/bugtracker/issues/365}{acidanthera/bugtracker\#365}.
  \end{itemize}
2164 2165 2166

\item
  \texttt{Cpuid1Mask}\\
A
Andrey1970AppleLife 已提交
2167
  \textbf{Type}: \texttt{plist\ data}, 16 bytes\\
2168
  \textbf{Failsafe}: All zero\\
2169 2170 2171
  \textbf{Description}: Bit mask of active bits in \texttt{Cpuid1Data}.

  When each \texttt{Cpuid1Mask} bit is set to 0, the original CPU bit is used,
V
vit9696 已提交
2172
  otherwise set bits take the value of \texttt{Cpuid1Data}.
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
\item
  \texttt{DummyPowerManagement}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Requirement}: 10.4\\
  \textbf{Description}: Disables \texttt{AppleIntelCpuPowerManagement}.

  \emph{Note 1}: This option is a preferred alternative to
  \texttt{NullCpuPowerManagement.kext} for CPUs without native power
  management driver in macOS.
2184

D
dakanji 已提交
2185
  \emph{Note 2}: While this option is typically needed to disable \texttt{AppleIntelCpuPowerManagement}
2186 2187
  on unsupported platforms, it can also be used to disable this kext in other situations
  (e.g. with \texttt{Cpuid1Data} left blank).
2188 2189 2190 2191

\item
  \texttt{MaxKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2192
  \textbf{Failsafe}: Empty\\
2193 2194
  \textbf{Description}: Emulates CPUID and applies \texttt{DummyPowerManagement} on specified macOS version or older.

D
dakanji 已提交
2195
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
2196 2197 2198 2199

\item
  \texttt{MinKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2200
  \textbf{Failsafe}: Empty\\
2201 2202
  \textbf{Description}: Emulates CPUID and applies \texttt{DummyPowerManagement} on specified macOS version or newer.

D
dakanji 已提交
2203
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
2204

2205 2206
\end{enumerate}

2207 2208 2209 2210 2211 2212
\subsection{Force Properties}\label{kernelpropsforce}

\begin{enumerate}
\item
  \texttt{Arch}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2213 2214
  \textbf{Failsafe}: \texttt{Any} (Apply to any supported architecture)\\
  \textbf{Description}: Kext architecture (\texttt{i386}, \texttt{x86\_64}).
2215 2216 2217 2218

\item
  \texttt{BundlePath}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2219
  \textbf{Failsafe}: Empty\\
2220 2221 2222 2223 2224 2225
  \textbf{Description}: Kext bundle path (e.g.
  \texttt{System\textbackslash Library \textbackslash Extensions \textbackslash IONetworkingFamily.kext}).

\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2226
  \textbf{Failsafe}: Empty\\
2227
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
2228
  reference for the entry. Whether this value is used is implementation defined.
2229 2230 2231 2232 2233

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
2234 2235
  \textbf{Description}: Set to \texttt{true} to load this kernel extension from the
  system volume when not present in the kernel cache.
2236 2237 2238 2239

\item
  \texttt{ExecutablePath}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2240
  \textbf{Failsafe}: Empty\\
2241 2242 2243 2244 2245 2246
  \textbf{Description}: Kext executable path relative to bundle
  (e.g. \texttt{Contents/MacOS/IONetworkingFamily}).

\item
  \texttt{Identifier}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2247
  \textbf{Failsafe}: Empty\\
2248 2249 2250 2251 2252 2253 2254
  \textbf{Description}: Kext identifier to perform presence checking
  before adding (e.g. \texttt{com.apple.iokit.IONetworkingFamily}).
  Only drivers which identifiers are not be found in the cache will be added.

\item
  \texttt{MaxKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2255
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
2256
  \textbf{Description}: Adds kernel extension on specified macOS version or older.
2257

D
dakanji 已提交
2258
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
2259 2260 2261 2262

\item
  \texttt{MinKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2263
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
2264
  \textbf{Description}: Adds kernel extension on specified macOS version or newer.
2265

D
dakanji 已提交
2266
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
2267 2268 2269 2270

\item
  \texttt{PlistPath}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2271
  \textbf{Failsafe}: Empty\\
2272 2273 2274 2275 2276 2277
  \textbf{Description}: Kext \texttt{Info.plist} path relative to bundle
  (e.g. \texttt{Contents/Info.plist}).

\end{enumerate}


V
vit9696 已提交
2278 2279 2280
\subsection{Patch Properties}\label{kernelpropspatch}

\begin{enumerate}
2281 2282 2283
\item
  \texttt{Arch}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2284 2285
  \textbf{Failsafe}: \texttt{Any} (Apply to any supported architecture)\\
  \textbf{Description}: Kext patch architecture (\texttt{i386}, \texttt{x86\_64}).
2286

V
vit9696 已提交
2287 2288 2289
\item
  \texttt{Base}\\
  \textbf{Type}: \texttt{plist\ string}\\
2290
  \textbf{Failsafe}: Empty (Ignored)\\
V
vit9696 已提交
2291
  \textbf{Description}: Selects symbol-matched base for patch lookup (or immediate
2292
  replacement) by obtaining the address of the provided symbol name.
V
vit9696 已提交
2293 2294 2295 2296

\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2297
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2298
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
2299
  reference for the entry. Whether this value is used is implementation defined.
V
vit9696 已提交
2300 2301 2302 2303

\item
  \texttt{Count}\\
  \textbf{Type}: \texttt{plist\ integer}\\
2304
  \textbf{Failsafe}: \texttt{0}\\
V
vit9696 已提交
2305 2306 2307 2308 2309 2310
  \textbf{Description}: Number of patch occurrences to apply. \texttt{0} applies
  the patch to all occurrences found.

\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2311
  \textbf{Failsafe}: \texttt{false}\\
V
vit9696 已提交
2312 2313 2314 2315 2316 2317
  \textbf{Description}: This kernel patch will not be used unless set to
  \texttt{true}.

\item
  \texttt{Find}\\
  \textbf{Type}: \texttt{plist\ data}\\
2318 2319 2320
  \textbf{Failsafe}: Empty (Immediate replacement at \texttt{Base})\\
  \textbf{Description}: Data to find. Must be equal to \texttt{Replace}
  in size if set.
V
vit9696 已提交
2321 2322 2323 2324

\item
  \texttt{Identifier}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2325
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2326 2327 2328 2329 2330 2331
  \textbf{Description}: Kext bundle identifier (e.g. \texttt{com.apple.driver.AppleHDA})
  or \texttt{kernel} for kernel patch.

\item
  \texttt{Limit}\\
  \textbf{Type}: \texttt{plist\ integer}\\
2332
  \textbf{Failsafe}: \texttt{0} (Search entire kext or kernel)\\
2333
  \textbf{Description}: Maximum number of bytes to search for.
V
vit9696 已提交
2334 2335 2336 2337

\item
  \texttt{Mask}\\
  \textbf{Type}: \texttt{plist\ data}\\
2338
  \textbf{Failsafe}: Empty (Ignored)\\
V
vit9696 已提交
2339
  \textbf{Description}: Data bitwise mask used during find comparison.
2340
  Allows fuzzy search by ignoring not masked (set to zero) bits.
2341
  Must be equal to \texttt{Replace} in size if set.
V
vit9696 已提交
2342 2343

\item
2344 2345
  \texttt{MaxKernel}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2346
  \textbf{Failsafe}: Empty\\
2347 2348
  \textbf{Description}: Patches data on specified macOS version or older.

D
dakanji 已提交
2349
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
2350 2351 2352

\item
  \texttt{MinKernel}\\
V
vit9696 已提交
2353
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2354
  \textbf{Failsafe}: Empty\\
2355 2356
  \textbf{Description}: Patches data on specified macOS version or newer.

D
dakanji 已提交
2357
  \emph{Note}: Refer to the \hyperlink{kernmatch}{\texttt{Add\ MaxKernel} description} for matching logic.
V
vit9696 已提交
2358 2359 2360 2361

\item
  \texttt{Replace}\\
  \textbf{Type}: \texttt{plist\ data}\\
2362
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
2363 2364 2365 2366 2367
  \textbf{Description}: Replacement data of one or more bytes.

\item
  \texttt{ReplaceMask}\\
  \textbf{Type}: \texttt{plist\ data}\\
2368
  \textbf{Failsafe}: Empty (Ignored)\\
V
vit9696 已提交
2369
  \textbf{Description}: Data bitwise mask used during replacement.
2370
  Allows fuzzy replacement by updating masked (set to non-zero) bits.
2371
  Must be equal to \texttt{Replace} in size if set.
V
vit9696 已提交
2372 2373 2374 2375

\item
  \texttt{Skip}\\
  \textbf{Type}: \texttt{plist\ integer}\\
D
dakanji 已提交
2376 2377 2378
  \textbf{Failsafe}: \texttt{0} (Do not skip any occurrences)\\
  \textbf{Description}: Number of found occurrences to skip before
  replacements are applied.
V
vit9696 已提交
2379 2380 2381 2382 2383 2384

\end{enumerate}

\subsection{Quirks Properties}\label{kernelpropsquirks}

\begin{enumerate}
2385

V
vit9696 已提交
2386 2387 2388
\item
  \texttt{AppleCpuPmCfgLock}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2389
  \textbf{Failsafe}: \texttt{false}\\
2390
  \textbf{Requirement}: 10.4\\
V
vit9696 已提交
2391 2392 2393 2394
  \textbf{Description}: Disables \texttt{PKG\_CST\_CONFIG\_CONTROL} (\texttt{0xE2})
  MSR modification in AppleIntelCPUPowerManagement.kext, commonly causing early
  kernel panic, when it is locked from writing.

Z
zhen-zen 已提交
2395 2396 2397 2398 2399 2400
  Some types of firmware lock the \texttt{PKG\_CST\_CONFIG\_CONTROL} MSR
  register and the bundled \texttt{ControlMsrE2} tool can be used to check its
  state. Note that some types of firmware only have this register locked on some
  cores. As modern firmware provide a \texttt{CFG Lock} setting that allows
  configuring the \texttt{PKG\_CST\_CONFIG\_CONTROL} MSR register lock, this
  option should be avoided whenever possible.
V
vit9696 已提交
2401

Z
zhen-zen 已提交
2402
  On APTIO firmware that do not provide a \texttt{CFG Lock}
D
dakanji 已提交
2403
  setting in the GUI, it is possible to access the option directly:
V
vit9696 已提交
2404 2405 2406 2407 2408

  \begin{enumerate}
    \tightlist
    \item Download \href{https://github.com/LongSoft/UEFITool/releases}{UEFITool} and
      \href{https://github.com/LongSoft/Universal-IFR-Extractor/releases}{IFR-Extractor}.
2409
    \item Open the firmware image in UEFITool and find \texttt{CFG Lock} unicode string.
G
Goldfish64 已提交
2410
      If it is not present, the firmware may not have this option and the process should therefore be discontinued.
2411
    \item Extract the \texttt{Setup.bin} PE32 Image Section (the UEFITool found) through the
V
vit9696 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420
      \texttt{Extract Body} menu option.
    \item Run IFR-Extractor on the extracted file (e.g. \texttt{./ifrextract Setup.bin Setup.txt}).
    \item Find \texttt{CFG Lock, VarStoreInfo (VarOffset/VarName):} in \texttt{Setup.txt} and
      remember the offset right after it (e.g. \texttt{0x123}).
    \item Download and run \href{http://brains.by/posts/bootx64.7z}{Modified GRUB Shell} compiled by
      \href{https://geektimes.com/post/258090}{brainsucker} or use
      \href{https://github.com/datasone/grub-mod-setup_var}{a newer version} by
      \href{https://github.com/datasone}{datasone}.
    \item Enter \texttt{setup\_var 0x123 0x00} command, where \texttt{0x123} should be replaced by
2421
      the actual offset, and reboot.
V
vit9696 已提交
2422 2423
  \end{enumerate}

V
vit9696 已提交
2424
  \textbf{Warning}: Variable offsets are unique not only to each motherboard but even to its firmware
V
vit9696 已提交
2425
  version. Never ever try to use an offset without checking.
V
vit9696 已提交
2426

Z
zhen-zen 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435
  On selected platforms, the \texttt{ControlMsrE2} tool can also change such
  hidden options. Pass desired argument: \texttt{lock}, \texttt{unlock} for
  \texttt{CFG Lock}. Or pass \texttt{interactive} to find and modify other
  hidden options.

  As a last resort, consider
  \href{https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt}{patching the BIOS}
  (for advanced users only).

2436 2437 2438
\item
  \texttt{AppleXcpmCfgLock}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2439
  \textbf{Failsafe}: \texttt{false}\\
2440
  \textbf{Requirement}: 10.8 (not required for older)\\
2441 2442 2443 2444
  \textbf{Description}: Disables \texttt{PKG\_CST\_CONFIG\_CONTROL} (\texttt{0xE2})
  MSR modification in XNU kernel, commonly causing early kernel panic, when it is
  locked from writing (XCPM power management).

2445 2446
  \emph{Note}: This option should be avoided whenever possible.
  Refer to the \texttt{AppleCpuPmCfgLock} description for details.
2447

2448 2449 2450
\item
  \texttt{AppleXcpmExtraMsrs}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2451
  \textbf{Failsafe}: \texttt{false}\\
2452
  \textbf{Requirement}: 10.8 (not required for older)\\
D
dakanji 已提交
2453
  \textbf{Description}: Disables multiple MSR access critical for certain CPUs,
2454
  which have no native XCPM support.
2455

2456
  This is typically used in conjunction with the \texttt{Emulate} section on Haswell-E,
A
Andrey1970AppleLife 已提交
2457
  Broadwell-E, Skylake-SP, and similar CPUs. More details on the XCPM patches are outlined in
2458 2459
  \href{https://github.com/acidanthera/bugtracker/issues/365}{acidanthera/bugtracker\#365}.

2460 2461 2462
  \emph{Note}: Additional not provided patches will be required for Ivy Bridge or Pentium
  CPUs. It is recommended to use \texttt{AppleIntelCpuPowerManagement.kext} for the former.

2463 2464 2465 2466
\item
  \texttt{AppleXcpmForceBoost}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2467
  \textbf{Requirement}: 10.8 (not required for older)\\
2468 2469 2470 2471 2472 2473 2474
  \textbf{Description}: Forces maximum performance in XCPM mode.

  This patch writes \texttt{0xFF00} to \texttt{MSR\_IA32\_PERF\_CONTROL} (\texttt{0x199}),
  effectively setting maximum multiplier for all the time.

  \emph{Note}: While this may increase the performance, this patch is strongly discouraged
  on all systems but those explicitly dedicated to scientific or media calculations.
D
dakanji 已提交
2475
  Only certain Xeon models typically benefit from the patch.
2476

2477 2478 2479
\item
  \texttt{CustomSMBIOSGuid}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2480
  \textbf{Failsafe}: \texttt{false}\\
2481
  \textbf{Requirement}: 10.4\\
2482 2483 2484
  \textbf{Description}: Performs GUID patching for \texttt{UpdateSMBIOSMode}
  \texttt{Custom} mode. Usually relevant for Dell laptops.

2485 2486 2487
\item
  \texttt{DisableIoMapper}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2488
  \textbf{Failsafe}: \texttt{false}\\
2489
  \textbf{Requirement}: 10.8 (not required for older)\\
2490 2491 2492
  \textbf{Description}: Disables \texttt{IOMapper} support in XNU (VT-d),
  which may conflict with the firmware implementation.

2493
  \emph{Note}: This option is a preferred alternative to deleting \texttt{DMAR}
D
dakanji 已提交
2494 2495
  ACPI table and disabling VT-d in firmware preferences, which does not obstruct
  VT-d support in other systems in case they need this.
2496

2497 2498 2499 2500
\item
  \texttt{DisableLinkeditJettison}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2501
  \textbf{Requirement}: 11\\
2502 2503
  \textbf{Description}: Disables \texttt{\_\_LINKEDIT} jettison code.

D
dakanji 已提交
2504 2505 2506
  This option lets \texttt{Lilu.kext}, and possibly other kexts, function
  in macOS Big Sur at their best performance levels without requiring the
  \texttt{keepsyms=1} boot argument.
2507

2508 2509 2510 2511
\item
  \texttt{DisableRtcChecksum}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2512
  \textbf{Requirement}: 10.4\\
2513 2514 2515 2516 2517 2518 2519 2520
  \textbf{Description}: Disables primary checksum (\texttt{0x58}-\texttt{0x59})
  writing in AppleRTC.

  \emph{Note 1}: This option will not protect other areas from being overwritten,
  see \href{https://github.com/acidanthera/RTCMemoryFixup}{RTCMemoryFixup}
  kernel extension if this is desired.

  \emph{Note 2}: This option will not protect areas from being overwritten
A
Andrey1970AppleLife 已提交
2521
  at firmware stage (e.g. macOS bootloader), see \texttt{AppleRtcRam} protocol
2522
  description if this is desired.
2523

2524 2525 2526 2527 2528 2529 2530
\item
  \texttt{ExtendBTFeatureFlags}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Requirement}: 10.8\\
  \textbf{Description}: Set \texttt{FeatureFlags} to \texttt{0x0F} for full
  functionality of Bluetooth, including Continuity.
2531

2532 2533 2534
  \emph{Note}: This option is a substitution for BT4LEContinuityFixup.kext,
  which does not function properly due to late patching progress.

V
vit9696 已提交
2535 2536 2537
\item
  \texttt{ExternalDiskIcons}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2538
  \textbf{Failsafe}: \texttt{false}\\
2539
  \textbf{Requirement}: 10.4\\
2540
  \textbf{Description}: Apply icon type patches to AppleAHCIPort.kext to force
V
vit9696 已提交
2541 2542
  internal disk icons for all AHCI disks.

D
dakanji 已提交
2543
  \emph{Note}: This option should be avoided whenever possible. Modern firmware
D
dakanji 已提交
2544
  typically have compatible AHCI controllers.
V
vit9696 已提交
2545

2546 2547 2548 2549
\item
  \texttt{ForceSecureBootScheme}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2550
  \textbf{Requirement}: 11\\
2551 2552 2553 2554 2555
  \textbf{Description}: Force \texttt{x86} scheme for IMG4 verification.

  \emph{Note}: This option is required on virtual machines when using
  \texttt{SecureBootModel} different from \texttt{x86legacy}.

2556 2557 2558 2559
\item
  \texttt{IncreasePciBarSize}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2560
  \textbf{Requirement}: 10.10\\
2561 2562
  \textbf{Description}: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

D
dakanji 已提交
2563 2564
  \emph{Note}: This option should be avoided whenever possible. A need for this option
  indicates misconfigured or defective firmware.
2565

2566 2567 2568
\item
  \texttt{LapicKernelPanic}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2569
  \textbf{Failsafe}: \texttt{false}\\
2570
  \textbf{Requirement}: 10.6 (64-bit)\\
V
vit9696 已提交
2571
  \textbf{Description}: Disables kernel panic on LAPIC interrupts.
2572

2573 2574 2575 2576
\item
  \texttt{LegacyCommpage}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2577
  \textbf{Requirement}: 10.4 - 10.6\\
2578 2579 2580 2581 2582
  \textbf{Description}: Replaces the default 64-bit commpage bcopy implementation with
  one that does not require SSSE3, useful for legacy platforms. This prevents a
  \texttt{commpage no match for last} panic due to no available 64-bit bcopy functions
  that do not require SSSE3.

2583 2584 2585
\item
  \texttt{PanicNoKextDump}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2586
  \textbf{Failsafe}: \texttt{false}\\
2587
  \textbf{Requirement}: 10.13 (not required for older)\\
2588 2589 2590
  \textbf{Description}: Prevent kernel from printing kext dump in the panic
  log preventing from observing panic details. Affects 10.13 and above.

2591 2592 2593 2594
\item
  \texttt{PowerTimeoutKernelPanic}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
2595
  \textbf{Requirement}: 10.15 (not required for older)\\
2596 2597 2598 2599 2600 2601 2602 2603
  \textbf{Description}: Disables kernel panic on setPowerState timeout.

  An additional security measure was added to macOS Catalina (10.15) causing
  kernel panic on power change timeout for Apple drivers. Sometimes it may cause
  issues on misconfigured hardware, notably digital audio, which sometimes fails
  to wake up. For debug kernels \texttt{setpowerstate\_panic=0} boot argument
  should be used, which is otherwise equivalent to this quirk.

2604 2605 2606 2607 2608 2609 2610
\item
  \texttt{SetApfsTrimTimeout}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{-1}\\
  \textbf{Requirement}: 10.14 (not required for older)\\
  \textbf{Description}: Set trim timeout in microseconds for APFS filesystems on SSDs.

D
dakanji 已提交
2611 2612
  The APFS filesystem is designed in a way that the space controlled via
  the spaceman structure is either used or free. This may be different in
V
vit9696 已提交
2613 2614 2615
  other filesystems where the areas can be marked as used, free, and
  \emph{unmapped}. All free space is trimmed (unmapped/deallocated)
  at macOS startup. The trimming procedure for NVMe drives happens
D
dakanji 已提交
2616
  in LBA ranges due to the nature of the \texttt{DSM} command with
V
vit9696 已提交
2617
  up to 256 ranges per command. The more fragmented the memory
D
dakanji 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
  on the drive is, the more commands are necessary to trim
  all the free space.

  Depending on the SSD controller and the level of drive fragmenation, the trim
  procedure may take a considerable amount of time, causing noticeable boot slowdown.
  The APFS driver explicitly ignores previously unmapped areas and repeatedly trims
  them on boot. To mitigate against such boot slowdowns, the macOS driver introduced a
  timeout (\texttt{9.999999} seconds) that stops the trim operation when not finished in
  time.

2628
  On several controllers, such as Samsung, where the deallocation process is relatively slow,
D
dakanji 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
  this timeout can be reached very quickly. Essentially, it means that the level of
  fragmentation is high, thus macOS will attempt to trim the same lower blocks that
  have previously been deallocated, but never have enough time to deallocate higher
  blocks. The outcome is that trimming on such SSDs will be non-functional soon
  after installation, resulting in additional wear on the flash.

  One way to workaround the problem is to increase the timeout to an extremely
  high value, which at the cost of slow boot times (extra minutes) will
  ensure that all the blocks are trimmed. Set this option to a high value,
  such as \texttt{4294967295}, to ensure that all blocks are trimmed.
  Alternatively, use over-provisioning, if supported, or create
V
vit9696 已提交
2640
  a dedicated unmapped partition where the reserve blocks can be found
D
dakanji 已提交
2641 2642 2643
  by the controller. Conversely, the trim operation can be disabled by
  setting a very low timeout value. e.g. \texttt{999}. Refer to this
  \href{https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html}{article}
2644
  for details.
2645

V
vit9696 已提交
2646
\item
2647
  \texttt{ThirdPartyDrives}\\
V
vit9696 已提交
2648
  \textbf{Type}: \texttt{plist\ boolean}\\
2649
  \textbf{Failsafe}: \texttt{false}\\
2650
  \textbf{Requirement}: 10.6 (not required for older)\\
2651 2652 2653
  \textbf{Description}: Apply vendor patches to IOAHCIBlockStorage.kext to enable
  native features for third-party drives, such as TRIM on SSDs or hibernation
  support on 10.15 and newer.
V
vit9696 已提交
2654

2655
  \emph{Note}: This option may be avoided on user preference. NVMe SSDs are
V
vit9696 已提交
2656
  compatible without the change. For AHCI SSDs on modern macOS version there
2657 2658 2659
  is a dedicated built-in utility called \texttt{trimforce}. Starting from 10.15
  this utility creates \texttt{EnableTRIM} variable in \texttt{APPLE\_BOOT\_VARIABLE\_GUID}
  namespace with \texttt{01 00 00 00} value.
V
vit9696 已提交
2660 2661 2662 2663

\item
  \texttt{XhciPortLimit}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
2664
  \textbf{Failsafe}: \texttt{false}\\
2665
  \textbf{Requirement}: 10.11 (not required for older)\\
V
vit9696 已提交
2666 2667 2668
  \textbf{Description}: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext,
  IOUSBHostFamily.kext) to remove USB port count limit of 15 ports.

2669 2670
  \emph{Note}: This option should be avoided whenever possible. USB port limit
  is imposed by the amount of used bits in locationID format and there is no
V
vit9696 已提交
2671 2672
  possible way to workaround this without heavy OS modification. The only
  valid solution is to limit the amount of used ports to 15 (discarding some).
2673
  More details can be found on \href{https://applelife.ru/posts/550233}{AppleLife.ru}.
V
vit9696 已提交
2674 2675 2676

\end{enumerate}

2677 2678
\subsection{Scheme Properties}\label{kernelpropsscheme}

2679
These properties are particularly relevant for older macOS operating systems.
D
dakanji 已提交
2680 2681
Refer to the \hyperref[legacyapple]{Legacy Apple OS} section for details on how
to install and troubleshoot such macOS installations.
2682

2683 2684 2685 2686 2687 2688 2689 2690
\begin{enumerate}

\item
  \texttt{FuzzyMatch}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Use \texttt{kernelcache} with different checksums when available.

D
dakanji 已提交
2691 2692
  On macOS 10.6 and earlier, \texttt{kernelcache} filename has a checksum, which essentially
  is \texttt{adler32} from SMBIOS product name and EfiBoot device path. On certain firmware,
D
dakanji 已提交
2693
  the EfiBoot device path differs between UEFI and macOS due to ACPI or hardware specifics,
2694 2695 2696 2697 2698 2699 2700 2701 2702
  rendering \texttt{kernelcache} checksum as always different.

  This setting allows matching the latest \texttt{kernelcache} with a suitable architecture
  when the \texttt{kernelcache} without suffix is unavailable, improving macOS 10.6 boot
  performance on several platforms.

\item
  \texttt{KernelArch}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
2703 2704
  \textbf{Failsafe}: \texttt{Auto} (Choose the preferred architecture automatically)\\
  \textbf{Description}: Prefer specified kernel architecture (\texttt{i386},
2705
  \texttt{i386-user32}, \texttt{x86\_64}) when available.
2706

D
dakanji 已提交
2707
  On macOS 10.7 and earlier, the XNU kernel can boot with architectures different from
2708 2709
  the usual \texttt{x86\_64}. This setting will use the specified architecture to boot
  macOS when it is supported by the macOS and the configuration:
2710 2711 2712 2713 2714

  \begin{itemize}
    \tightlist
    \item \texttt{i386} --- Use \texttt{i386} (32-bit) kernel when available.
    \item \texttt{i386-user32} --- Use \texttt{i386} (32-bit) kernel when available
2715
      and force the use of 32-bit userspace on 64-bit capable processors if supported
D
dakanji 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
      by the operating system.
      \begin{itemize}
        \tightlist
        \item On macOS, 64-bit capable processors are assumed to
          support \texttt{SSSE3}. This is not the case for older 64-bit capable Pentium
          processors, which cause some applications to crash on macOS~10.6. This behaviour
          corresponds to the \texttt{-legacy} kernel boot argument.
        \item This option is unavailable on macOS~10.4 and 10.5 when running on 64-bit firmware
          due to an uninitialised 64-bit segment in the XNU kernel, which causes AppleEFIRuntime
          to incorrectly execute 64-bit code as 16-bit code.
      \end{itemize}
2727 2728 2729
    \item \texttt{x86\_64} --- Use \texttt{x86\_64} (64-bit) kernel when available.
  \end{itemize}

D
dakanji 已提交
2730
  The algorithm used to determine the preferred kernel architecture is set out below.
2731 2732 2733 2734

  \begin{enumerate}
    \tightlist
    \item \texttt{arch} argument in image arguments (e.g. when launched
2735
    via UEFI Shell) or in \texttt{boot-args} variable overrides any compatibility
2736
    checks and forces the specified architecture, completing this algorithm.
2737
    \item OpenCore build architecture restricts capabilities to \texttt{i386}
2738
      and \texttt{i386-user32} mode for the 32-bit firmware variant.
2739 2740
    \item Determined EfiBoot version restricts architecture choice:
      \begin{itemize}
2741
      \item 10.4-10.5 --- \texttt{i386} or \texttt{i386-user32} (only on 32-bit firmware)
V
vit9696 已提交
2742 2743
      \item 10.6 --- \texttt{i386}, \texttt{i386-user32}, or \texttt{x86\_64}
      \item 10.7 --- \texttt{i386} or \texttt{x86\_64}
2744 2745
      \item 10.8 or newer --- \texttt{x86\_64}
      \end{itemize}
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
    \item If \texttt{KernelArch} is set to \texttt{Auto} and \texttt{SSSE3}
      is not supported by the CPU, capabilities are restricted to \texttt{i386-user32}
      if supported by EfiBoot.
    \item Board identifier (from SMBIOS) based on EfiBoot version
      disables \texttt{x86\_64} support on an unsupported model
      if any \texttt{i386} variant is supported. \texttt{Auto}
      is not consulted here as the list is not overridable in EfiBoot.
    \item \texttt{KernelArch} restricts the support to the explicitly
      specified architecture (when not set to \texttt{Auto}) if
      the architecture remains present in the capabilities.
    \item The best supported architecture is chosen in this order:
      \texttt{x86\_64}, \texttt{i386}, \texttt{i386-user32}.
2758 2759
  \end{enumerate}

D
dakanji 已提交
2760 2761 2762 2763 2764 2765
  Unlike macOS~10.7 (where certain board identifiers are treated as the \texttt{i386}
  only machines), and macOS~10.5 or earlier (where \texttt{x86\_64} is not supported
  by the macOS kernel), macOS~10.6 is very special. The architecture choice on macOS~10.6
  depends on many factors including not only the board identifier, but also the macOS
  product type (client vs server), macOS point release, and amount of RAM. The detection
  of all these is complicated and impractical, as several point releases had implementation
2766
  flaws resulting in a failure to properly execute the server detection in the first place.
D
dakanji 已提交
2767 2768 2769 2770 2771
  For this reason, OpenCore on macOS~10.6 falls back on the \texttt{x86\_64}
  architecture whenever it is supported by the board, as it is on macOS~10.7.

  A 64-bit Mac model compatibility matrix corresponding to actual
  EfiBoot behaviour on macOS 10.6.8 and 10.7.5 is outlined below.
2772

2773
  \begin{center}
2774
  \begin{tabular}{|p{0.9in}|c|c|c|c|}
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
  \hline
  \textbf{Model} & \textbf{10.6 (minimal)} & \textbf{10.6 (client)} & \textbf{10.6 (server)} & \textbf{10.7 (any)} \\
  \hline
  Macmini & 4,x (Mid 2010) & 5,x (Mid 2011) & 4,x (Mid 2010) & 3,x (Early 2009) \\
  \hline
  MacBook & Unsupported & Unsupported & Unsupported & 5,x (2009/09) \\
  \hline
  MacBookAir & Unsupported & Unsupported & Unsupported & 2,x (Late 2008) \\
  \hline
  MacBookPro & 4,x (Early 2008) & 8,x (Early 2011) & 8,x (Early 2011) & 3,x (Mid 2007) \\
  \hline
  iMac & 8,x (Early 2008) & 12,x (Mid 2011) & 12,x (Mid 2011) & 7,x (Mid 2007) \\
  \hline
  MacPro & 3,x (Early 2008) & 5,x (Mid 2010) & 3,x (Early 2008) & 3,x (Early 2008) \\
  \hline
  Xserve & 2,x (Early 2008) & 2,x (Early 2008) & 2,x (Early 2008) & 2,x (Early 2008) \\
  \hline
  \end{tabular}
  \end{center}

D
dakanji 已提交
2795 2796
  \emph{Note}: \texttt{3+2} and \texttt{6+4} hotkeys to choose the preferred architecture
  are unsupported as they are handled by EfiBoot and hence, difficult to detect.
2797

2798 2799 2800 2801 2802 2803 2804 2805
\item
  \texttt{KernelCache}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Auto}\\
  \textbf{Description}: Prefer specified kernel cache type (\texttt{Auto}, \texttt{Cacheless},
  \texttt{Mkext}, \texttt{Prelinked}) when available.

  Different variants of macOS support different kernel caching variants designed to improve
2806
  boot performance. This setting prevents the use of faster kernel caching variants
2807
  if slower variants are available for debugging and stability reasons. That is, by
2808
  specifying \texttt{Mkext}, \texttt{Prelinked} will be disabled for e.g. 10.6 but not for 10.7.
2809 2810 2811 2812

  The list of available kernel caching types and its current support in OpenCore is listed below.

  \begin{center}
2813
  \begin{tabular}{|p{0.67in}|c|c|c|c|c|c|c|}
2814 2815 2816
  \hline
  \textbf{macOS} & \textbf{i386 NC} & \textbf{i386 MK} & \textbf{i386 PK} & \textbf{x86\_64 NC} & \textbf{x86\_64 MK} & \textbf{x86\_64 PK} & \textbf{x86\_64 KC} \\
  \hline
V
vit9696 已提交
2817
  10.4 & YES & YES (V1) & NO (V1) & --- & --- & --- & --- \\
2818
  \hline
V
vit9696 已提交
2819
  10.5 & YES & YES (V1) & NO (V1) & --- & --- & --- & --- \\
2820
  \hline
V
vit9696 已提交
2821
  10.6 & YES & YES (V2) & YES (V2) & YES & YES (V2) & YES (V2) & --- \\
2822
  \hline
V
vit9696 已提交
2823
  10.7 & YES & --- & YES (V3) & YES & --- & YES (V3) & --- \\
2824
  \hline
V
vit9696 已提交
2825
  10.8-10.9 & --- & --- & --- & YES & --- & YES (V3) & --- \\
2826
  \hline
V
vit9696 已提交
2827
  10.10-10.15 & --- & --- & --- & --- & --- & YES (V3) & --- \\
2828
  \hline
2829
  11+ & --- & --- & --- & --- & --- & YES (V3) & YES \\
2830 2831 2832 2833
  \hline
  \end{tabular}
  \end{center}

D
dakanji 已提交
2834 2835 2836 2837
  \emph{Note}: The first version (V1) of the 32-bit \texttt{prelinkedkernel} is unsupported due to
  the corruption of kext symbol tables by the tools. On this version, the \texttt{Auto} setting will
  block \texttt{prelinkedkernel} booting. This also results in the \texttt{keepsyms=1} boot argument
  being non-functional for kext frames on these systems.
2838 2839 2840 2841

\end{enumerate}


V
vit9696 已提交
2842 2843 2844 2845
\section{Misc}\label{misc}

\subsection{Introduction}\label{miscintro}

2846 2847
This section contains miscellaneous configuration options affecting OpenCore operating system
loading behaviour in addition to other options that do not readily fit into other sections.
2848

D
dakanji 已提交
2849 2850 2851 2852
OpenCore broadly follows the ``bless'' model, also known as the ``Apple Boot Policy''. The primary purpose of
the ``bless'' model is to allow embedding boot options within the file system (and be accessible through a
specialised driver) as well as supporting a broader range of predefined boot paths as compared to the
removable media list set out in the UEFI specification.
2853

D
dakanji 已提交
2854 2855 2856
Partitions can only booted by OpenCore when they meet the requirements of a predefined \texttt{Scan policy}.
This policy sets out which specific file systems a partition must have, and which specific device types
a partition must be located on, to be made available by OpenCore as a boot option.
2857
Refer to the \texttt{ScanPolicy} property for details.
2858

D
dakanji 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
The scan process starts with enumerating all available partitions, filtered based on the \texttt{Scan policy}.
Each partition may generate multiple primary and alternate options. Primary options represent operating systems
installed on the media, while alternate options represent recovery options for the operating systems on the media.
\begin{itemize}
\tightlist
\item Alternate options may exist without primary options and vice versa.
\item Options may not necessarily represent operating systems on the same partition.
\item Each primary and alternate option can be an auxiliary option or not.
\begin{itemize}
\tightlist
2869
  \item Refer to the \texttt{HideAuxiliary} section for details.
D
dakanji 已提交
2870 2871
\end{itemize} \medskip
\end{itemize}
D
dakanji 已提交
2872 2873

The algorithm to determine boot options behaves as follows:
2874 2875 2876

\begin{enumerate}
\tightlist
D
dakanji 已提交
2877 2878 2879
\item Obtain all available partition handles filtered based on the \texttt{Scan policy} (and driver availability).
\item Obtain all available boot options from the \texttt{BootOrder} UEFI variable.
\item For each boot option found:
2880
  \begin{itemize}
D
dakanji 已提交
2881
  \item Retrieve the device path of the boot option.
2882 2883 2884
  % Scan policy restrictions are actually checked here as we want the function to be self-contained
  % for non-scan based startup.
  \item Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
2885
  \item On failure, if it is an OpenCore custom entry device path, pre-construct the corresponding custom entry and succeed.
D
dakanji 已提交
2886 2887 2888 2889 2890 2891
  \item Obtain the device handle by locating the device path of the resulting device path (ignore it on failure).
  \item Locate the device handle in the list of partition handles (ignore it if missing).
  % To determine device path type we can use LocateDevicePath RemainingDevicePath argument.
  % Just check whether it points to the END device path.
  \item For disk device paths (not specifying a bootloader), execute ``bless'' (may return > 1 entry).
  \item For file device paths, check for presence on the file system directly.
2892
  % Just kill all \EFI\APPLE\ paths.
D
dakanji 已提交
2893
  \item On the OpenCore boot partition, exclude all OpenCore bootstrap files by file header checks.
2894 2895 2896 2897 2898 2899 2900
  \item Mark device handle as \textit{used} in the list of partition handles if any.
  % Each partition handle will basically have a list of boot option entries for later quick lookup.
  \item Register the resulting entries as primary options and determine their types. \\
  The option will become auxiliary for some types (e.g. Apple HFS recovery).
  \end{itemize}
\item For each partition handle:
  \begin{itemize}
D
dakanji 已提交
2901 2902 2903
  \item If the partition handle is marked as \textit{unused}, execute ``bless'' primary option list retrieval. \\
    In case a \texttt{BlessOverride} list is set, both standard and custom ``bless'' paths will be found.
  \item On the OpenCore boot partition, exclude OpenCore bootstrap files using header checks.
2904 2905 2906
  \item Register the resulting entries as primary options and determine their types if found. \\
  The option will become auxiliary for some types (e.g. Apple HFS recovery).
  % Looking up primary and alternate handles could be done per handle to make sure the list is ordered.
D
dakanji 已提交
2907
  \item If a partition already has any primary options of the ``Apple Recovery'' type, proceed to the next handle.
2908 2909 2910
  \item Lookup alternate entries by ``bless'' recovery option list retrieval and predefined paths.
  \item Register the resulting entries as alternate auxiliary options and determine their types if found.
  \end{itemize}
2911
\item Custom entries and tools, except such pre-constructed previously, are added as primary options without any checks with respect to \texttt{Auxiliary}.
D
dakanji 已提交
2912
\item System entries, such as \texttt{Reset NVRAM}, are added as primary auxiliary options.
2913 2914
\end{enumerate}

D
dakanji 已提交
2915 2916 2917 2918
The display order of the boot options in the OpenCore picker and the boot process
are determined separately from the scanning algorithm.

The display order as follows:
2919 2920 2921

\begin{itemize}
\tightlist
D
dakanji 已提交
2922
\item Alternate options follow corresponding primary options. That is, Apple recovery options will follow the
2923 2924
  relevant macOS option whenever possible.
\item Options will be listed in file system handle firmware order to maintain an established order across
D
dakanji 已提交
2925
  reboots regardless of the operating system chosen for loading.
2926
\item Custom entries, tools, and system entries will be added after all other options.
D
dakanji 已提交
2927 2928
\item Auxiliary options will only be displayed upon entering ``Extended Mode'' in the OpenCore picker
(typically by pressing the \texttt{Space} key).
2929 2930 2931 2932 2933
\end{itemize}

The boot process is as follows:
\begin{itemize}
\tightlist
D
dakanji 已提交
2934 2935
\item Look up the first valid primary option in the \texttt{BootNext} UEFI variable.
\item On failure, look up the first valid primary option in the \texttt{BootOrder} UEFI variable.
2936 2937 2938 2939 2940
\item Mark the option as the default option to boot.
\item Boot option through the picker or without it depending on the \texttt{ShowPicker} option.
\item Show picker on failure otherwise.
\end{itemize}

D
dakanji 已提交
2941
\emph{Note 1}: This process will only work reliably when the \texttt{RequestBootVarRouting}
V
vit9696 已提交
2942
option is enabled or the firmware does not control UEFI boot options (\texttt{OpenDuetPkg} or
D
dakanji 已提交
2943 2944 2945
custom BDS). When \texttt{LauncherOption} is not enabled, other operating systems may
overwrite OpenCore settings and this property should therefore be enabled when planning
to use other operating systems.
2946

D
dakanji 已提交
2947 2948 2949
\emph{Note 2}: UEFI variable boot options boot arguments will be removed, if present, as
they may contain arguments that can compromise the operating system, which is undesirable
when secure boot is enabled.
V
vit9696 已提交
2950

D
dakanji 已提交
2951 2952 2953
\emph{Note 3}: Some operating systems, such as Windows, may create a boot option and mark it as
the topmost option upon first boot or after NVRAM resets from within OpenCore. When this happens,
the default boot entry choice will remain changed until the next manual reconfiguration.
A
Andrey1970AppleLife 已提交
2954

V
vit9696 已提交
2955 2956
\subsection{Properties}\label{miscprops}

V
vit9696 已提交
2957
\begin{enumerate}
2958 2959 2960
\item
  \texttt{Boot}\\
  \textbf{Type}: \texttt{plist\ dict}\\
D
dakanji 已提交
2961
  \textbf{Description}: Apply the boot configuration described in the
2962 2963
  \hyperref[miscbootprops]{Boot Properties} section below.

2964 2965 2966
\item
  \texttt{BlessOverride}\\
  \textbf{Type}: \texttt{plist\ array}\\
D
dakanji 已提交
2967
  \textbf{Description}: Add custom scanning paths through the bless model.
2968

D
dakanji 已提交
2969
  To be filled with \texttt{plist\ string} entries containing
D
dakanji 已提交
2970
  absolute UEFI paths to customised bootloaders such as
2971
  \texttt{\textbackslash EFI\textbackslash debian\textbackslash grubx64.efi}
D
dakanji 已提交
2972 2973
  for the Debian bootloader. This allows non-standard boot paths to be automatically
  discovered by the OpenCore picker. Designwise, they are equivalent to predefined blessed paths, such as
2974 2975
  \texttt{\textbackslash System\textbackslash Library\textbackslash CoreServices\textbackslash boot.efi}
  or \texttt{\textbackslash EFI\textbackslash Microsoft\textbackslash Boot\textbackslash bootmgfw.efi},
D
dakanji 已提交
2976
  but unlike predefined bless paths, they have the highest priority.
2977

V
vit9696 已提交
2978 2979 2980
\item
  \texttt{Debug}\\
  \textbf{Type}: \texttt{plist\ dict}\\
D
dakanji 已提交
2981
  \textbf{Description}: Apply debug configuration described in the
V
vit9696 已提交
2982 2983
  \hyperref[miscdebugprops]{Debug Properties} section below.

2984 2985 2986
\item
  \texttt{Entries}\\
  \textbf{Type}: \texttt{plist\ array}\\
D
dakanji 已提交
2987
  \textbf{Description}: Add boot entries to OpenCore picker.
2988

D
dakanji 已提交
2989
  To be filled with \texttt{plist\ dict} values, describing each load entry.
2990
  Refer to the \hyperref[miscentryprops]{Entry Properties} section below for details.
2991

2992 2993 2994
\item
  \texttt{Security}\\
  \textbf{Type}: \texttt{plist\ dict}\\
D
dakanji 已提交
2995
  \textbf{Description}: Apply the security configuration described in the
2996 2997
  \hyperref[miscsecurityprops]{Security Properties} section below.

2998
\item
2999
  \texttt{Tools}\label{misctools}\\
3000
  \textbf{Type}: \texttt{plist\ array}\\
D
dakanji 已提交
3001
  \textbf{Description}: Add tool entries to the OpenCore picker.
3002

D
dakanji 已提交
3003
  To be filled with \texttt{plist\ dict} values, describing each load entry.
3004
  Refer to the \hyperref[miscentryprops]{Entry Properties} section below for details.
3005

D
dakanji 已提交
3006 3007 3008 3009 3010
  \emph{Note}: Certain UEFI tools, such as UEFI Shell, can be very dangerous and
  \textbf{MUST NOT} appear in production configurations, paticularly in vaulted
  configurations as well as those protected by secure boot, as such tools can be
  used to bypass the secure boot chain.
  Refer to the \hyperref[uefitools]{UEFI} section for examples of UEFI tools.
3011

V
vit9696 已提交
3012 3013
\end{enumerate}

3014 3015 3016 3017
\subsection{Boot Properties}\label{miscbootprops}

\begin{enumerate}

V
vit9696 已提交
3018 3019 3020 3021
\item
  \texttt{ConsoleAttributes}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
D
dakanji 已提交
3022 3023 3024 3025 3026
  \textbf{Description}: Sets specific attributes for the console.

  The text renderer supports colour arguments as a sum of foreground and background
  colours based on the UEFI specification. The value for black background and for
  black foreground, \texttt{0}, is reserved.
V
vit9696 已提交
3027

D
dakanji 已提交
3028
  List of colour values and names:
V
vit9696 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

  \begin{itemize}
  \tightlist
  \item \texttt{0x00} --- \texttt{EFI\_BLACK}
  \item \texttt{0x01} --- \texttt{EFI\_BLUE}
  \item \texttt{0x02} --- \texttt{EFI\_GREEN}
  \item \texttt{0x03} --- \texttt{EFI\_CYAN}
  \item \texttt{0x04} --- \texttt{EFI\_RED}
  \item \texttt{0x05} --- \texttt{EFI\_MAGENTA}
  \item \texttt{0x06} --- \texttt{EFI\_BROWN}
  \item \texttt{0x07} --- \texttt{EFI\_LIGHTGRAY}
  \item \texttt{0x08} --- \texttt{EFI\_DARKGRAY}
  \item \texttt{0x09} --- \texttt{EFI\_LIGHTBLUE}
  \item \texttt{0x0A} --- \texttt{EFI\_LIGHTGREEN}
  \item \texttt{0x0B} --- \texttt{EFI\_LIGHTCYAN}
  \item \texttt{0x0C} --- \texttt{EFI\_LIGHTRED}
  \item \texttt{0x0D} --- \texttt{EFI\_LIGHTMAGENTA}
  \item \texttt{0x0E} --- \texttt{EFI\_YELLOW}
  \item \texttt{0x0F} --- \texttt{EFI\_WHITE}
  \item \texttt{0x00} --- \texttt{EFI\_BACKGROUND\_BLACK}
  \item \texttt{0x10} --- \texttt{EFI\_BACKGROUND\_BLUE}
  \item \texttt{0x20} --- \texttt{EFI\_BACKGROUND\_GREEN}
  \item \texttt{0x30} --- \texttt{EFI\_BACKGROUND\_CYAN}
  \item \texttt{0x40} --- \texttt{EFI\_BACKGROUND\_RED}
  \item \texttt{0x50} --- \texttt{EFI\_BACKGROUND\_MAGENTA}
  \item \texttt{0x60} --- \texttt{EFI\_BACKGROUND\_BROWN}
  \item \texttt{0x70} --- \texttt{EFI\_BACKGROUND\_LIGHTGRAY}
  \end{itemize}

D
dakanji 已提交
3058 3059
  \emph{Note}: This option may not work well with the \texttt{System} text renderer.
  Setting a background different from black could help with testing GOP functionality.
V
vit9696 已提交
3060

3061 3062 3063
\item
  \texttt{HibernateMode}\\
  \textbf{Type}: \texttt{plist\ string}\\
3064
  \textbf{Failsafe}: \texttt{None}\\
3065 3066 3067 3068
  \textbf{Description}: Hibernation detection mode. The following modes are supported:

  \begin{itemize}
  \tightlist
3069
    \item \texttt{None} --- Ignore hibernation state.
3070 3071 3072 3073 3074
    \item \texttt{Auto} --- Use RTC and NVRAM detection.
    \item \texttt{RTC} --- Use RTC detection.
    \item \texttt{NVRAM} --- Use NVRAM detection.
  \end{itemize}

3075 3076 3077
  \emph{Note}: If the firmware can handle hibernation itself (valid for Mac EFI firmware),
  then \texttt{None} should be specified to hand-off hibernation state as is to OpenCore.

3078 3079 3080 3081
\item
  \texttt{HideAuxiliary}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3082
  \textbf{Description}: Set to \texttt{true} to hide auxiliary entries from the picker menu.
3083 3084 3085 3086 3087 3088

  An entry is considered auxiliary when at least one of the following applies:

  \begin{itemize}
  \tightlist
    \item Entry is macOS recovery.
3089
    \item Entry is macOS Time Machine.
3090
    \item Entry is explicitly marked as \texttt{Auxiliary}.
V
vit9696 已提交
3091
    \item Entry is system (e.g. \texttt{Reset NVRAM}).
3092 3093
  \end{itemize}

D
dakanji 已提交
3094 3095
  To display all entries, the picker menu can be reloaded into ``Extended Mode'' by pressing the
  \texttt{Spacebar} key. Hiding auxiliary entries may increase boot performance on multi-disk systems.
3096 3097 3098 3099 3100

\item
  \texttt{LauncherOption}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Disabled}\\
D
dakanji 已提交
3101
  \textbf{Description}: Register the launcher option in the firmware preferences for persistence.
3102 3103 3104 3105 3106 3107

  Valid values:

  \begin{itemize}
  \tightlist
  \item \texttt{Disabled} --- do nothing.
D
dakanji 已提交
3108 3109 3110 3111 3112 3113
  \item \texttt{Full} --- create or update the top priority
  boot option in UEFI variable storage at bootloader startup.
  \begin{itemize}
  \tightlist
    \item For this option to work, \texttt{RequestBootVarRouting} is required to be enabled.
  \end{itemize}
3114
  \item \texttt{Short} --- create a short boot option instead of a complete one.
D
dakanji 已提交
3115 3116 3117 3118
  \begin{itemize}
  \tightlist
    \item This variant is useful for some older types of firmware, typically from Insyde,
    that are unable to manage full device paths.
3119 3120 3121 3122 3123 3124 3125
  \end{itemize}
  \item \texttt{System} --- create no boot option but assume specified custom option is blessed.
    \begin{itemize}
  \tightlist
    \item This variant is useful when relying on \texttt{ForceBooterSignature} quirk and
    OpenCore launcher path management happens through \texttt{bless} utilities without
    involving OpenCore.
D
dakanji 已提交
3126
  \end{itemize} \medskip
3127 3128
  \end{itemize}

D
dakanji 已提交
3129 3130 3131 3132 3133
  This option allows integration with third-party operating system installation and upgrades
  (which may overwrite the \texttt{\textbackslash EFI\textbackslash BOOT\textbackslash BOOTx64.efi}
  file). The BOOTx64.efi file is no longer used for bootstrapping OpenCore if a custom option is created.
  The custom path used for bootstrapping can be specified by using the \texttt{LauncherPath} option.

3134 3135 3136
  \emph{Note 1}: Some types of firmware may have NVRAM implementation flaws, no boot option
  support, or other incompatibilities. While unlikely, the use of this option may result in
  boot failures and should only be used exclusively on boards known to be compatible. Refer to
D
dakanji 已提交
3137
  \href{https://github.com/acidanthera/bugtracker/issues/1222}{acidanthera/bugtracker\#1222}
3138
  for some known issues affecting Haswell and other boards.
3139

D
dakanji 已提交
3140
  \emph{Note 2}: While NVRAM resets executed from OpenCore would not typically erase the boot option
D
dakanji 已提交
3141
  created in \texttt{Bootstrap}, executing NVRAM resets prior to loading OpenCore will erase the boot
3142
  option. Therefore, for significant implementation updates, such as was the case with OpenCore 0.6.4,
3143
  an NVRAM reset should be executed with \texttt{Bootstrap} disabled, after which it can be re-enabled.
3144 3145 3146 3147 3148

\item
  \texttt{LauncherPath}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Default}\\
D
dakanji 已提交
3149
  \textbf{Description}: Launch path for the \texttt{LauncherOption} property.
3150

D
dakanji 已提交
3151 3152
  \texttt{Default} points to \texttt{OpenCore.efi}. User specified paths,
  e.g. \texttt{\textbackslash EFI\textbackslash SomeLauncher.efi},
3153 3154 3155
  can be used to provide custom loaders, which are supposed to
  load \texttt{OpenCore.efi} themselves.

3156 3157 3158 3159
\item
  \texttt{PickerAttributes}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
D
dakanji 已提交
3160
  \textbf{Description}: Sets specific attributes for the OpenCore picker.
3161

D
dakanji 已提交
3162
  Different OpenCore pickers may be configured through the attribute mask containing
V
vit9696 已提交
3163 3164 3165 3166
  OpenCore-reserved (\texttt{BIT0}\textasciitilde\texttt{BIT15}) and OEM-specific
  (\texttt{BIT16}\textasciitilde\texttt{BIT31}) values.

  Current OpenCore values include:
3167 3168 3169

  \begin{itemize}
  \tightlist
V
vit9696 已提交
3170 3171
  \item \texttt{0x0001} --- \texttt{OC\_ATTR\_USE\_VOLUME\_ICON}, provides custom icons
    for boot entries:
3172

D
dakanji 已提交
3173
    For \texttt{Tools}, OpenCore will attempt loading a custom icon and fallback to a default icon on failure:
V
vit9696 已提交
3174
    \begin{itemize}
3175 3176 3177 3178 3179 3180
    \tightlist
      \item \texttt{ResetNVRAM} --- \texttt{Resources\textbackslash Image\textbackslash ResetNVRAM.icns}
        --- \texttt{ResetNVRAM.icns} from icons directory.
      \item \texttt{Tools\textbackslash <TOOL\_RELATIVE\_PATH>.icns}
        --- icon near the tool file with appended \texttt{.icns} extension.
    \end{itemize} \medskip
3181

D
dakanji 已提交
3182 3183
    For custom boot \texttt{Entries}, OpenCore will attempt loading a custom icon and fallback
    to the volume icon or the default icon on failure:
3184 3185 3186 3187
    \begin{itemize}
    \tightlist
      \item \texttt{<ENTRY\_PATH>.icns} --- icon near the entry file with appended \texttt{.icns} extension.
    \end{itemize} \medskip
3188

D
dakanji 已提交
3189 3190
    For all other entries, OpenCore will attempt loading a volume icon by searching
    as follows, and will fallback to the default icon on failure:
3191 3192
    \begin{itemize}
    \tightlist
3193
      \item \texttt{.VolumeIcon.icns} file at \texttt{Preboot} volume in per-volume directory
D
dakanji 已提交
3194
       (\texttt{/System/Volumes/Preboot/\{GUID\}/} when mounted at the default location within
3195
       macOS) for APFS (if present).
D
dakanji 已提交
3196 3197
      \item \texttt{.VolumeIcon.icns} file at the \texttt{Preboot} volume root
      (\texttt{/System/Volumes/Preboot/}, when mounted at the default location within macOS)
3198
      for APFS (otherwise).
D
dakanji 已提交
3199
      \item \texttt{.VolumeIcon.icns} file at the volume root for other filesystems.
3200
    \end{itemize} \medskip
3201

D
dakanji 已提交
3202 3203 3204 3205 3206 3207 3208 3209
    \emph{Note 1}: The Apple picker partially supports placing a volume icon file
    at the operating system's \texttt{Data} volume root, \texttt{/System/Volumes/Data/}, when
    mounted at the default location within macOS. This approach is flawed: the file is neither
    accessible to OpenCanopy nor to the Apple picker when FileVault 2, which is meant to be the
    default choice, is enabled. Therefore, OpenCanopy does not attempt supporting Apple's approach.
    A volume icon file may be placed at the root of the \texttt{Preboot} volume for compatibility
    with both OpenCanopy and the Apple picker, or use the \texttt{Preboot} per-volume location as
    above with OpenCanopy as a preferred alternative to Apple's approach. \medskip
3210 3211

    \emph{Note 2}: Be aware that using a volume icon on any drive overrides the normal
D
dakanji 已提交
3212 3213
    OpenCore picker behaviour for that drive of selecting the appropriate icon depending
    on whether the drive is internal or external. \medskip
3214

V
vit9696 已提交
3215 3216 3217
  \item \texttt{0x0002} --- \texttt{OC\_ATTR\_USE\_DISK\_LABEL\_FILE}, provides custom
    rendered titles for boot entries:
    \begin{itemize}
3218
    \tightlist
V
vit9696 已提交
3219
      \item \texttt{.disk\_label} (\texttt{.disk\_label\_2x}) file near bootloader for all filesystems.
3220
      \item \texttt{<TOOL\_NAME>.lbl} (\texttt{<TOOL\_NAME>.l2x}) file near tool for \texttt{Tools}.
V
vit9696 已提交
3221
    \end{itemize}
D
dakanji 已提交
3222 3223
    Prerendered labels can be generated via the \texttt{disklabel} utility or the \texttt{bless} command.
    When disabled or missing text labels, (\texttt{.contentDetails} or \texttt{.disk\_label.contentDetails})
V
vit9696 已提交
3224 3225
    are to be rendered instead.
  \item \texttt{0x0004} --- \texttt{OC\_ATTR\_USE\_GENERIC\_LABEL\_IMAGE}, provides predefined
D
dakanji 已提交
3226 3227
    label images for boot entries without custom entries. This may however give less detail for
    the actual boot entry.
3228 3229 3230
  \item \texttt{0x0008} --- \texttt{OC\_ATTR\_HIDE\_THEMED\_ICONS}, prefers builtin icons
    for certain icon categories to match the theme style. For example, this could force
    displaying the builtin Time Machine icon. Requires \texttt{OC\_ATTR\_USE\_VOLUME\_ICON}.
D
dakanji 已提交
3231 3232
  \item \texttt{0x0010} --- \texttt{OC\_ATTR\_USE\_POINTER\_CONTROL}, enables pointer control
  in the OpenCore picker when available. For example, this could make use of mouse or trackpad to
3233
  control UI elements.
3234
  \item \texttt{0x0020} --- \texttt{OC\_ATTR\_SHOW\_DEBUG\_DISPLAY}, enable display of additional
3235 3236
  timing and debug information, in Builtin picker in \texttt{DEBUG} and \texttt{NOOPT}
  builds only.
M
MikeBeaton 已提交
3237 3238
  \item \texttt{0x0040} --- \texttt{OC\_ATTR\_USE\_MINIMAL\_UI}, use minimal UI display, no
  Shutdown or Restart buttons, affects OpenCanopy and builtin picker.
3239 3240
  \end{itemize}

3241 3242 3243 3244
\item
  \texttt{PickerAudioAssist}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3245
  \textbf{Description}: Enable screen reader by default in the OpenCore picker.
3246

D
dakanji 已提交
3247 3248 3249 3250 3251
  For the macOS bootloader, screen reader preference is set in the \texttt{preferences.efires}
  archive in the \texttt{isVOEnabled.int32} file and is controlled by the operating system.
  For OpenCore screen reader support, this option is an independent equivalent.
  Toggling screen reader support in both the OpenCore picker and the macOS bootloader
  FileVault 2 login window can also be done by using the \texttt{Command} + \texttt{F5} key
3252 3253
  combination.

D
dakanji 已提交
3254
  \emph{Note}: The screen reader requires working audio support. Refer to the
3255
  \hyperref[uefiaudioprops]{\texttt{UEFI Audio Properties}} section for details.
3256

3257 3258 3259 3260
\item
  \texttt{PollAppleHotKeys}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3261
  \textbf{Description}: Enable \texttt{modifier hotkey} handling in the OpenCore picker.
3262

3263 3264
  In addition to \texttt{action hotkeys}, which are partially described in the \texttt{PickerMode}
  section and are typically handled by Apple BDS, modifier keys handled by the operating system
D
dakanji 已提交
3265 3266 3267 3268 3269
  bootloader (\texttt{boot.efi}) also exist. These keys allow changing the behaviour of the
  operating system by providing different boot modes.

  On certain firmware, using modifier keys may be problematic due to driver incompatibilities.
  To workaround this problem, this option allows registering certain hotkeys in a more permissive
3270 3271 3272 3273
  manner from within the OpenCore picker. Such extensions include support for tapping on key
  combinations before selecting the boot item, and for reliable detection of the \texttt{Shift} key
  when selecting the boot item, in order to work around the fact that hotkeys which are continuously
  held during boot cannot be reliably detected on many PS/2 keyboards.
D
dakanji 已提交
3274 3275

  This list of known \texttt{modifier hotkeys} includes:
3276 3277 3278 3279 3280 3281 3282
  \begin{itemize}
  \tightlist
  \item \texttt{CMD+C+MINUS} --- disable board compatibility checking.
  \item \texttt{CMD+K} --- boot release kernel, similar to \texttt{kcsuffix=release}.
  \item \texttt{CMD+S} --- single user mode.
  \item \texttt{CMD+S+MINUS} --- disable KASLR slide, requires disabled SIP.
  \item \texttt{CMD+V} --- verbose mode.
3283 3284
  \item \texttt{Shift+Enter}, \texttt{Shift+Index} --- safe mode, may be used in
  combination with \texttt{CTRL+Enter}, \texttt{CTRL+Index}.
3285 3286
  \end{itemize}

3287 3288 3289
\item
  \texttt{ShowPicker}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
3290
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3291
  \textbf{Description}: Show a simple picker to allow boot entry selection.
3292

3293 3294 3295 3296
\item
  \texttt{TakeoffDelay}\\
  \textbf{Type}: \texttt{plist\ integer}, 32 bit\\
  \textbf{Failsafe}: \texttt{0}\\
D
dakanji 已提交
3297 3298
  \textbf{Description}: Delay in microseconds executed before handling
  the OpenCore picker startup and \texttt{action hotkeys}.
3299 3300

  Introducing a delay may give extra time to hold the right \texttt{action hotkey}
D
dakanji 已提交
3301 3302 3303
  sequence to, for instance, boot into recovery mode. On some platforms, setting this
  option to a minimum of \texttt{5000-10000} microseconds may be required to access
  \texttt{action hotkeys} due to the nature of the keyboard driver.
3304

3305 3306 3307
\item
  \texttt{Timeout}\\
  \textbf{Type}: \texttt{plist\ integer}, 32 bit\\
3308
  \textbf{Failsafe}: \texttt{0}\\
D
dakanji 已提交
3309 3310
  \textbf{Description}: Timeout in seconds in the OpenCore picker before
  automatic booting of the default boot entry. Set to \texttt{0} to disable.
3311

3312
\item
3313
  \texttt{PickerMode}\\
3314 3315
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Builtin}\\
D
dakanji 已提交
3316
  \textbf{Description}: Choose picker used for boot management.
3317

D
dakanji 已提交
3318 3319 3320 3321
  \texttt{PickerMode} describes the underlying boot management with
  an optional user interface responsible for handling boot options.

  The following values are supported:
3322 3323 3324 3325

  \begin{itemize}
  \tightlist
  \item \texttt{Builtin} --- boot management is handled by OpenCore, a simple
D
dakanji 已提交
3326
  text-only user interface is used.
3327
  \item \texttt{External} --- an external boot management protocol is used
D
dakanji 已提交
3328
  if available. Otherwise, the \texttt{Builtin} mode is used.
3329
  \item \texttt{Apple} --- Apple boot management is used if available.
D
dakanji 已提交
3330
  Otherwise, the \texttt{Builtin} mode is used.
3331 3332
  \end{itemize}

D
dakanji 已提交
3333 3334 3335 3336 3337 3338 3339 3340
  Upon success, the \texttt{External} mode may entirely disable all boot management
  in OpenCore except for policy enforcement. In the \texttt{Apple} mode, it may
  additionally bypass policy enforcement. Refer to the \hyperref[ueficanopy]{OpenCanopy}
  plugin for an example of a custom user interface.

  The OpenCore built-in picker contains a set of actions chosen during the boot process.
  The list of supported actions is similar to Apple BDS and typically can be accessed by
  holding \texttt{action hotkeys} during the boot process.
3341

D
dakanji 已提交
3342
  The following actions are currently considered:
3343 3344 3345

  \begin{itemize}
  \tightlist
D
dakanji 已提交
3346 3347
  \item \texttt{Default} --- this is the default option, and it lets the built-in OpenCore
  picker load the default boot option as specified in the
3348
  \href{https://support.apple.com/HT202796}{Startup Disk} preference pane.
D
dakanji 已提交
3349 3350
  \item \texttt{ShowPicker} --- this option forces the OpenCore picker to be displayed. This can
  typically be achieved by holding the \texttt{OPT} key during boot. Setting \texttt{ShowPicker} to
3351
  \texttt{true} will make \texttt{ShowPicker} the default option.
D
dakanji 已提交
3352
  \item \texttt{ResetNvram} --- this option erases certain UEFI variables and is
D
dakanji 已提交
3353 3354
  normally executed by holding down the \texttt{CMD+OPT+P+R} key combination during boot.
  Another way to erase UEFI variables is to choose \texttt{Reset NVRAM} in the OpenCore picker.
3355
  This option requires \texttt{AllowNvramReset} to be set to \texttt{true}.
D
dakanji 已提交
3356 3357 3358 3359 3360 3361 3362
  \item \texttt{BootApple} --- this options performs booting to the first Apple
  operating system found unless the chosen default operating system is one from Apple.
  Hold the \texttt{X} key down to choose this option.
  \item \texttt{BootAppleRecovery} --- this option performs booting into the Apple operating
  system recovery partition. This is either that related to the default chosen operating system,
  or first one found when the chosen default operating system is not from Apple or does not have
  a recovery partition. Hold the \texttt{CMD+R} key combination down to choose this option.
3363 3364
  \end{itemize}

3365 3366 3367
  \emph{Note 1}: On non-Apple firmware \texttt{KeySupport}, \texttt{OpenUsbKbDxe}, or similar drivers are
  required for key handling. However, not all of the key handling functions can be implemented on several
  types of firmware.
3368

3369 3370 3371 3372 3373 3374 3375
  \emph{Note 2}: In addition to \texttt{OPT}, OpenCore supports using both the \texttt{Escape}
  and \texttt{Zero} keys to enter the OpenCore picker when \texttt{ShowPicker} is disabled.
  \texttt{Escape} exists to support co-existence with the Apple picker (including OpenCore \texttt{Apple}
  picker mode) and to support firmware that fails to report held \texttt{OPT} key, as on some PS/2 keyboards.
  In addition, \texttt{Zero} is provided to support systems on which \texttt{Escape} is already assigned to
  some other pre-boot firmware feature. In systems which do not require \texttt{KeySupport}, pressing and
  holding one of these keys from after power on until the picker appears should always be successful. The
3376
  same should apply when using \texttt{KeySupport} mode if it is correctly configured for the system, i.e.
3377 3378
  with a long enough \texttt{KeyForgetThreshold}. If pressing and holding the key is not successful to reliably
  enter the picker, multiple repeated keypresses may be tried instead.
D
dakanji 已提交
3379

D
dakanji 已提交
3380
  \emph{Note 3}: On Macs with problematic GOP, it may be difficult to access the Apple picker.
D
dakanji 已提交
3381 3382
  The \texttt{BootKicker} utility can be blessed to workaround this problem even without loading
  OpenCore. On some Macs however, the \texttt{BootKicker} utility cannot be run from OpenCore.
3383

3384 3385 3386 3387
\item
  \texttt{PickerVariant}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Auto}\\
D
dakanji 已提交
3388
  \textbf{Description}: Choose specific icon set to be used for boot management.
3389

3390 3391 3392
  The following values are supported:
  \begin{itemize}
  \tightlist
D
dakanji 已提交
3393
  \item \texttt{Auto} --- Automatically select one set of icons based on the \texttt{DefaultBackground}
3394 3395 3396 3397
  colour.
  \item \texttt{Default} --- Normal icon set (without prefix).
  \item \texttt{Old} --- Vintage icon set (\texttt{Old} filename prefix).
  \item \texttt{Modern} --- Nouveau icon set (\texttt{Modern} filename prefix).
D
dakanji 已提交
3398
  \item Other value --- Custom icon set if supported by installed resources.
3399 3400
  \end{itemize}

3401 3402
\end{enumerate}

V
vit9696 已提交
3403 3404 3405 3406
\subsection{Debug Properties}\label{miscdebugprops}

\begin{enumerate}

3407 3408 3409 3410
\item
  \texttt{AppleDebug}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3411
  \textbf{Description}: Enable writing the \texttt{boot.efi} debug log to the OpenCore log.
3412 3413 3414

  \emph{Note}: This option only applies to 10.15.4 and newer.

3415 3416 3417 3418
\item
  \texttt{ApplePanic}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3419
  \textbf{Description}: Save macOS kernel panic output to the OpenCore root partition.
3420 3421

  The file is saved as \texttt{panic-YYYY-MM-DD-HHMMSS.txt}. It is strongly
D
dakanji 已提交
3422 3423 3424
  recommended to set the \texttt{keepsyms=1} boot argument to see debug symbols
  in the panic log. In cases where it is not present, the \texttt{kpdescribe.sh}
  utility (bundled with OpenCore) may be used to partially recover the stacktrace.
3425

D
dakanji 已提交
3426 3427
  Development and debug kernels produce more useful kernel panic logs.
  Consider downloading and installing the \texttt{KernelDebugKit} from
3428
  \href{https://developer.apple.com}{developer.apple.com} when debugging a problem.
D
dakanji 已提交
3429 3430
  To activate a development kernel, the boot argument \texttt{kcsuffix=development} should be added.
  Use the \texttt{uname -a} command to ensure that the current loaded
3431 3432
  kernel is a development (or a debug) kernel.

D
dakanji 已提交
3433 3434 3435 3436
  In cases where the OpenCore kernel panic saving mechanism is not used, kernel panic
  logs may still be found in the \texttt{/Library/Logs/DiagnosticReports} directory.

  Starting with macOS Catalina, kernel panics are stored in JSON format and thus
3437 3438 3439 3440 3441 3442 3443
  need to be preprocessed before passing to \texttt{kpdescribe.sh}:

\begin{lstlisting}[label=kpanic, style=ocbash]
cat Kernel.panic | grep macOSProcessedStackshotData |
  python -c 'import json,sys;print(json.load(sys.stdin)["macOSPanicString"])'
\end{lstlisting}

3444 3445 3446
\item
  \texttt{DisableWatchDog}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
3447
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3448
  \textbf{Description}: Some types of firmware may not succeed in booting
D
dakanji 已提交
3449 3450
  the operating system quickly, especially in debug mode. This results in the
  watchdog timer aborting the process. This option turns off the watchdog timer.
3451

V
vit9696 已提交
3452
\item
V
vit9696 已提交
3453
  \texttt{DisplayDelay}\\
V
vit9696 已提交
3454
  \textbf{Type}: \texttt{plist\ integer}\\
3455
  \textbf{Failsafe}: \texttt{0}\\
D
dakanji 已提交
3456
  \textbf{Description}: Delay in microseconds executed after
V
vit9696 已提交
3457
  every printed line visible onscreen (i.e. console).
V
vit9696 已提交
3458

3459 3460 3461
\item
  \texttt{DisplayLevel}\\
  \textbf{Type}: \texttt{plist\ integer}, 64 bit\\
3462
  \textbf{Failsafe}: \texttt{0}\\
3463 3464
  \textbf{Description}: EDK II debug level bitmask (sum) showed onscreen.
  Unless \texttt{Target} enables console (onscreen) printing,
D
dakanji 已提交
3465 3466 3467
  onscreen debug output will not be visible.

  The following levels are supported (discover more in
3468
  \href{https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h}{DebugLib.h}):
3469 3470 3471

  \begin{itemize}
  \tightlist
3472
    \item \texttt{0x00000002} (bit \texttt{1}) --- \texttt{DEBUG\_WARN} in \texttt{DEBUG},
3473
      \texttt{NOOPT}, \texttt{RELEASE}.
3474
    \item \texttt{0x00000040} (bit \texttt{6}) --- \texttt{DEBUG\_INFO} in \texttt{DEBUG},
3475
      \texttt{NOOPT}.
3476 3477
    \item \texttt{0x00400000} (bit \texttt{22}) --- \texttt{DEBUG\_VERBOSE} in custom builds.
    \item \texttt{0x80000000} (bit \texttt{31}) --- \texttt{DEBUG\_ERROR} in \texttt{DEBUG},
3478 3479 3480
      \texttt{NOOPT}, \texttt{RELEASE}.
  \end{itemize}

3481 3482 3483 3484 3485 3486 3487 3488
\item
  \texttt{SerialInit}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Perform serial port initialisation.

  This option will perform serial port initialisation within OpenCore prior to enabling
  (any) debug logging. Serial port configuration is defined via PCDs at compile time
D
dakanji 已提交
3489 3490 3491
  in \texttt{gEfiMdeModulePkgTokenSpaceGuid} GUID.

  Default values as found in \texttt{MdeModulePkg.dec} are as follows:
3492

3493 3494 3495 3496 3497 3498
  \begin{itemize}
  \tightlist
    \item \texttt{PcdSerialBaudRate} --- Baud rate: \texttt{115200}.
    \item \texttt{PcdSerialLineControl} --- Line control: no parity, 8 data bits, 1 stop bit.
  \end{itemize}

3499
  Refer to the \hyperref[troubleshootingdebug]{\texttt{Debugging}} section for details.
3500

3501 3502 3503 3504 3505 3506
\item
  \texttt{SysReport}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Produce system report on ESP folder.

D
dakanji 已提交
3507 3508
  This option will create a \texttt{SysReport} directory in the ESP partition
  unless already present. The directory will contain ACPI, SMBIOS, and audio codec dumps.
G
Goldfish64 已提交
3509
  Audio codec dumps require an audio backend driver to be loaded.
3510

D
dakanji 已提交
3511 3512
  \emph{Note}: To maintain system integrity, the \texttt{SysReport} option is \textbf{not}
  available in \texttt{RELEASE} builds. Use a \texttt{DEBUG} build if this option is required.
3513

V
vit9696 已提交
3514 3515 3516
\item
  \texttt{Target}\\
  \textbf{Type}: \texttt{plist\ integer}\\
3517
  \textbf{Failsafe}: \texttt{0}\\
V
vit9696 已提交
3518
  \textbf{Description}: A bitmask (sum) of enabled logging targets.
D
dakanji 已提交
3519 3520
  Logging output is hidden by default and this option must be set
  when such output is required, such as when debugging.
3521 3522

  The following logging targets are supported:
V
vit9696 已提交
3523 3524 3525

  \begin{itemize}
  \tightlist
3526 3527 3528 3529 3530
    \item \texttt{0x01} (bit \texttt{0}) --- Enable logging, otherwise all log is discarded.
    \item \texttt{0x02} (bit \texttt{1}) --- Enable basic console (onscreen) logging.
    \item \texttt{0x04} (bit \texttt{2}) --- Enable logging to Data Hub.
    \item \texttt{0x08} (bit \texttt{3}) --- Enable serial port logging.
    \item \texttt{0x10} (bit \texttt{4}) --- Enable UEFI variable logging.
D
dakanji 已提交
3531
    \item \texttt{0x20} (bit \texttt{5}) --- Enable \texttt{non-volatile} UEFI variable logging.
3532
    \item \texttt{0x40} (bit \texttt{6}) --- Enable logging to file.
V
vit9696 已提交
3533 3534
  \end{itemize}

D
dakanji 已提交
3535
  Console logging prints less than the other variants.
V
vit9696 已提交
3536 3537 3538
  Depending on the build type (\texttt{RELEASE}, \texttt{DEBUG}, or
  \texttt{NOOPT}) different amount of logging may be read (from least to most).

D
dakanji 已提交
3539 3540
  To obtain Data Hub logs, use the following command in macOS
  (Note that Data Hub logs do not log kernel and kext patches):
V
vit9696 已提交
3541
\begin{lstlisting}[label=dhublog, style=ocbash]
V
vit9696 已提交
3542
ioreg -lw0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p
V
vit9696 已提交
3543 3544
\end{lstlisting}

D
dakanji 已提交
3545 3546 3547 3548 3549 3550
  UEFI variable log does not include some messages and has no performance data. To maintain system
  integrity, the log size is limited to 32 kilobytes. Some types of firmware may truncate it much
  earlier or drop completely if they have no memory. Using the \texttt{non-volatile} flag will cause
  the log to be written to NVRAM flash after every printed line.

  To obtain UEFI variable logs, use the following command in macOS:
V
vit9696 已提交
3551
\begin{lstlisting}[label=nvramlog, style=ocbash]
3552
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
V
vit9696 已提交
3553 3554 3555
  awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'
\end{lstlisting}

D
dakanji 已提交
3556 3557 3558
  \textbf{Warning}: Certain firmware appear to have defective NVRAM garbage collection.
  As a result, they may not be able to always free space after variable deletion. Do not
  enable \texttt{non-volatile} NVRAM logging on such devices unless specifically required.
3559

D
dakanji 已提交
3560 3561 3562
  While the OpenCore boot log already contains basic version information including build type
  and date, this information may also be found in the \texttt{opencore-version} NVRAM variable
  even when boot logging is disabled.
V
vit9696 已提交
3563

D
dakanji 已提交
3564 3565 3566 3567 3568
  File logging will create a file named \texttt{opencore-YYYY-MM-DD-HHMMSS.txt} (in UTC) under
  the EFI volume root with log contents (the upper case letter sequence is replaced with date
  and time from the firmware). Please be warned that some file system drivers present in
  firmware are not reliable and may corrupt data when writing files through UEFI. Log
  writing is attempted in the safest manner and thus, is very slow. Ensure that
3569
  \texttt{DisableWatchDog} is set to \texttt{true} when a slow drive is used. Try to
3570
  avoid frequent use of this option when dealing with flash drives as large I/O
D
dakanji 已提交
3571
  amounts may speed up memory wear and render the flash drive unusable quicker.
V
vit9696 已提交
3572

3573
  When interpreting the log, note that the lines are prefixed with a tag describing
D
dakanji 已提交
3574 3575 3576 3577
  the relevant location (module) of the log line allowing better attribution of the
  line to the functionality.

  The list of currently used tags is as follows.
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

  \textbf{Drivers and tools}:
  \begin{itemize}
  \tightlist
  \item \texttt{BMF} --- OpenCanopy, bitmap font
  \item \texttt{BS} --- Bootstrap
  \item \texttt{GSTT} --- GoptStop
  \item \texttt{HDA} --- AudioDxe
  \item \texttt{KKT} --- KeyTester
  \item \texttt{MMDD} --- MmapDump
  \item \texttt{OCPAVP} --- PavpProvision
  \item \texttt{OCRST} --- ResetSystem
  \item \texttt{OCUI} --- OpenCanopy
3591
  \item \texttt{OC} --- OpenCore main, also OcMainLib
3592
  \item \texttt{VMOPT} --- VerifyMemOpt
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
  \end{itemize}

  \textbf{Libraries}:
  \begin{itemize}
  \tightlist
  \item \texttt{AAPL} --- OcDebugLogLib, Apple EfiBoot logging
  \item \texttt{OCABC} --- OcAfterBootCompatLib
  \item \texttt{OCAE} --- OcAppleEventLib
  \item \texttt{OCAK} --- OcAppleKernelLib
  \item \texttt{OCAU} --- OcAudioLib
  \item \texttt{OCA} ---- OcAcpiLib
  \item \texttt{OCBP} --- OcAppleBootPolicyLib
  \item \texttt{OCB} --- OcBootManagementLib
3606
  \item \texttt{OCLBT} --- OcBlitLib
3607 3608 3609
  \item \texttt{OCCL} --- OcAppleChunkListLib
  \item \texttt{OCCPU} --- OcCpuLib
  \item \texttt{OCC} --- OcConsoleLib
3610
  \item \texttt{OCDC} --- OcDriverConnectionLib
3611 3612
  \item \texttt{OCDH} --- OcDataHubLib
  \item \texttt{OCDI} --- OcAppleDiskImageLib
3613
  \item \texttt{OCDM} --- OcDeviceMiscLib
3614 3615 3616
  \item \texttt{OCFS} --- OcFileLib
  \item \texttt{OCFV} --- OcFirmwareVolumeLib
  \item \texttt{OCHS} --- OcHashServicesLib
3617
  \item \texttt{OCI4} --- OcAppleImg4Lib
3618 3619 3620 3621 3622
  \item \texttt{OCIC} --- OcImageConversionLib
  \item \texttt{OCII} --- OcInputLib
  \item \texttt{OCJS} --- OcApfsLib
  \item \texttt{OCKM} --- OcAppleKeyMapLib
  \item \texttt{OCL} --- OcDebugLogLib
3623
  \item \texttt{OCM} --- OcMiscLib
3624 3625 3626
  \item \texttt{OCMCO} --- OcMachoLib
  \item \texttt{OCME} --- OcHeciLib
  \item \texttt{OCMM} --- OcMemoryLib
3627
  \item \texttt{OCPE} --- OcPeCoffLib, OcPeCoffExtLib
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
  \item \texttt{OCPI} --- OcFileLib, partition info
  \item \texttt{OCPNG} --- OcPngLib
  \item \texttt{OCRAM} --- OcAppleRamDiskLib
  \item \texttt{OCRTC} --- OcRtcLib
  \item \texttt{OCSB} --- OcAppleSecureBootLib
  \item \texttt{OCSMB} --- OcSmbiosLib
  \item \texttt{OCSMC} --- OcSmcLib
  \item \texttt{OCST} --- OcStorageLib
  \item \texttt{OCS} --- OcSerializedLib
  \item \texttt{OCTPL} --- OcTemplateLib
  \item \texttt{OCUC} --- OcUnicodeCollationLib
  \item \texttt{OCUT} --- OcAppleUserInterfaceThemeLib
  \item \texttt{OCXML} --- OcXmlLib
  \end{itemize}

V
vit9696 已提交
3643
\end{enumerate}
V
vit9696 已提交
3644

3645 3646 3647
\subsection{Security Properties}\label{miscsecurityprops}

\begin{enumerate}
3648

3649 3650 3651 3652 3653
\item
  \texttt{AllowNvramReset}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Allow \texttt{CMD+OPT+P+R} handling and enable
D
dakanji 已提交
3654
  showing \texttt{NVRAM Reset} entry in OpenCore picker.
3655

3656
  \emph{Note 1}: It is known that some Lenovo laptops have a firmware
3657
  bug, which makes them unbootable after performing NVRAM reset. Refer to
3658
  \href{https://github.com/acidanthera/bugtracker/issues/995}{acidanthera/bugtracker\#995}
3659
  for details.
3660

D
dakanji 已提交
3661 3662 3663
  \emph{Note 2}: Resetting NVRAM will also erase any boot options not backed up using
  the bless command. For example, Linux installations to custom locations not specified
  in BlessOverride
V
vit9696 已提交
3664

3665 3666 3667 3668 3669
\item
  \texttt{AllowSetDefault}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Allow \texttt{CTRL+Enter} and \texttt{CTRL+Index} handling
3670
  to set the default boot option in the OpenCore picker.
D
dakanji 已提交
3671

3672
  \emph{Note 1}: May be used in combination
3673 3674
  with \texttt{Shift+Enter} or \texttt{Shift+Index} when \texttt{PollAppleHotKeys} is
  enabled.
3675 3676 3677 3678

  \emph{Note 2}: In order to support systems with unresponsive modifiers during preboot
  (which includes \texttt{V1} and \texttt{V2} \texttt{KeySupport} mode on some firmware)
  OpenCore also allows holding the \texttt{=/+} key in order to trigger `set default' mode.
3679 3680 3681 3682 3683 3684
\item
  \texttt{ApECID}\\
  \textbf{Type}: \texttt{plist\ integer}, 64 bit\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Apple Enclave Identifier.

V
vit9696 已提交
3685
  Setting this value to any non-zero 64-bit integer will allow using
3686
  personalised Apple Secure Boot identifiers. To use this setting,
D
dakanji 已提交
3687 3688
  generate a random 64-bit number with a cryptographically secure
  random number generator. As an alternative, the first 8 bytes of \texttt{SystemUUID}
3689
  can be used for \texttt{ApECID}, this is found in macOS 11 for Macs without
3690 3691 3692
  the T2 chip.

  With this value set and \texttt{SecureBootModel} valid
D
dakanji 已提交
3693
  (and not \texttt{Disabled}), it is possible to achieve
V
vit9696 已提交
3694 3695
  \href{https://support.apple.com/en-us/HT208330}{\texttt{Full Security}} of Apple
  Secure Boot.
3696

D
dakanji 已提交
3697 3698 3699 3700 3701
  To start using personalised Apple Secure Boot, the operating system must be
  reinstalled or personalised. Unless the operating system is personalised,
  macOS DMG recovery cannot be loaded. In cases where DMG recovery is missing,
  it can be downloaded by using the \texttt{macrecovery} utility and saved in
  \texttt{com.apple.recovery.boot} as explained in the
3702
  \hyperref[reinstallmacos]{Tips and Tricks} section. Note that
3703 3704 3705
  \hyperref[securedmgloading]{DMG loading} needs to be set to \texttt{Signed}
  to use any DMG with Apple Secure Boot.

D
dakanji 已提交
3706
  To personalise an existing operating system, use the \texttt{bless} command
3707 3708 3709 3710 3711 3712 3713
  after loading to macOS DMG recovery. Mount the system volume partition,
  unless it has already been mounted, and execute the following command:

\begin{lstlisting}[label=blesspersona, style=ocbash]
bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
  --bootefi --personalize
\end{lstlisting}
3714

D
dakanji 已提交
3715
  On macOS versions before macOS 11, which introduced a dedicated \texttt{x86legacy}
3716
  model for models without the T2 chip, personalised Apple Secure Boot
D
dakanji 已提交
3717 3718 3719 3720 3721 3722 3723 3724
  may not work as expected. When reinstalling the operating system, the macOS Installer
  from macOS 10.15 and older will often run out of free memory on the \texttt{/var/tmp}
  partition when trying to install macOS with the personalised Apple Secure Boot.
  Soon after downloading the macOS installer image, an \texttt{Unable to verify macOS}
  error message will appear.

  To workaround this issue, allocate a dedicated RAM disk of 2 MBs for macOS personalisation by
  entering the following commands in the macOS recovery terminal before starting the installation:
3725 3726 3727 3728 3729 3730 3731 3732

\begin{lstlisting}[label=secureboot, style=ocbash]
disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk
\end{lstlisting}
3733

3734 3735 3736 3737 3738 3739 3740
\item
  \texttt{AuthRestart}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Enable \texttt{VirtualSMC}-compatible authenticated restart.

  Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering
3741 3742
  the password. A dedicated terminal command can be used to perform authenticated restarts:
  \texttt{sudo fdesetup authrestart}. It is also used when installing operating system updates.
3743

D
dakanji 已提交
3744
  VirtualSMC performs authenticated restarts by splitting and saving disk encryption keys between
3745 3746 3747
  NVRAM and RTC, which despite being removed as soon as OpenCore starts, may be
  considered a security risk and thus is optional.

3748 3749 3750 3751 3752 3753 3754
\item
  \texttt{BlacklistAppleUpdate}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Ignore boot options trying to update Apple peripheral firmware
  (e.g. \texttt{MultiUpdater.efi}).

D
dakanji 已提交
3755 3756 3757
  \emph{Note}: Certain operating systems, such as macOS Big Sur, are
  \href{https://github.com/acidanthera/bugtracker/issues/1255}{incapable} of
  disabling firmware updates by using the \texttt{run-efi-updater} NVRAM variable.
3758

V
vit9696 已提交
3759
\item \label{securedmgloading}
3760 3761 3762
  \texttt{DmgLoading}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Signed}\\
V
vit9696 已提交
3763
  \textbf{Description}: Define Disk Image (DMG) loading policy used for macOS Recovery.
3764 3765 3766 3767 3768

  Valid values:

  \begin{itemize}
  \tightlist
D
dakanji 已提交
3769 3770 3771
  \item \texttt{Disabled} --- loading DMG images will fail. The \texttt{Disabled}
    policy will still let the macOS Recovery load in most cases as typically,
    there are \texttt{boot.efi} files compatible with Apple Secure Boot.
3772 3773 3774
    Manually downloaded DMG images stored in \texttt{com.apple.recovery.boot}
    directories will not load, however.
  \item \texttt{Signed} --- only Apple-signed DMG images will load. Due to
D
dakanji 已提交
3775 3776 3777 3778
    the design of Apple Secure Boot, the \texttt{Signed} policy will let any
    Apple-signed macOS Recovery load regardless of the Apple Secure Boot state,
    which may not always be desired. While using signed DMG images is more desirable,
    verifying the image signature may slightly slow the boot time down (by up to 1 second).
3779
  \item \texttt{Any} --- any DMG images will mount as normal filesystems.
D
dakanji 已提交
3780 3781
    The \texttt{Any} policy is strongly discouraged and will result in boot
    failures when Apple Secure Boot is active.
3782 3783
  \end{itemize}

3784 3785 3786 3787
\item
  \texttt{EnablePassword}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
3788
  \textbf{Description}: Enable password protection to facilitate sensitive operations.
3789

D
dakanji 已提交
3790
  Password protection ensures that sensitive operations such as booting a non-default
3791 3792
  operating system (e.g. macOS recovery or a tool), resetting NVRAM storage,
  trying to boot into a non-default mode (e.g. verbose mode or safe mode) are not
D
dakanji 已提交
3793
  allowed without explicit user authentication by a custom password. Currently,
3794 3795
  password and salt are hashed with 5000000 iterations of SHA-512.

D
dakanji 已提交
3796 3797
  \emph{Note}: This functionality is still under development and is not ready for
  production environments.
3798

3799 3800 3801
\item
  \texttt{ExposeSensitiveData}\\
  \textbf{Type}: \texttt{plist\ integer}\\
3802
  \textbf{Failsafe}: \texttt{0x6}\\
3803 3804 3805 3806
  \textbf{Description}: Sensitive data exposure bitmask (sum) to operating system.

  \begin{itemize}
  \tightlist
D
dakanji 已提交
3807 3808 3809
    \item \texttt{0x01} --- Expose the printable booter path as an UEFI variable.
    \item \texttt{0x02} --- Expose the OpenCore version as an UEFI variable.
    \item \texttt{0x04} --- Expose the OpenCore version in the OpenCore picker menu title.
3810
    \item \texttt{0x08} --- Expose OEM information as a set of UEFI variables.
3811 3812
  \end{itemize}

D
dakanji 已提交
3813 3814
  The exposed booter path points to OpenCore.efi or its booter depending on the load order.
  To obtain the booter path, use the following command in macOS:
3815 3816 3817 3818
\begin{lstlisting}[label=nvrampath, style=ocbash]
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path
\end{lstlisting}

D
dakanji 已提交
3819
  To use a booter path to mount a booter volume, use the following command in macOS:
3820 3821 3822 3823 3824
\begin{lstlisting}[label=nvrampathmount, style=ocbash]
u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
  if [ "$u" != "" ]; then sudo diskutil mount $u ; fi
\end{lstlisting}

D
dakanji 已提交
3825
  To obtain the current OpenCore version, use the following command in macOS:
3826 3827
\begin{lstlisting}[label=nvramver, style=ocbash]
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version
3828 3829
\end{lstlisting}

D
dakanji 已提交
3830
  To obtain OEM information, use the following commands in macOS:
3831
\begin{lstlisting}[label=nvramoem, style=ocbash]
3832 3833 3834
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-product # SMBIOS Type1 ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-vendor  # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-board   # SMBIOS Type2 ProductName
3835 3836
\end{lstlisting}

3837 3838 3839
\item
  \texttt{HaltLevel}\\
  \textbf{Type}: \texttt{plist\ integer}, 64 bit\\
3840
  \textbf{Failsafe}: \texttt{0x80000000} (\texttt{DEBUG\_ERROR})\\
3841 3842 3843
  \textbf{Description}: EDK II debug level bitmask (sum) causing CPU to
  halt (stop execution) after obtaining a message of \texttt{HaltLevel}.
  Possible values match \texttt{DisplayLevel} values.
V
vit9696 已提交
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
\item
  \texttt{PasswordHash}\\
  \textbf{Type}: \texttt{plist\ data} 64 bytes\\
  \textbf{Failsafe}: all zero\\
  \textbf{Description}: Password hash used when \texttt{EnabledPassword} is set.

\item
  \texttt{PasswordSalt}\\
  \textbf{Type}: \texttt{plist\ data}\\
  \textbf{Failsafe}: empty\\
  \textbf{Description}: Password salt used when \texttt{EnabledPassword} is set.

V
vit9696 已提交
3857
\item \label{securevaulting}
3858 3859 3860
  \texttt{Vault}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Secure}\\
D
dakanji 已提交
3861
  \textbf{Description}: Enables the OpenCore vaulting mechanism.
V
vit9696 已提交
3862

3863 3864 3865 3866
  Valid values:

  \begin{itemize}
  \tightlist
V
vit9696 已提交
3867
  \item \texttt{Optional} --- require nothing, no vault is enforced, insecure.
3868 3869 3870 3871 3872 3873 3874 3875
  \item \texttt{Basic} --- require \texttt{vault.plist} file present
  in \texttt{OC} directory. This provides basic filesystem integrity
  verification and may protect from unintentional filesystem corruption.
  \item \texttt{Secure} --- require \texttt{vault.sig} signature file for
  \texttt{vault.plist} in \texttt{OC} directory. This includes \texttt{Basic}
  integrity checking but also attempts to build a trusted bootchain.
  \end{itemize}

D
dakanji 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
  The \texttt{vault.plist} file should contain SHA-256 hashes for all files used by OpenCore.
  The presence of this file is highly recommended to ensure that unintentional file modifications
  (including filesystem corruption) do not go unnoticed. To create this file automatically, use the
  \href{https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault}{\texttt{create\_vault.sh}}
  script. Notwithstanding the underlying file system, the path names and cases between \texttt{config.plist}
  and \texttt{vault.plist} must match.

  The \texttt{vault.sig} file should contain a raw 256 byte RSA-2048 signature from a SHA-256
  hash of \texttt{vault.plist}. The signature is verified against the public key embedded
  into \texttt{OpenCore.efi}.
V
vit9696 已提交
3886

D
dakanji 已提交
3887
  To embed the public key, either one of the following should be performed:
V
vit9696 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896

  \begin{itemize}
  \tightlist
  \item Provide public key during the \texttt{OpenCore.efi} compilation in
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c}{\texttt{OpenCoreVault.c}} file.
  \item Binary patch \texttt{OpenCore.efi} replacing zeroes with the public key
  between \texttt{=BEGIN OC VAULT=} and \texttt{==END OC VAULT==} ASCII markers.
  \end{itemize}

D
dakanji 已提交
3897 3898
  The RSA public key 520 byte format description can be found in Chromium OS documentation.
  To convert the public key from X.509 certificate or from PEM file use
3899
  \href{https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault}{RsaTool}.
V
vit9696 已提交
3900 3901


V
vit9696 已提交
3902 3903 3904 3905 3906
  The complete set of commands to:

  \begin{itemize}
  \tightlist
  \item Create \texttt{vault.plist}.
V
vit9696 已提交
3907
  \item Create a new RSA key (always do this to avoid loading old configuration).
V
vit9696 已提交
3908
  \item Embed RSA key into \texttt{OpenCore.efi}.
V
vit9696 已提交
3909 3910 3911 3912 3913
  \item Create \texttt{vault.sig}.
  \end{itemize}

  Can look as follows:
\begin{lstlisting}[label=createvault, style=ocbash]
V
vit9696 已提交
3914
cd /Volumes/EFI/EFI/OC
3915 3916
/path/to/create_vault.sh .
/path/to/RsaTool -sign vault.plist vault.sig vault.pub
V
vit9696 已提交
3917
off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
V
vit9696 已提交
3918
dd of=OpenCore.efi if=vault.pub bs=1 seek=$off count=528 conv=notrunc
V
vit9696 已提交
3919
rm vault.pub
V
vit9696 已提交
3920 3921
\end{lstlisting}

3922
  \emph{Note 1}: While it may appear obvious, an external
3923
  method is required to verify \texttt{OpenCore.efi} and \texttt{BOOTx64.efi} for
3924 3925
  secure boot path. For this, it is recommended to enable UEFI SecureBoot
  using a custom certificate and to sign \texttt{OpenCore.efi} and \texttt{BOOTx64.efi}
D
dakanji 已提交
3926
  with a custom key. More details on customising secure boot on modern firmware
D
dakanji 已提交
3927
  can be found in the \href{https://habr.com/post/273497/}{Taming UEFI SecureBoot}
V
vit9696 已提交
3928 3929
  paper (in Russian).

D
dakanji 已提交
3930 3931
  \emph{Note 2}: \texttt{vault.plist} and \texttt{vault.sig} are used regardless of
  this option when \texttt{vault.plist} is present or a public key is embedded into
3932 3933 3934
  \texttt{OpenCore.efi}. Setting this option will only ensure configuration sanity,
  and abort the boot process otherwise.

3935 3936 3937
\item
  \texttt{ScanPolicy}\\
  \textbf{Type}: \texttt{plist\ integer}, 32 bit\\
3938
  \textbf{Failsafe}: \texttt{0x10F0103}\\
3939 3940
  \textbf{Description}: Define operating system detection policy.

D
dakanji 已提交
3941 3942
  This value allows preventing scanning (and booting) untrusted
  sources based on a bitmask (sum) of a set of flags. As it is not possible
3943
  to reliably detect every file system or device type, this feature
D
dakanji 已提交
3944
  cannot be fully relied upon in open environments, and additional
3945 3946 3947
  measures are to be applied.

  Third party drivers may introduce additional security (and performance)
D
dakanji 已提交
3948 3949
  consideratons following the provided scan policy. The active Scan policy is exposed
  in the \texttt{scan-policy} variable of \texttt{4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102}
3950 3951 3952 3953
  GUID for UEFI Boot Services only.

  \begin{itemize}
  \tightlist
3954
    \item \texttt{0x00000001} (bit \texttt{0}) --- \texttt{OC\_SCAN\_FILE\_SYSTEM\_LOCK}, restricts
3955
    scanning to only known file systems defined as a part of this policy. File system
D
dakanji 已提交
3956 3957
    drivers may not be aware of this policy. Hence, to avoid mounting of undesired file
    systems, drivers for such file systems should not be loaded. This bit does not affect DMG mounting,
3958 3959
    which may have any file system. Known file systems are prefixed with
    \texttt{OC\_SCAN\_ALLOW\_FS\_}.
3960
    \item \texttt{0x00000002} (bit \texttt{1}) --- \texttt{OC\_SCAN\_DEVICE\_LOCK}, restricts scanning
D
dakanji 已提交
3961 3962 3963
    to only known device types defined as a part of this policy. It is not always possible
    to detect protocol tunneling, so be aware that on some systems, it may be possible for
    e.g. USB HDDs to be recognised as SATA instead. Cases like this must be reported. Known device
3964
    types are prefixed with \texttt{OC\_SCAN\_ALLOW\_DEVICE\_}.
3965
    \item \texttt{0x00000100} (bit \texttt{8}) --- \texttt{OC\_SCAN\_ALLOW\_FS\_APFS}, allows scanning
3966
    of APFS file system.
3967
    \item \texttt{0x00000200} (bit \texttt{9}) --- \texttt{OC\_SCAN\_ALLOW\_FS\_HFS}, allows scanning
3968 3969 3970
    of HFS file system.
    \item \texttt{0x00000400} (bit \texttt{10}) --- \texttt{OC\_SCAN\_ALLOW\_FS\_ESP}, allows scanning
    of EFI System Partition file system.
3971 3972 3973 3974
    \item \texttt{0x00000800} (bit \texttt{11}) --- \texttt{OC\_SCAN\_ALLOW\_FS\_NTFS}, allows scanning
    of NTFS (Msft Basic Data) file system.
    \item \texttt{0x00001000} (bit \texttt{12}) --- \texttt{OC\_SCAN\_ALLOW\_FS\_EXT}, allows scanning
    of EXT (Linux Root) file system.
3975
    \item \texttt{0x00010000} (bit \texttt{16}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SATA}, allow
3976
    scanning SATA devices.
3977
    \item \texttt{0x00020000} (bit \texttt{17}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SASEX}, allow
3978
    scanning SAS and Mac NVMe devices.
3979
    \item \texttt{0x00040000} (bit \texttt{18}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SCSI}, allow
3980
    scanning SCSI devices.
3981
    \item \texttt{0x00080000} (bit \texttt{19}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_NVME}, allow
3982
    scanning NVMe devices.
3983
    \item \texttt{0x00100000} (bit \texttt{20}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_ATAPI}, allow
3984
    scanning CD/DVD devices and old SATA.
3985
    \item \texttt{0x00200000} (bit \texttt{21}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_USB}, allow
3986
    scanning USB devices.
3987
    \item \texttt{0x00400000} (bit \texttt{22}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_FIREWIRE}, allow
3988
    scanning FireWire devices.
3989
    \item \texttt{0x00800000} (bit \texttt{23}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SDCARD}, allow
3990
    scanning card reader devices.
3991 3992
    \item \texttt{0x01000000} (bit \texttt{24}) --- \texttt{OC\_SCAN\_ALLOW\_DEVICE\_PCI}, allow
    scanning devices directly connected to PCI bus (e.g. VIRTIO).
3993 3994
  \end{itemize}

D
dakanji 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
  \emph{Note}: Given the above description, a value of \texttt{0xF0103} is expected to do the following:

  \begin{itemize}
  \tightlist
  \item Permit scanning SATA, SAS, SCSI, and NVMe devices with APFS file systems.
  \item Prevent scanning any devices with HFS or FAT32 file systems.
  \item Prevent scanning APFS file systems on USB, CD, and FireWire drives.
  \end{itemize}

  The combination reads as:
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
  \begin{itemize}
  \tightlist
  \item \texttt{OC\_SCAN\_FILE\_SYSTEM\_LOCK}
  \item \texttt{OC\_SCAN\_DEVICE\_LOCK}
  \item \texttt{OC\_SCAN\_ALLOW\_FS\_APFS}
  \item \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SATA}
  \item \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SASEX}
  \item \texttt{OC\_SCAN\_ALLOW\_DEVICE\_SCSI}
  \item \texttt{OC\_SCAN\_ALLOW\_DEVICE\_NVME}
  \end{itemize}

V
vit9696 已提交
4016
\item \label{secureapplesb}
4017 4018 4019 4020 4021
  \texttt{SecureBootModel}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Default}\\
  \textbf{Description}: Apple Secure Boot hardware model.

4022
  Sets Apple Secure Boot hardware model and policy. Specifying
4023 4024
  this value defines which operating systems will be bootable.
  Operating systems shipped before the specified model was released
D
dakanji 已提交
4025 4026 4027
  will not boot.

  Valid values:
4028 4029 4030

  \begin{itemize}
  \tightlist
4031
  \item \texttt{Default} --- Recent available model, currently set to \texttt{j137}.
4032
  \item \texttt{Disabled} --- No model, Secure Boot will be disabled.
A
Andrey1970AppleLife 已提交
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
  \item \texttt{j137} --- \texttt{iMacPro1,1 (December 2017). Minimum macOS 10.13.2 (17C2111)}
  \item \texttt{j680} --- \texttt{MacBookPro15,1 (July 2018). Minimum macOS 10.13.6 (17G2112)}
  \item \texttt{j132} --- \texttt{MacBookPro15,2 (July 2018). Minimum macOS 10.13.6 (17G2112)}
  \item \texttt{j174} --- \texttt{Macmini8,1 (October 2018). Minimum macOS 10.14 (18A2063)}
  \item \texttt{j140k} --- \texttt{MacBookAir8,1 (October 2018). Minimum macOS 10.14.1 (18B2084)}
  \item \texttt{j780} --- \texttt{MacBookPro15,3 (May 2019). Minimum macOS 10.14.5 (18F132)}
  \item \texttt{j213} --- \texttt{MacBookPro15,4 (July 2019). Minimum macOS 10.14.5 (18F2058)}
  \item \texttt{j140a} --- \texttt{MacBookAir8,2 (July 2019). Minimum macOS 10.14.5 (18F2058)}
  \item \texttt{j152f} --- \texttt{MacBookPro16,1 (November 2019). Minimum macOS 10.15.1 (19B2093)}
  \item \texttt{j160} --- \texttt{MacPro7,1 (December 2019). Minimum macOS 10.15.1 (19B88)}
  \item \texttt{j230k} --- \texttt{MacBookAir9,1 (March 2020). Minimum macOS 10.15.3 (19D2064)}
  \item \texttt{j214k} --- \texttt{MacBookPro16,2 (May 2020). Minimum macOS 10.15.4 (19E2269)}
  \item \texttt{j223} --- \texttt{MacBookPro16,3 (May 2020). Minimum macOS 10.15.4 (19E2265)}
  \item \texttt{j215} --- \texttt{MacBookPro16,4 (June 2020). Minimum macOS 10.15.5 (19F96)}
  \item \texttt{j185} --- \texttt{iMac20,1 (August 2020). Minimum macOS 10.15.6 (19G2005)}
  \item \texttt{j185f} --- \texttt{iMac20,2 (August 2020). Minimum macOS 10.15.6 (19G2005)}
  \item \texttt{x86legacy} --- \texttt{Macs without T2 chip and VMs. Minimum macOS 11.0.1 (20B29)}
4050 4051
  \end{itemize}

4052 4053 4054 4055 4056
  Apple Secure Boot appeared in macOS 10.13 on models with T2 chips.
  Since \texttt{PlatformInfo} and \texttt{SecureBootModel} are independent,
  Apple Secure Boot can be used with any SMBIOS with and without T2.
  Setting \texttt{SecureBootModel} to any valid value but \texttt{Disabled}
  is equivalent to
4057
  \href{https://support.apple.com/en-us/HT208330}{\texttt{Medium Security}}
4058
  of Apple Secure Boot. The \texttt{ApECID} value must also be specified to
4059 4060
  achieve \texttt{Full Security}. Check \texttt{ForceSecureBootScheme}
  when using Apple Secure Boot on a virtual machine.
4061

D
dakanji 已提交
4062 4063 4064 4065
  Note that enabling Apple Secure Boot is demanding on invalid configurations,
  faulty macOS installations, and on unsupported setups.

  Things to consider:
4066 4067 4068

  \begin{enumerate}
    \tightlist
D
dakanji 已提交
4069 4070 4071 4072
    \item As with T2 Macs, all unsigned kernel extensions as well as several
      signed kernel extensions, including NVIDIA Web Drivers, cannot be installed.
    \item The list of cached kernel extensions may be different, resulting in a need
      to change the list of \texttt{Added} or \texttt{Forced} kernel extensions.
4073
      For example, \texttt{IO80211Family} cannot be injected in this case.
D
dakanji 已提交
4074
    \item System volume alterations on operating systems with sealing, such as
4075
      macOS~11, may result in the operating system being unbootable. Do not
4076
      try to disable system volume encryption unless Apple Secure Boot is disabled.
D
dakanji 已提交
4077 4078
    \item Boot failures might occur when the platform requires certain settings,
      but they have not been enabled because the associated issues were not discovered earlier.
4079
      Be extra careful with \texttt{IgnoreInvalidFlexRatio} or \texttt{HashServices}.
D
dakanji 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088
    \item Operating systems released before Apple Secure Boot was released (e.g.
      macOS~10.12 or earlier), will still boot until UEFI Secure Boot is enabled.
      This is so because Apple Secure Boot treats these as incompatible
      and they are then handled by the firmware (as Microsoft Windows is).
    \item On older CPUs (e.g. before Sandy Bridge), enabling Apple Secure Boot
      might cause slightly slower loading (by up to 1 second).
    \item As the \texttt{Default} value will increase with time to support the latest
      major released operating system, it is not recommended to use the \texttt{ApECID}
      and the \texttt{Default} settings together.
4089
    \item Installing macOS with Apple Secure Boot enabled is not possible while using HFS+
D
dakanji 已提交
4090
      target volumes. This may include HFS+ formatted drives when no spare APFS drive is available.
4091 4092
  \end{enumerate}

D
dakanji 已提交
4093 4094 4095 4096 4097 4098
  The installed operating system may have sometimes outdated Apple Secure Boot manifests
  on the \texttt{Preboot} partition, resulting in boot failures. This is likely to be the
  case when an ``OCB: Apple Secure Boot prohibits this boot entry, enforcing!'' message
  is logged.

  When this happens, either reinstall the operating
4099
  system or copy the manifests (files with \texttt{.im4m} extension, such as
4100
  \texttt{boot.efi.j137.im4m}) from \texttt{/usr/standalone/i386} to
D
dakanji 已提交
4101 4102
  \texttt{/Volumes/Preboot/<UUID>/System/Library/CoreServices}. Here, \texttt{<UUID>}
  is the system volume identifier. On HFS+ installations, the manifests should be
4103
  copied to \texttt{/System/Library/CoreServices} on the system volume.
4104

D
dakanji 已提交
4105 4106
  For more details on how to configure Apple Secure Boot with UEFI Secure Boot,
  refer to the \hyperref[uefisecureboot]{UEFI Secure Boot} section.
4107

4108 4109
\end{enumerate}

4110
\subsection{Entry Properties}\label{miscentryprops}
4111 4112

\begin{enumerate}
4113 4114 4115
\item
  \texttt{Arguments}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4116
  \textbf{Failsafe}: Empty\\
4117 4118 4119
  \textbf{Description}: Arbitrary ASCII string used as boot arguments (load options)
  of the specified entry.

4120 4121 4122 4123
\item
  \texttt{Auxiliary}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
4124 4125 4126
  \textbf{Description}: Set to \texttt{true} to hide this entry
  when \texttt{HideAuxiliary} is also set to \texttt{true}.
  Press the \texttt{Spacebar} key to enter ``Extended Mode'' and display the entry when hidden.
4127

4128 4129 4130
\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4131
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
4132
  \textbf{Description}: Arbitrary ASCII string used to provide a human readable
4133
  reference for the entry. Whether this value is used is implementation defined.
4134

4135 4136 4137
\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4138
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
4139
  \textbf{Description}: Set to \texttt{true} activate this entry.
4140

4141 4142 4143
\item
  \texttt{Name}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4144
  \textbf{Failsafe}: Empty\\
D
dakanji 已提交
4145
  \textbf{Description}: Human readable entry name displayed in the OpenCore picker.
4146 4147 4148 4149

\item
  \texttt{Path}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4150
  \textbf{Failsafe}: Empty\\
4151 4152 4153 4154 4155
  \textbf{Description}: Entry location depending on entry type.

  \begin{itemize}
  \tightlist
  \item \texttt{Entries} specify external boot options, and therefore take device
D
dakanji 已提交
4156
  paths in the \texttt{Path} key. Care should be exercised as these values are not checked.
4157
  Example: \texttt{PciRoot(0x0)/Pci(0x1,0x1)/.../\textbackslash EFI\textbackslash COOL.EFI}
D
dakanji 已提交
4158 4159
  \item \texttt{Tools} specify internal boot options, which are part of the bootloader
  vault, and therefore take file paths relative to the \texttt{OC/Tools} directory.
V
vit9696 已提交
4160
  Example: \texttt{OpenShell.efi}.
4161
  \end{itemize}
4162

4163 4164 4165
\item
  \texttt{RealPath}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
V
vit9696 已提交
4166
  \textbf{Failsafe}: \texttt{false}\\
4167 4168
  \textbf{Description}: Pass full path to the tool when launching.

D
dakanji 已提交
4169 4170 4171 4172 4173
  This should typically be disabled as passing the tool directory may be unsafe with
  tools that accidentally attempt to access files without checking their integrity.
  Reasons to enable this property may include cases where tools cannot work
  without external files or may need them for enhanced functionality such as
  \texttt{memtest86} (for logging and configuration), or \texttt{Shell} (for
V
vit9696 已提交
4174
  automatic script execution).
4175

D
dakanji 已提交
4176 4177
  \emph{Note}: This property is only valid for \texttt{Tools} and cannot be
  specified for \texttt{Entries} (is always \texttt{true}).
4178

4179 4180 4181
\item
  \texttt{TextMode}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
V
vit9696 已提交
4182
  \textbf{Failsafe}: \texttt{false}\\
4183 4184
  \textbf{Description}: Run the entry in text mode instead of graphics mode.

D
dakanji 已提交
4185 4186 4187
  This setting may be beneficial for some older tools that require text output
  as all the tools are launched in graphics mode by default. Refer to the
  \hyperref[uefioutputprops]{Output Properties} section below for information on text modes.
4188 4189

\end{enumerate}
4190

V
vit9696 已提交
4191 4192 4193 4194
\section{NVRAM}\label{nvram}

\subsection{Introduction}\label{nvramintro}

4195
This section allows setting non-volatile UEFI variables commonly described
4196
as NVRAM variables. Refer to \texttt{man\ nvram} for details.
4197 4198 4199
The macOS operating system extensively uses NVRAM variables for OS --- Bootloader
--- Firmware intercommunication. Hence, the supply of several NVRAM variables
is required for the proper functioning of macOS.
V
vit9696 已提交
4200 4201 4202 4203

Each NVRAM variable consists of its name, value, attributes (refer to
UEFI specification), and its
\href{https://en.wikipedia.org/wiki/Universally_unique_identifier}{GUID},
4204 4205
representing which `section' the NVRAM variable belongs to. The macOS
operating system makes use of several GUIDs, including but not limited to:
V
vit9696 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214

\begin{itemize}
\tightlist
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14}
  (\texttt{APPLE\_VENDOR\_VARIABLE\_GUID})
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82}
  (\texttt{APPLE\_BOOT\_VARIABLE\_GUID})
V
vit9696 已提交
4215 4216 4217
\item
  \texttt{5EDDA193-A070-416A-85EB-2A1181F45B18}
  (Apple Hardware Configuration Storage for \texttt{MacPro7,1})
V
vit9696 已提交
4218 4219 4220
\item
  \texttt{8BE4DF61-93CA-11D2-AA0D-00E098032B8C}
  (\texttt{EFI\_GLOBAL\_VARIABLE\_GUID})
4221 4222 4223
\item
  \texttt{4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102}
  (\texttt{OC\_VENDOR\_VARIABLE\_GUID})
V
vit9696 已提交
4224 4225
\end{itemize}

4226
\emph{Note}: Some of the variables may be added by the
V
vit9696 已提交
4227
\hyperref[platforminfonvram]{PlatformNVRAM} or
4228
\hyperref[platforminfogeneric]{Generic} subsections of the
V
vit9696 已提交
4229
\hyperref[platforminfo]{PlatformInfo} section.
4230 4231
Please ensure that variables set in this section do not conflict with items
in those subsections as the implementation behaviour is undefined otherwise.
V
vit9696 已提交
4232

4233 4234 4235 4236
The \texttt{OC\_FIRMWARE\_RUNTIME} protocol implementation, currently offered
as a part of the \texttt{OpenRuntime} driver, is often required for macOS to
function properly. While this brings many benefits, there are some
limitations that should be considered for certain use cases.
4237 4238 4239

\begin{enumerate}
\item Not all tools may be aware of protected namespaces.\\
4240 4241 4242
  When \texttt{RequestBootVarRouting} is used, \texttt{Boot}-prefixed variable access
  is restricted and protected in a separate namespace. To access the original variables,
  tools must be aware of the \texttt{OC\_FIRMWARE\_RUNTIME} logic.
4243 4244
\end{enumerate}

V
vit9696 已提交
4245 4246 4247 4248 4249 4250 4251 4252
\subsection{Properties}\label{nvramprops}

\begin{enumerate}
\item
  \texttt{Add}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Sets NVRAM variables from a map (\texttt{plist\ dict})
  of GUIDs to a map (\texttt{plist\ dict}) of variable names and their values
D
dakanji 已提交
4253
  in \texttt{plist\ multidata} format. GUIDs must be provided in canonic string
V
vit9696 已提交
4254 4255
  format in upper or lower case (e.g. \texttt{8BE4DF61-93CA-11D2-AA0D-00E098032B8C}).

4256 4257 4258 4259
  The \texttt{EFI\_VARIABLE\_BOOTSERVICE\_ACCESS} and \texttt{EFI\_VARIABLE\_RUNTIME\_ACCESS}
  attributes of created variables are set. Variables will only be set if not present or deleted.
  That is, to overwrite an existing variable value, add the variable name to the \texttt{Delete} section.
  This approach enables the provision of default values until the operating system takes the lead.
V
vit9696 已提交
4260

4261 4262
  \emph{Note}: The implementation behaviour is undefined when the \texttt{plist\ key}
  does not conform to the GUID format.
V
vit9696 已提交
4263 4264

\item
4265
  \texttt{Delete}\\
V
vit9696 已提交
4266 4267 4268 4269 4270
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Description}: Removes NVRAM variables from a map (\texttt{plist\ dict})
  of GUIDs to an array (\texttt{plist\ array}) of variable names in
  \texttt{plist\ string} format.

4271 4272 4273
\item
  \texttt{LegacyEnable}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4274
  \textbf{Failsafe}: \texttt{false}\\
4275
  \textbf{Description}: Enables loading a NVRAM variable file named \texttt{nvram.plist}
4276 4277
  from EFI volume root.

4278
  This file must have a root \texttt{plist\ dictionary} type and contain two fields:
4279 4280 4281 4282 4283 4284 4285
  \begin{itemize}
  \tightlist
  \item \texttt{Version} --- \texttt{plist\ integer}, file version, must be set to 1.
  \item \texttt{Add} --- \texttt{plist\ dictionary}, equivalent to \texttt{Add} from
  \texttt{config.plist}.
  \end{itemize}

4286
  Variable loading happens prior to the \texttt{Delete} (and \texttt{Add}) phases. Unless
4287 4288
  \texttt{LegacyOverwrite} is enabled, it will not overwrite any existing variable.
  Variables allowed to be set must be specified in \texttt{LegacySchema}.
4289

4290
  Third-party scripts may be used to create \texttt{nvram.plist}
V
vit9696 已提交
4291 4292
  file. An example of such script can be found in \texttt{Utilities}. The use of third-party
  scripts may require \texttt{ExposeSensitiveData} set to \texttt{0x3} to provide
4293
  \texttt{boot-path} variable with the OpenCore EFI partition UUID.
4294

4295 4296 4297
  \textbf{Warning}: This feature can be dangerous, as it passes unprotected data to
  firmware variable services. Only use when no hardware NVRAM implementation is
  provided by the firmware or when the NVRAM implementation is incompatible.
4298

4299 4300 4301 4302 4303 4304 4305 4306
\item
  \texttt{LegacyOverwrite}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Permits overwriting firmware variables from \texttt{nvram.plist}.

  \emph{Note}: Only variables accessible from the operating system will be overwritten.

4307 4308 4309
\item
  \texttt{LegacySchema}\\
  \textbf{Type}: \texttt{plist\ dict}\\
D
dakanji 已提交
4310
  \textbf{Description}: Allows setting certain NVRAM variables from a map
4311 4312 4313
  (\texttt{plist\ dict}) of GUIDs to an array (\texttt{plist\ array}) of
  variable names in \texttt{plist\ string} format.

D
dakanji 已提交
4314
  \texttt{*} value can be used to accept all variables for certain GUID.
4315

4316 4317 4318
  \textbf{WARNING}: Choose variables carefully, as the nvram.plist file is not vaulted.
  For instance, do not include \texttt{boot-args} or \texttt{csr-active-config}, as
  these can be used to bypass SIP.
4319

4320 4321 4322 4323 4324
\item
  \texttt{WriteFlash}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Enables writing to flash memory for all added variables.
4325

4326 4327 4328
  \emph{Note}: This value should be enabled on most types of firmware but is
  left configurable to account for firmware that may have issues with NVRAM
  variable storage garbage collection or similar.
4329

V
vit9696 已提交
4330 4331
\end{enumerate}

4332 4333
The \texttt{nvram} command can be used to read NVRAM variable values from macOS
by concatenating the GUID and name variables separated by a \texttt{:} symbol.
V
vit9696 已提交
4334 4335 4336 4337 4338 4339 4340
For example, \texttt{nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args}.

A continuously updated variable list can be found in a corresponding document:
\href{https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0}{NVRAM Variables}.

\subsection{Mandatory Variables}\label{nvramvars}

4341
\textbf{Warning}: These variables may be added by the
4342
\hyperref[platforminfonvram]{PlatformNVRAM} or
4343
\hyperref[platforminfogeneric]{Generic} subsections of the
4344
\hyperref[platforminfo]{PlatformInfo} section.
P
PMheart 已提交
4345
Using \texttt{PlatformInfo} is the recommended way of setting these variables.
4346

V
vit9696 已提交
4347 4348 4349 4350 4351 4352 4353
The following variables are mandatory for macOS functioning:

\begin{itemize}
\tightlist
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures}
  \break
P
PMheart 已提交
4354
  32-bit \texttt{FirmwareFeatures}. Present on all Macs to avoid extra parsing of SMBIOS tables.
V
vit9696 已提交
4355 4356 4357 4358 4359 4360 4361 4362 4363
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask}
  \break
  32-bit \texttt{FirmwareFeaturesMask}. Present on all Macs to avoid extra parsing
  of SMBIOS tables.
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB}
  \break
  \texttt{BoardSerialNumber}. Present on newer Macs (2013+ at least) to avoid extra parsing
4364
  of SMBIOS tables, especially in \texttt{boot.efi}.
V
vit9696 已提交
4365 4366 4367 4368
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM}
  \break
  Primary network adapter MAC address or replacement value. Present on newer Macs
4369
  (2013+ at least) to avoid accessing special memory region, especially in \texttt{boot.efi}.
V
vit9696 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
\end{itemize}

\subsection{Recommended Variables}\label{nvramvarsrec}

The following variables are recommended for faster startup or other
improvements:

\begin{itemize}
\tightlist
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config}
  \break
  32-bit System Integrity Protection bitmask. Declared in XNU source code in
  \href{https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html}{csr.h}.
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures}
  \break
  Combined \texttt{FirmwareFeatures} and \texttt{ExtendedFirmwareFeatures}. Present on
P
PMheart 已提交
4388
  newer Macs to avoid extra parsing of SMBIOS tables.
V
vit9696 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask}
  \break
  Combined \texttt{FirmwareFeaturesMask} and \texttt{ExtendedFirmwareFeaturesMask}.
  Present on newer Macs to avoid extra parsing of SMBIOS tables.
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_BID}
  \break
  Hardware \texttt{BoardProduct} (e.g. \texttt{Mac-35C1E88140C3E6CF}). Not present on
4398
  real Macs, but used to avoid extra parsing of SMBIOS tables, especially in \texttt{boot.efi}.
V
vit9696 已提交
4399 4400 4401 4402 4403 4404 4405 4406
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_MLB}
  \break
  Hardware \texttt{BoardSerialNumber}. Override for MLB. Present on newer Macs (2013+ at least).
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_ROM}
  \break
  Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).
4407 4408 4409 4410
\item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:SSN}
  \break
  Serial number. Present on newer Macs (2013+ at least).
V
vit9696 已提交
4411 4412 4413 4414
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd}
  \break
  ASCII string defining default keyboard layout. Format is \texttt{lang-COUNTRY:keyboard},
V
vit9696 已提交
4415 4416
  e.g. \texttt{ru-RU:252} for Russian locale and ABC keyboard. Also accepts short forms:
  \texttt{ru:252} or \texttt{ru:0} (U.S. keyboard, compatible with 10.9). Full decoded
4417
  keyboard list from \texttt{AppleKeyboardLayouts-L.dat} can be found
4418
  \href{https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts}{here}. Using non-latin keyboard on 10.14
4419
  will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in case 10.14 is needed.
V
vit9696 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode}
  \break
  ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily
  source code in
  \href{https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html}{IOFireWireController.cpp}.
  It is recommended not to set this variable, which may speedup system startup. Setting to
  \texttt{full} is equivalent to not setting the variable and \texttt{none} disables
  FireWire security.
 \item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale}
  \break
4432
  One-byte data defining \texttt{boot.efi} user interface scaling. Should be \textbf{01} for normal
4433
  screens and \textbf{02} for HiDPI screens.
4434 4435 4436
 \item
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor}
  \break
A
Andrey1970AppleLife 已提交
4437
  Four-byte \texttt{BGRA} data defining \texttt{boot.efi} user interface background colour.
4438 4439
  Standard colours include \textbf{BF BF BF 00} (Light Gray) and \textbf{00 00 00 00}
  (Syrah Black). Other colours may be set at user's preference.
V
vit9696 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
\end{itemize}

\subsection{Other Variables}\label{nvramvarsother}

The following variables may be useful for certain configurations or
troubleshooting:

\begin{itemize}
\tightlist
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args}
  \break
  Kernel arguments, used to pass configuration to Apple kernel and drivers.
  There are many arguments, which may be found by looking for the use of
  \texttt{PE\_parse\_boot\_argn} function in the kernel or driver code.
4455
  Some of the known boot arguments include:
V
vit9696 已提交
4456 4457

  \begin{itemize}
4458 4459 4460 4461
  \item \texttt{acpi\_layer=0xFFFFFFFF}
  \item \texttt{acpi\_level=0xFFFF5F} (implies
    \href{https://github.com/acpica/acpica/blob/master/source/include/acoutput.h}
    {\texttt{ACPI\_ALL\_COMPONENTS}})
4462
  \item \texttt{arch=i386} (force kernel architecture to \texttt{i386}, see \texttt{KernelArch})
4463 4464 4465 4466 4467
  \item \texttt{batman=VALUE} (\texttt{AppleSmartBatteryManager} debug mask)
  \item \texttt{batman-nosmc=1} (disable \texttt{AppleSmartBatteryManager} SMC interface)
  \item \texttt{cpus=VALUE} (maximum number of CPUs used)
  \item \texttt{debug=VALUE} (debug mask)
  \item \texttt{io=VALUE} (\texttt{IOKit} debug mask)
V
vit9696 已提交
4468
  \item \texttt{ioaccel\_debug=VALUE} (\texttt{IOAccelerator} debug mask)
4469 4470
  \item \texttt{keepsyms=1} (show panic log debug symbols)
  \item \texttt{kextlog=VALUE} (kernel extension loading debug mask)
M
Mykola Grymalyuk 已提交
4471
  \item \texttt{nvram-log=1} (enables AppleEFINVRAM logs)
4472 4473 4474
  \item \texttt{nv\_disable=1} (disables NVIDIA GPU acceleration)
  \item \texttt{nvda\_drv=1} (legacy way to enable NVIDIA web driver, removed in 10.12)
  \item \texttt{npci=0x2000} (\href{https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972}{legacy}, disables \texttt{kIOPCIConfiguratorPFM64})
V
vit9696 已提交
4475 4476 4477
  \item \texttt{lapic\_dont\_panic=1} (disable lapic spurious interrupt panic on AP cores)
  \item \texttt{panic\_on\_display\_hang=1} (trigger panic on display hang)
  \item \texttt{panic\_on\_gpu\_hang=1} (trigger panic on GPU hang)
4478 4479
  \item \texttt{slide=VALUE} (manually set KASLR slide)
  \item \texttt{smcdebug=VALUE} (\texttt{AppleSMC} debug mask)
V
vit9696 已提交
4480
  \item \texttt{spin\_wait\_for\_gpu=1} (reduces GPU timeout on high load)
4481
  \item \texttt{-amd\_no\_dgpu\_accel} (alternative to \href{https://github.com/acidanthera/WhateverGreen}{WhateverGreen}'s \texttt{-radvesa} for new GPUs)
4482
  \item \texttt{-nehalem\_error\_disable} (disables the AppleTyMCEDriver)
4483
  \item \texttt{-no\_compat\_check} (disable model checking on 10.7+)
4484 4485 4486
  \item \texttt{-s} (single mode)
  \item \texttt{-v} (verbose mode)
  \item \texttt{-x} (safe mode)
V
vit9696 已提交
4487 4488
  \end{itemize}

4489 4490 4491 4492
  There are multiple external places summarising macOS argument lists:
  \href{https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x}{example 1},
  \href{https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x}{example 2}.

V
vit9696 已提交
4493 4494 4495
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg}
  \break
4496
  Booter arguments, similar to \texttt{boot-args} but for \texttt{boot.efi}. Accepts a set of
V
vit9696 已提交
4497
  arguments, which are hexadecimal 64-bit values with or without \texttt{0x}.
4498
  At different stages \texttt{boot.efi} will request different debugging (logging)
V
vit9696 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
  modes (e.g. after \texttt{ExitBootServices} it will only print to serial).
  Several booter arguments control whether these requests will succeed. The
  list of known requests is covered below:

  \begin{itemize}
  \tightlist
  \item \texttt{0x00} -- \texttt{INIT}.
  \item \texttt{0x01} -- \texttt{VERBOSE} (e.g. \texttt{-v}, force console logging).
  \item \texttt{0x02} -- \texttt{EXIT}.
  \item \texttt{0x03} -- \texttt{RESET:OK}.
  \item \texttt{0x04} -- \texttt{RESET:FAIL} (e.g. unknown \texttt{board-id}, hibernate mismatch, panic loop, etc.).
  \item \texttt{0x05} -- \texttt{RESET:RECOVERY}.
  \item \texttt{0x06} -- \texttt{RECOVERY}.
  \item \texttt{0x07} -- \texttt{REAN:START}.
  \item \texttt{0x08} -- \texttt{REAN:END}.
  \item \texttt{0x09} -- \texttt{DT} (can no longer log to DeviceTree).
  \item \texttt{0x0A} -- \texttt{EXITBS:START} (forced serial only).
  \item \texttt{0x0B} -- \texttt{EXITBS:END} (forced serial only).
  \item \texttt{0x0C} -- \texttt{UNKNOWN}.
  \end{itemize}
V
vit9696 已提交
4519

D
dakanji 已提交
4520 4521
  In 10.15, debugging support was defective up to the 10.15.4 release due to
  refactoring issues as well as the introduction of a
V
vit9696 已提交
4522
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleDebugLog.h}{new debug protocol}.
V
vit9696 已提交
4523 4524 4525
  Some of the arguments and their values below may not be valid for versions prior
  to 10.15.4. The list of known arguments is covered below:

V
vit9696 已提交
4526
  \begin{itemize}
V
vit9696 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
  \item \texttt{boot-save-log=VALUE} --- debug log save mode for normal boot.
  	\begin{itemize}
    \item \texttt{0}
    \item \texttt{1}
    \item \texttt{2} --- (default).
    \item \texttt{3}
    \item \texttt{4} --- (save to file).
    \end{itemize}
  \item \texttt{wake-save-log=VALUE} --- debug log save mode for hibernation wake.
  	\begin{itemize}
    \item \texttt{0} --- disabled.
    \item \texttt{1}
    \item \texttt{2} --- (default).
    \item \texttt{3} --- (unavailable).
    \item \texttt{4} --- (save to file, unavailable).
    \end{itemize}
  \item \texttt{breakpoint=VALUE} --- enables debug breaks (missing in production \texttt{boot.efi}).
    \begin{itemize}
    \item \texttt{0} --- disables debug breaks on errors (default).
    \item \texttt{1} --- enables debug breaks on errors.
    \end{itemize}
  \item \texttt{console=VALUE} --- enables console logging.
    \begin{itemize}
    \item \texttt{0} --- disables console logging.
    \item \texttt{1} --- enables console logging when debug protocol is missing (default).
    \item \texttt{2} --- enables console logging unconditionally (unavailable).
    \end{itemize}
  \item \texttt{embed-log-dt=VALUE} --- enables DeviceTree logging.
    \begin{itemize}
    \item \texttt{0} --- disables DeviceTree logging (default).
    \item \texttt{1} --- enables DeviceTree logging.
    \end{itemize}
  \item \texttt{kc-read-size=VALUE} --- Chunk size used for buffered I/O from network or
    disk for prelinkedkernel reading and related. Set to 1MB (0x100000) by default, can be
    tuned for faster booting.
  \item \texttt{log-level=VALUE} --- log level bitmask.
    \begin{itemize}
    \item \texttt{0x01} --- enables trace logging (default).
    \end{itemize}
  \item \texttt{serial=VALUE} --- enables serial logging.
    \begin{itemize}
    \item \texttt{0} --- disables serial logging (default).
    \item \texttt{1} --- enables serial logging for \texttt{EXITBS:END} onwards.
V
vit9696 已提交
4570
    \item \texttt{2} --- enables serial logging for \texttt{EXITBS:START} onwards.
V
vit9696 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579
    \item \texttt{3} --- enables serial logging when debug protocol is missing.
    \item \texttt{4} --- enables serial logging unconditionally.
    \end{itemize}
  \item \texttt{timestamps=VALUE} --- enables timestamp logging.
    \begin{itemize}
    \item \texttt{0} --- disables timestamp logging.
    \item \texttt{1} --- enables timestamp logging (default).
    \end{itemize}
  \item \texttt{log=VALUE} --- deprecated starting from 10.15.
V
vit9696 已提交
4580 4581 4582 4583 4584 4585 4586
    \begin{itemize}
    \item \texttt{1} --- AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint
    (classical ConOut/StdErr)
    \item \texttt{2} --- AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)
    \item \texttt{4} --- AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD
    file on EFI partition)
    \end{itemize}
V
vit9696 已提交
4587
  \item \texttt{debug=VALUE} --- deprecated starting from 10.15.
V
vit9696 已提交
4588 4589 4590 4591 4592 4593
  \begin{itemize}
  \item \texttt{1} --- enables print something to BOOTER.LOG (stripped code implies there
  may be a crash)
  \item \texttt{2} --- enables perf logging to /efi/debug-log in the device three
  \item \texttt{4} --- enables timestamp printing for styled printf calls
  \end{itemize}
V
vit9696 已提交
4594 4595 4596
  \item \texttt{level=VALUE}  --- deprecated starting from 10.15. Verbosity level of
  DEBUG output. Everything but \texttt{0x80000000} is stripped from the binary,
  and this is the default value.
4597 4598
  \end{itemize}

4599 4600 4601
  \emph{Note}: Enable the \texttt{AppleDebug} option to display verbose output from \texttt{boot.efi}
  on modern macOS versions. This will save the log to the general OpenCore log file. For versions before
  10.15.4, set \texttt{bootercfg} to \texttt{log=1}. This will print verbose output onscreen.
V
vit9696 已提交
4602 4603 4604
\item \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once}
  \break
  Booter arguments override removed after first launch. Otherwise equivalent to \texttt{bootercfg}.
4605 4606 4607 4608
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:efiboot-perf-record}
  \break
  Enable performance log saving in \texttt{boot.efi}. Performance log is saved to physical
4609 4610 4611
  memory and is pointed to by the \texttt{efiboot-perf-record-data} and \texttt{efiboot-perf-record-size}
  variables. Starting from 10.15.4, it can also be saved to the OpenCore log by setting the
  \texttt{AppleDebug} option.
V
vit9696 已提交
4612 4613
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:fmm-computer-name}
4614 4615
  \break
  Current saved host name. ASCII string.
V
vit9696 已提交
4616 4617
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda\_drv}
4618 4619 4620
  \break
  NVIDIA Web Driver control variable. Takes ASCII digit \texttt{1} or \texttt{0}
  to enable or disable installed driver.
4621 4622 4623 4624 4625 4626
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:run-efi-updater}
  \break
  Override EFI firmware updating support in macOS (MultiUpdater, ThorUtil, and so on).
  Setting this to \texttt{No} or alternative boolean-castable value will prevent
  any firmware updates in macOS starting with 10.10 at least.
4627 4628 4629 4630 4631
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:StartupMute}
  \break
  Mute startup chime sound in firmware audio support. 8-bit integer.
  The value of \texttt{0x00} means unmuted. Missing variable or any
A
Andrey1970AppleLife 已提交
4632
  other value means muted.
4633 4634 4635 4636 4637 4638 4639 4640
\item
  \texttt{7C436110-AB2A-4BBB-A880-FE41995C9F82:SystemAudioVolume}
  \break
  System audio volume level for firmware audio support. 8-bit integer.
  The bit of \texttt{0x80} means muted. Lower bits are used to encode
  volume range specific to installed audio codec. The value is capped
  by \texttt{MaximumBootBeepVolume} AppleHDA layout value to avoid
  too loud audio playback in the firmware.
V
vit9696 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
\item
  \texttt{5EDDA193-A070-416A-85EB-2A1181F45B18:PEXConf}
  \break
  PCI expansion slot configuration for \texttt{MacPro7,1}.
  8-byte sequence describing default PCI slot configuration.
  Each byte refers to a configuration for a dedicated PCI slot.

  \begin{itemize}
    \tightlist
    \item Slot 1 resides at \texttt{IOService:/AppleACPIPlatformExpert/PC01@0/AppleACPIPCI/BR1A@0}
      and its path is hardcoded. This slot is not behind a muxer.
    \item Slot 3 resides at \texttt{IOService:/AppleACPIPlatformExpert/PC03@0/AppleACPIPCI/BR3A@0}
      and its path is hardcoded. This slot is not behind a muxer.
    \item Slots 2, 4-8 are dynamic and are matched based on \texttt{AAPL,slot-name} property
      with \texttt{Slot-N} value, where \texttt{N} is the slot number. All these slots are
      behind the muxer.
  \end{itemize}

  Refer to the \href{https://support.apple.com/HT210104}{support page}
  for more details on how \texttt{MacPro7,1} slots are configured.

\item
  \texttt{5EDDA193-A070-416A-85EB-2A1181F45B18:SlotUtilPEXConf}
  \break
  User PCI expansion slot configuration for \texttt{MacPro7,1}.
  8-byte sequence describing user PCI slot configuration.

V
vit9696 已提交
4668 4669 4670 4671
\end{itemize}

\section{PlatformInfo}\label{platforminfo}

4672
Platform information consists of several identification fields
V
vit9696 已提交
4673
generated or filled manually to be compatible with macOS services. The
4674
base part of the configuration may be obtained from
V
vit9696 已提交
4675 4676
\href{https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels}{\texttt{AppleModels}},
which itself generates a set of interfaces based on a database
V
vit9696 已提交
4677
in \href{https://yaml.org/spec/1.2/spec.html}{YAML} format. These fields
D
dakanji 已提交
4678
are written to three destinations:
V
vit9696 已提交
4679 4680 4681 4682 4683 4684

\begin{itemize}
\tightlist
\item
  \href{https://www.dmtf.org/standards/smbios}{SMBIOS}
\item
V
vit9696 已提交
4685
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h}{Data
V
vit9696 已提交
4686 4687 4688 4689 4690 4691 4692
  Hub}
\item
  NVRAM
\end{itemize}

Most of the fields specify the overrides in SMBIOS, and their field
names conform to EDK2
4693
\href{https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h}{SmBios.h}
V
vit9696 已提交
4694 4695 4696
header file. However, several important fields reside in Data Hub and
NVRAM. Some of the values can be found in more than one field and/or
destination, so there are two ways to control their update process:
4697
manual, where all the values are specified (the default), and semi-automatic,
D
dakanji 已提交
4698
where (\texttt{Automatic}) only certain values are specified, and later used
V
vit9696 已提交
4699 4700
for system configuration.

4701 4702 4703
The \href{http://www.nongnu.org/dmidecode}{dmidecode} utility can be used to inspect
SMBIOS contents and a version with macOS specific enhancements can be downloaded
from \href{https://github.com/acidanthera/dmidecode/releases}{Acidanthera/dmidecode}.
V
vit9696 已提交
4704

V
vit9696 已提交
4705 4706 4707 4708 4709 4710
\subsection{Properties}\label{platforminfoprops}

\begin{enumerate}
\item
  \texttt{Automatic}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4711
  \textbf{Failsafe}: \texttt{false}\\
4712 4713
  \textbf{Description}: Generate PlatformInfo based on the \texttt{Generic}
  section instead of using values from the \texttt{DataHub}, \texttt{NVRAM},
V
vit9696 已提交
4714 4715 4716
  and \texttt{SMBIOS} sections.

  Enabling this option is useful when \texttt{Generic} section is flexible
A
Andrey1970AppleLife 已提交
4717 4718 4719 4720
  enough:
  \begin{itemize}
  \tightlist
  \item When enabled \texttt{SMBIOS}, \texttt{DataHub}, and
4721
  \texttt{PlatformNVRAM} data is unused.
A
Andrey1970AppleLife 已提交
4722 4723
  \item When disabled \texttt{Generic} section is unused.
  \end{itemize}
V
vit9696 已提交
4724

4725 4726 4727 4728 4729
  \textbf{Warning}: Setting this option to \texttt{false} is strongly discouraged when
  intending to update platform information. A \texttt{false} setting is typically only
  valid for minor corrections to SMBIOS values on legacy Apple hardware. In all other
  cases, setting \texttt{Automatic} to \texttt{false} may lead to hard-to-debug errors
  resulting from inconsistent or invalid settings.
V
vit9696 已提交
4730

J
John Davis 已提交
4731 4732 4733 4734 4735 4736 4737 4738 4739
\item
  \texttt{CustomMemory}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Use custom memory configuration defined in the
  \texttt{Memory} section. This completely replaces any existing memory
  configuration in SMBIOS, and is only active when \texttt{UpdateSMBIOS}
  is set to \texttt{true}.

V
vit9696 已提交
4740 4741 4742
\item
  \texttt{UpdateDataHub}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4743
  \textbf{Failsafe}: \texttt{false}\\
4744
  \textbf{Description}: Update Data Hub fields. These fields are read
4745 4746
  from the \texttt{Generic} or \texttt{DataHub} sections depending on
  the setting of the \texttt{Automatic} property.
4747 4748

  \emph{Note}: The implementation of the Data Hub protocol in EFI firmware on
4749 4750 4751 4752 4753
  virtually all systems, including Apple hardware, means that existing Data Hub
  entries cannot be overridden. New entries are added to the end of the Data Hub
  instead, with macOS ignoring old entries. This can be worked around by
  replacing the Data Hub protocol using the \texttt{ProtocolOverrides} section.
  Refer to the \texttt{DataHub} protocol override description for details.
V
vit9696 已提交
4754 4755 4756
\item
  \texttt{UpdateNVRAM}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4757
  \textbf{Failsafe}: \texttt{false}\\
V
vit9696 已提交
4758 4759
  \textbf{Description}: Update NVRAM fields related to platform information.

4760 4761 4762
  These fields are read from the \texttt{Generic} or \texttt{PlatformNVRAM}
  sections depending on the setting of the \texttt{Automatic} property.
  All the other fields are to be specified with the \texttt{NVRAM} section.
V
vit9696 已提交
4763

4764 4765 4766 4767
  If \texttt{UpdateNVRAM} is set to \texttt{false}, the aforementioned
  variables can be updated with the \hyperref[nvram]{\texttt{NVRAM}}
  section. If \texttt{UpdateNVRAM} is set to \texttt{true}, the behaviour is
  undefined when any of the fields are present in the \texttt{NVRAM} section.
V
vit9696 已提交
4768 4769 4770
\item
  \texttt{UpdateSMBIOS}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4771
  \textbf{Failsafe}: \texttt{false}\\
4772
  \textbf{Description}: Update SMBIOS fields. These fields are read from the
V
vit9696 已提交
4773
  \texttt{Generic} or \texttt{SMBIOS} sections depending on
4774
  the setting of the \texttt{Automatic} property.
V
vit9696 已提交
4775 4776 4777
\item
  \texttt{UpdateSMBIOSMode}\\
  \textbf{Type}: \texttt{plist\ string}\\
4778
  \textbf{Failsafe}: \texttt{Create}\\
V
vit9696 已提交
4779 4780 4781 4782 4783
  \textbf{Description}: Update SMBIOS fields approach:

  \begin{itemize}
  \tightlist
  \item
4784
    \texttt{TryOverwrite} --- \texttt{Overwrite} if new size is \textless{}= than
V
vit9696 已提交
4785
    the page-aligned original and there are no issues with legacy region
D
dakanji 已提交
4786
    unlock. \texttt{Create} otherwise. Has issues on some types of firmware.
V
vit9696 已提交
4787 4788 4789 4790 4791 4792 4793 4794
  \item
    \texttt{Create} --- Replace the tables with newly allocated
    EfiReservedMemoryType at AllocateMaxAddress without any fallbacks.
  \item
    \texttt{Overwrite} --- Overwrite existing gEfiSmbiosTableGuid and
    gEfiSmbiosTable3Guid data if it fits new size. Abort with
    unspecified state otherwise.
  \item
4795 4796
    \texttt{Custom} --- Write SMBIOS tables
    (\texttt{gEfiSmbios(3)TableGuid}) to \texttt{gOcCustomSmbios(3)TableGuid}
D
dakanji 已提交
4797
    to workaround firmware overwriting SMBIOS contents at
V
vit9696 已提交
4798 4799
    ExitBootServices. Otherwise equivalent to \texttt{Create}. Requires
    patching AppleSmbios.kext and AppleACPIPlatform.kext to read from
4800 4801
    another GUID: \texttt{"EB9D2D31"} - \texttt{"EB9D2D35"} (in ASCII),
    done automatically by \texttt{CustomSMBIOSGuid} quirk.
V
vit9696 已提交
4802
  \end{itemize}
4803

4804 4805
  \emph{Note}: A side effect of using the \texttt{Custom} approach that it
  makes SMBIOS updates exclusive to macOS, avoiding a collision with existing
D
dakanji 已提交
4806 4807
  Windows activation and custom OEM software but potentially obstructing
  the operation of Apple-specific tools.
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
\item
  \texttt{UseRawUuidEncoding}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Use raw encoding for SMBIOS UUIDs.

  Each UUID \texttt{AABBCCDD-EEFF-GGHH-IIJJ-KKLLMMNNOOPP} is
  essentially a hexadecimal 16-byte number. It can be encoded
  in two ways:

  \begin{itemize}
    \tightlist
    \item \texttt{Big Endian} --- by writing all the bytes as they are without making
      any order changes (\texttt{\{AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP\}}).
      This method is also known as \href{https://tools.ietf.org/html/rfc4122}{RFC 4122}
      encoding or \texttt{Raw} encoding.
    \item \texttt{Little Endian} --- by interpreting the bytes as numbers and using
      Little Endian byte representation
      (\texttt{\{DD CC BB AA FF EE HH GG II JJ KK LL MM NN OO PP\}}).
  \end{itemize}

4829
  The SMBIOS specification did not explicitly specify the encoding format for the
4830 4831 4832 4833 4834 4835
  UUID up to SMBIOS 2.6, where it stated that \texttt{Little Endian} encoding
  shall be used. This led to the confusion in both firmware implementations
  and system software as different vendors used different encodings prior to that.

  \begin{itemize}
    \tightlist
4836 4837 4838 4839 4840
    \item Apple uses the \texttt{Big Endian} format everywhere but it ignores SMBIOS UUID within macOS.
    \item \texttt{dmidecode} uses the \texttt{Big Endian} format for SMBIOS 2.5.x or lower
    and the \texttt{Little Endian} format for 2.6 and newer. Acidanthera
    \href{https://github.com/acidanthera/dmidecode}{dmidecode} prints all three.
    \item Windows uses the \texttt{Little Endian} format everywhere, but this only affects
4841 4842 4843 4844
    the visual representation of the values.
  \end{itemize}

  OpenCore always sets a recent SMBIOS version (currently 3.2) when generating
4845 4846 4847
  the modified DMI tables. If \texttt{UseRawUuidEncoding} is enabled, the \texttt{Big Endian}
  format is used to store the \texttt{SystemUUID} data. Otherwise, the \texttt{Little Endian}
  format is used.
4848

4849 4850 4851
  \emph{Note}: This preference does not affect UUIDs used in DataHub and NVRAM
  as they are not standardised and are added by Apple. Unlike SMBIOS, they are
  always stored in the \texttt{Big Endian} format.
4852

V
vit9696 已提交
4853 4854
\item
  \texttt{Generic}\\
G
Goldfish64 已提交
4855
  \textbf{Type}: \texttt{plist\ dictionary}\\
4856 4857 4858 4859
  \textbf{Description}: Update all fields in \texttt{Automatic} mode.

  \emph{Note}: This section is ignored but may not be removed when
  \texttt{Automatic} is \texttt{false}.
V
vit9696 已提交
4860 4861
\item
  \texttt{DataHub}\\
G
Goldfish64 已提交
4862
  \textbf{Type}: \texttt{plist\ dictionary}\\
4863 4864 4865 4866
  \textbf{Description}: Update Data Hub fields in non-\texttt{Automatic} mode.

  \emph{Note}: This section is ignored and may be removed when
  \texttt{Automatic} is \texttt{true}.
J
John Davis 已提交
4867 4868 4869 4870
\item
  \texttt{Memory}\\
  \textbf{Type}: \texttt{plist\ dictionary}\\
  \textbf{Description}: Define custom memory configuration.
4871 4872 4873

  \emph{Note}: This section is ignored and may be removed when
  \texttt{CustomMemory} is \texttt{false}.
V
vit9696 已提交
4874 4875
\item
  \texttt{PlatformNVRAM}\\
G
Goldfish64 已提交
4876
  \textbf{Type}: \texttt{plist\ dictionary}\\
4877 4878 4879 4880
  \textbf{Description}: Update platform NVRAM fields in non-\texttt{Automatic} mode.

  \emph{Note}: This section is ignored and may be removed when
  \texttt{Automatic} is \texttt{true}.
V
vit9696 已提交
4881 4882
\item
  \texttt{SMBIOS}\\
G
Goldfish64 已提交
4883
  \textbf{Type}: \texttt{plist\ dictionary}\\
4884 4885 4886 4887
  \textbf{Description}: Update SMBIOS fields in non-\texttt{Automatic} mode.

  \emph{Note}: This section is ignored and may be removed when
  \texttt{Automatic} is \texttt{true}.
V
vit9696 已提交
4888 4889 4890 4891 4892
\end{enumerate}

\subsection{Generic Properties}\label{platforminfogeneric}

\begin{enumerate}
4893 4894 4895
\item
  \texttt{SpoofVendor}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
4896
  \textbf{Failsafe}: \texttt{false}\\
4897 4898
  \textbf{Description}: Sets SMBIOS vendor fields to \texttt{Acidanthera}.

4899
  It can be dangerous to use ``Apple'' in SMBIOS vendor fields for reasons outlined in the
D
dakanji 已提交
4900 4901
  \texttt{SystemManufacturer} description. However, certain firmware may not provide
  valid values otherwise, which could obstruct the operation of some software.
V
vit9696 已提交
4902

4903
\item
4904
  \texttt{AdviseWindows}\\
4905 4906
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
4907 4908 4909 4910 4911 4912
  \textbf{Description}: Forces Windows support in \texttt{FirmwareFeatures}.

  Added bits to \texttt{FirmwareFeatures}:

  \begin{itemize}
    \item \texttt{FW\_FEATURE\_SUPPORTS\_CSM\_LEGACY\_MODE} (\texttt{0x1})
4913 4914
    - Without this bit, it is not possible to reboot to Windows installed on
      a drive with an EFI partition that is not the first partition on the disk.
4915
    \item \texttt{FW\_FEATURE\_SUPPORTS\_UEFI\_WINDOWS\_BOOT} (\texttt{0x20000000})
4916 4917
    - Without this bit, it is not possible to reboot to Windows installed on
      a drive with an EFI partition that is the first partition on the disk.
4918
  \end{itemize}
4919

4920 4921 4922 4923
\item
  \texttt{MaxBIOSVersion}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
4924
  \textbf{Description}: Sets \texttt{BIOSVersion} to \texttt{9999.999.999.999.999}, recommended for legacy
4925
  Macs when using \texttt{Automatic} PlatformInfo, to avoid BIOS updates in unofficially supported macOS
K
khronokernel 已提交
4926
  versions.
4927

4928 4929 4930 4931 4932
\item
  \texttt{SystemMemoryStatus}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Auto}\\
  \textbf{Description}: Indicates whether system memory is upgradable in \texttt{PlatformFeature}.
4933
  This controls the visibility of the Memory tab in ``About This Mac''.
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

  Valid values:

  \begin{itemize}
    \tightlist
    \item \texttt{Auto} --- use the original \texttt{PlatformFeature} value.
    \item \texttt{Upgradable} --- explicitly unset \texttt{PT\_FEATURE\_HAS\_SOLDERED\_SYSTEM\_MEMORY}
    (\texttt{0x2}) in \texttt{PlatformFeature}.
    \item \texttt{Soldered} --- explicitly set \texttt{PT\_FEATURE\_HAS\_SOLDERED\_SYSTEM\_MEMORY}
    (\texttt{0x2}) in \texttt{PlatformFeature}.
  \end{itemize}

D
dakanji 已提交
4946
  \emph{Note}: On certain Mac models, such as the \texttt{MacBookPro10,x} and any \texttt{MacBookAir},
4947 4948 4949
  SPMemoryReporter.spreporter will ignore \texttt{PT\_FEATURE\_HAS\_SOLDERED\_SYSTEM\_MEMORY}
  and assume that system memory is non-upgradable.

4950
\item
4951
  \texttt{ProcessorType}\\
4952
  \textbf{Type}: \texttt{plist\ integer}\\
4953
  \textbf{Failsafe}: \texttt{0} (Automatic)\\
4954
  \textbf{Description}: Refer to SMBIOS \texttt{ProcessorType}.
V
vit9696 已提交
4955 4956 4957
\item
  \texttt{SystemProductName}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4958
  \textbf{Failsafe}: Empty (OEM specified or not installed)\\
V
vit9696 已提交
4959 4960 4961 4962
  \textbf{Description}: Refer to SMBIOS \texttt{SystemProductName}.
\item
  \texttt{SystemSerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4963
  \textbf{Failsafe}: Empty (OEM specified or not installed)\\
V
vit9696 已提交
4964
  \textbf{Description}: Refer to SMBIOS \texttt{SystemSerialNumber}.
4965

4966 4967 4968
  Specify special string value \texttt{OEM} to extract current value from NVRAM
  (\texttt{SSN} variable) or SMBIOS and use it throughout the sections.
  This feature can only be used on Mac-compatible firmware.
V
vit9696 已提交
4969 4970 4971
\item
  \texttt{SystemUUID}\\
  \textbf{Type}: \texttt{plist\ string}, GUID\\
D
dakanji 已提交
4972
  \textbf{Failsafe}: Empty (OEM specified or not installed)\\
V
vit9696 已提交
4973
  \textbf{Description}: Refer to SMBIOS \texttt{SystemUUID}.
4974

4975 4976 4977 4978 4979
  Specify special string value \texttt{OEM} to extract current value from NVRAM
  (\texttt{system-id} variable) or SMBIOS and use it throughout the sections.
  Since not every firmware implementation has valid (and unique) values, this
  feature is not applicable to some setups, and may provide unexpected results.
  It is highly recommended to specify the UUID explicitly. Refer to
4980
  \texttt{UseRawUuidEncoding} to determine how SMBIOS value is parsed.
V
vit9696 已提交
4981 4982 4983
\item
  \texttt{MLB}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
4984
  \textbf{Failsafe}: Empty (OEM specified or not installed)\\
V
vit9696 已提交
4985
  \textbf{Description}: Refer to SMBIOS \texttt{BoardSerialNumber}.
4986

B
Bmju 已提交
4987
  Specify special string value \texttt{OEM} to extract current value from NVRAM
4988
  (\texttt{MLB} variable) or SMBIOS and use it throughout the sections.
4989
  This feature can only be used on Mac-compatible firmware.
V
vit9696 已提交
4990 4991
\item
  \texttt{ROM}\\
D
dakanji 已提交
4992
  \textbf{Type}: \texttt{plist\ multidata}, 6 bytes\\
D
dakanji 已提交
4993
  \textbf{Failsafe}: Empty (OEM specified or not installed)\\
V
vit9696 已提交
4994 4995
  \textbf{Description}: Refer to
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM}.
4996

B
Bmju 已提交
4997
  Specify special string value \texttt{OEM} to extract current value from NVRAM
4998
  (\texttt{ROM} variable) and use it throughout the sections.
4999
  This feature can only be used on Mac-compatible firmware.
5000

V
vit9696 已提交
5001 5002 5003 5004 5005 5006 5007 5008
\end{enumerate}

\subsection{DataHub Properties}\label{platforminfodatahub}

\begin{enumerate}
\item
  \texttt{PlatformName}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5009
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5010
  \textbf{Description}: Sets \texttt{name} in
D
dakanji 已提交
5011
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs is
V
vit9696 已提交
5012 5013 5014 5015
  \texttt{platform} in ASCII.
\item
  \texttt{SystemProductName}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5016
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5017
  \textbf{Description}: Sets \texttt{Model} in
D
dakanji 已提交
5018
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs is equal to SMBIOS
V
vit9696 已提交
5019 5020 5021 5022
  \texttt{SystemProductName} in Unicode.
\item
  \texttt{SystemSerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5023
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5024
  \textbf{Description}: Sets \texttt{SystemSerialNumber} in
D
dakanji 已提交
5025
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs is equal to SMBIOS
V
vit9696 已提交
5026 5027 5028 5029
  \texttt{SystemSerialNumber} in Unicode.
\item
  \texttt{SystemUUID}\\
  \textbf{Type}: \texttt{plist\ string}, GUID\\
D
dakanji 已提交
5030
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5031
  \textbf{Description}: Sets \texttt{system-id} in
D
dakanji 已提交
5032
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs is equal to SMBIOS
5033
  \texttt{SystemUUID} (with swapped byte order).
V
vit9696 已提交
5034 5035 5036
\item
  \texttt{BoardProduct}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5037
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5038
  \textbf{Description}: Sets \texttt{board-id} in
D
dakanji 已提交
5039
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs is equal to SMBIOS
V
vit9696 已提交
5040 5041 5042 5043
  \texttt{BoardProduct} in ASCII.
\item
  \texttt{BoardRevision}\\
  \textbf{Type}: \texttt{plist\ data}, 1 byte\\
5044
  \textbf{Failsafe}: \texttt{0}\\
V
vit9696 已提交
5045
  \textbf{Description}: Sets \texttt{board-rev} in
D
dakanji 已提交
5046
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs seems to correspond
V
vit9696 已提交
5047 5048 5049 5050
  to internal board revision (e.g. \texttt{01}).
\item
  \texttt{StartupPowerEvents}\\
  \textbf{Type}: \texttt{plist\ integer}, 64-bit\\
5051
  \textbf{Failsafe}: \texttt{0}\\
V
vit9696 已提交
5052
  \textbf{Description}: Sets \texttt{StartupPowerEvents} in
D
dakanji 已提交
5053
  \texttt{gEfiMiscSubClassGuid}. The value found on Macs is power management
V
vit9696 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
  state bitmask, normally 0. Known bits read by
  \texttt{X86PlatformPlugin.kext}:

  \begin{itemize}
  \tightlist
  \item
    \texttt{0x00000001} --- Shutdown cause was a \texttt{PWROK} event
    (Same as \texttt{GEN\_PMCON\_2} bit 0)
  \item
    \texttt{0x00000002} --- Shutdown cause was a \texttt{SYS\_PWROK}
    event (Same as \texttt{GEN\_PMCON\_2} bit 1)
  \item
    \texttt{0x00000004} --- Shutdown cause was a \texttt{THRMTRIP\#}
    event (Same as \texttt{GEN\_PMCON\_2} bit 3)
  \item
    \texttt{0x00000008} --- Rebooted due to a SYS\_RESET\# event (Same
    as \texttt{GEN\_PMCON\_2} bit 4)
  \item
    \texttt{0x00000010} --- Power Failure (Same as
    \texttt{GEN\_PMCON\_3} bit 1 \texttt{PWR\_FLR})
  \item
    \texttt{0x00000020} --- Loss of RTC Well Power (Same as
    \texttt{GEN\_PMCON\_3} bit 2 \texttt{RTC\_PWR\_STS})
  \item
    \texttt{0x00000040} --- General Reset Status (Same as
    \texttt{GEN\_PMCON\_3} bit 9 \texttt{GEN\_RST\_STS})
  \item
    \texttt{0xffffff80} --- SUS Well Power Loss (Same as
    \texttt{GEN\_PMCON\_3} bit 14)
  \item
    \texttt{0x00010000} --- Wake cause was a ME Wake event (Same as
    PRSTS bit 0, \texttt{ME\_WAKE\_STS})
  \item
    \texttt{0x00020000} --- Cold Reboot was ME Induced event (Same as
    \texttt{PRSTS} bit 1 \texttt{ME\_HRST\_COLD\_STS})
  \item
    \texttt{0x00040000} --- Warm Reboot was ME Induced event (Same as
    \texttt{PRSTS} bit 2 \texttt{ME\_HRST\_WARM\_STS})
  \item
    \texttt{0x00080000} --- Shutdown was ME Induced event (Same as
    \texttt{PRSTS} bit 3 \texttt{ME\_HOST\_PWRDN})
  \item
G
Goldfish64 已提交
5096
    \texttt{0x00100000} --- Global reset ME Watchdog Timer event (Same as
V
vit9696 已提交
5097 5098
    \texttt{PRSTS} bit 6)
  \item
G
Goldfish64 已提交
5099
    \texttt{0x00200000} --- Global reset PowerManagement Watchdog Timer
V
vit9696 已提交
5100 5101 5102 5103 5104
    event (Same as \texttt{PRSTS} bit 15)
  \end{itemize}
\item
  \texttt{InitialTSC}\\
  \textbf{Type}: \texttt{plist\ integer}, 64-bit\\
5105
  \textbf{Failsafe}: \texttt{0}\\
V
vit9696 已提交
5106
  \textbf{Description}: Sets \texttt{InitialTSC} in
5107
  \texttt{gEfiProcessorSubClassGuid}. Sets initial TSC value, normally 0.
V
vit9696 已提交
5108 5109 5110
\item
  \texttt{FSBFrequency}\\
  \textbf{Type}: \texttt{plist\ integer}, 64-bit\\
5111
  \textbf{Failsafe}: \texttt{0} (Automatic)\\
V
vit9696 已提交
5112
  \textbf{Description}: Sets \texttt{FSBFrequency} in
5113 5114 5115 5116 5117 5118
  \texttt{gEfiProcessorSubClassGuid}.

  Sets CPU FSB frequency. This value equals to CPU nominal frequency divided
  by CPU maximum bus ratio and is specified in Hz. Refer to
  \texttt{MSR\_NEHALEM\_PLATFORM\_INFO}~(\texttt{CEh}) MSR value to determine
  maximum bus ratio on modern Intel CPUs.
5119

V
vit9696 已提交
5120 5121
  \emph{Note}: This value is not used on Skylake and newer but is still provided
  to follow suit.
V
vit9696 已提交
5122 5123 5124
\item
  \texttt{ARTFrequency}\\
  \textbf{Type}: \texttt{plist\ integer}, 64-bit\\
5125
  \textbf{Failsafe}: \texttt{0} (Automatic)\\
V
vit9696 已提交
5126
  \textbf{Description}: Sets \texttt{ARTFrequency} in
5127
  \texttt{gEfiProcessorSubClassGuid}.
5128

5129
  This value contains CPU ART frequency, also known as crystal clock frequency.
D
dakanji 已提交
5130
  Its existence is exclusive to the Skylake generation and newer. The value is specified
5131
  in Hz, and is normally 24 MHz for the client Intel segment, 25 MHz for the server Intel segment,
5132
  and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24 MHz by default.
5133

5134 5135 5136
  \emph{Note}: On Intel Skylake X ART frequency may be a little less (approx. 0.25\%) than
  24 or 25 MHz due to special EMI-reduction circuit as described in
  \href{https://github.com/acidanthera/bugtracker/issues/448#issuecomment-524914166}{Acidanthera Bugtracker}.
V
vit9696 已提交
5137 5138
\item
  \texttt{DevicePathsSupported}\\
5139
  \textbf{Type}: \texttt{plist\ integer}, 32-bit\\
5140
  \textbf{Failsafe}: \texttt{0} (Not installed)\\
V
vit9696 已提交
5141
  \textbf{Description}: Sets \texttt{DevicePathsSupported} in
5142
  \texttt{gEfiMiscSubClassGuid}. Must be set to \texttt{1} for
5143 5144
  AppleACPIPlatform.kext to append SATA device paths to
  \texttt{Boot\#\#\#\#} and \texttt{efi-boot-device-data} variables.
5145
  Set to \texttt{1} on all modern Macs.
V
vit9696 已提交
5146 5147 5148
\item
  \texttt{SmcRevision}\\
  \textbf{Type}: \texttt{plist\ data}, 6 bytes\\
D
dakanji 已提交
5149
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5150 5151 5152 5153 5154 5155 5156
  \textbf{Description}: Sets \texttt{REV} in
  \texttt{gEfiMiscSubClassGuid}. Custom property read by
  \texttt{VirtualSMC} or \texttt{FakeSMC} to generate SMC \texttt{REV}
  key.
\item
  \texttt{SmcBranch}\\
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
D
dakanji 已提交
5157
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5158 5159 5160 5161 5162 5163 5164
  \textbf{Description}: Sets \texttt{RBr} in
  \texttt{gEfiMiscSubClassGuid}. Custom property read by
  \texttt{VirtualSMC} or \texttt{FakeSMC} to generate SMC \texttt{RBr}
  key.
\item
  \texttt{SmcPlatform}\\
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
D
dakanji 已提交
5165
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5166 5167 5168 5169 5170 5171
  \textbf{Description}: Sets \texttt{RPlt} in
  \texttt{gEfiMiscSubClassGuid}. Custom property read by
  \texttt{VirtualSMC} or \texttt{FakeSMC} to generate SMC \texttt{RPlt}
  key.
\end{enumerate}

J
John Davis 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
\subsection{Memory Properties}\label{platforminfomemory}

\begin{enumerate}
\item
  \texttt{DataWidth}\\
  \textbf{Type}: \texttt{plist\ integer}, 16-bit\\
  \textbf{Failsafe}: \texttt{0xFFFF} (unknown)\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Data Width\\
  \textbf{Description}: Specifies the data width, in bits, of the
  memory. A \texttt{DataWidth} of \texttt{0} and a \texttt{TotalWidth} of \texttt{8}
  indicates that the device is being used solely to provide 8
  error-correction bits.

\item
  \texttt{Devices}\\
  \textbf{Type}: \texttt{plist\ array}\\
  \textbf{Failsafe}: Empty\\
  \textbf{Description}: Specifies the custom memory devices to be added.

D
dakanji 已提交
5191 5192
  To be filled with \texttt{plist\ dictionary} values, describing each
  memory device. Refer to the \hyperref[platforminfomemorydevice]{Memory Devices Properties}
J
John Davis 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
  section below. This should include all memory slots, even if unpopulated.

\item
  \texttt{ErrorCorrection}\\
  \textbf{Type}: \texttt{plist\ integer}, 8-bit\\
  \textbf{Failsafe}: \texttt{0x03}\\
  \textbf{SMBIOS}: Physical Memory Array (Type 16) --- Memory Error Correction\\
  \textbf{Description}: Specifies the primary hardware error correction or
  detection method supported by the memory.

  \begin{itemize}
  \tightlist
  \item
    \texttt{0x01} --- Other
  \item
    \texttt{0x02} --- Unknown
  \item
    \texttt{0x03} --- None
  \item
    \texttt{0x04} --- Parity
  \item
    \texttt{0x05} --- Single-bit ECC
  \item
    \texttt{0x06} --- Multi-bit ECC
  \item
    \texttt{0x07} --- CRC
  \end{itemize}

\item
  \texttt{FormFactor}\\
  \textbf{Type}: \texttt{plist\ integer}, 8-bit\\
  \textbf{Failsafe}: \texttt{0x02}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Form Factor\\
  \textbf{Description}: Specifies the form factor of the memory.
D
dakanji 已提交
5227
  On Macs, this should typically be DIMM or SODIMM. Commonly used form
J
John Davis 已提交
5228 5229 5230 5231 5232
  factors are listed below.

  When \texttt{CustomMemory} is \texttt{false}, this value is automatically set
  based on Mac product name.

5233 5234 5235 5236
  When \texttt{Automatic} is \texttt{true}, the original value from the the corresponding Mac model will be set if available.
  Otherwise, the value from \texttt{OcMacInfoLib} will be set.
  When \texttt{Automatic} is \texttt{false}, a user-specified value will be set if available.
  Otherwise, the original value from the firmware will be set.
D
dakanji 已提交
5237
  If no value is provided, the failsafe value will be set.
5238

J
John Davis 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
  \begin{itemize}
  \tightlist
  \item
    \texttt{0x01} --- Other
  \item
    \texttt{0x02} --- Unknown
  \item
    \texttt{0x09} --- DIMM
  \item
    \texttt{0x0D} --- SODIMM
  \item
    \texttt{0x0F} --- FB-DIMM
  \end{itemize}

\item
  \texttt{MaxCapacity}\\
  \textbf{Type}: \texttt{plist\ integer}, 64-bit\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{SMBIOS}: Physical Memory Array (Type 16) --- Maximum Capacity\\
  \textbf{Description}: Specifies the maximum amount of memory, in bytes,
  supported by the system.

\item
  \texttt{TotalWidth}\\
  \textbf{Type}: \texttt{plist\ integer}, 16-bit\\
  \textbf{Failsafe}: \texttt{0xFFFF} (unknown)\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Total Width\\
  \textbf{Description}: Specifies the total width, in bits, of the
  memory, including any check or error-correction bits. If there are
  no error-correction bits, this value should be equal to \texttt{DataWidth}.

\item
  \texttt{Type}\\
  \textbf{Type}: \texttt{plist\ integer}, 8-bit\\
  \textbf{Failsafe}: \texttt{0x02}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Memory Type\\
  \textbf{Description}: Specifies the memory type. Commonly used types are listed below.

  \begin{itemize}
  \tightlist
  \item
    \texttt{0x01} --- Other
  \item
    \texttt{0x02} --- Unknown
  \item
    \texttt{0x0F} --- SDRAM
  \item
    \texttt{0x12} --- DDR
  \item
    \texttt{0x13} --- DDR2
  \item
    \texttt{0x14} --- DDR2 FB-DIMM
  \item
    \texttt{0x18} --- DDR3
  \item
    \texttt{0x1A} --- DDR4
  \item
    \texttt{0x1B} --- LPDDR
  \item
    \texttt{0x1C} --- LPDDR2
  \item
    \texttt{0x1D} --- LPDDR3
  \item
    \texttt{0x1E} --- LPDDR4
  \end{itemize}

\item
  \texttt{TypeDetail}\\
  \textbf{Type}: \texttt{plist\ integer}, 16-bit\\
  \textbf{Failsafe}: \texttt{0x4}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Type Detail\\
  \textbf{Description}: Specifies additional memory type information.

  \begin{itemize}
  \tightlist
  \item
    \texttt{Bit 0} --- Reserved, set to 0
  \item
    \texttt{Bit 1} --- Other
  \item
    \texttt{Bit 2} --- Unknown
  \item
    \texttt{Bit 7} --- Synchronous
  \item
    \texttt{Bit 13} --- Registered (buffered)
  \item
    \texttt{Bit 14} --- Unbuffered (unregistered)
  \end{itemize}

\end{enumerate}

\subsubsection{Memory Device Properties}\label{platforminfomemorydevice}

\begin{enumerate}
\item
  \texttt{AssetTag}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Unknown}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Asset Tag\\
  \textbf{Description}: Specifies the asset tag of this memory device.

\item
  \texttt{BankLocator}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Unknown}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Bank Locator\\
  \textbf{Description}: Specifies the physically labeled bank where the
  memory device is located.

\item
  \texttt{DeviceLocator}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Unknown}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Device Locator\\
  \textbf{Description}: Specifies the physically-labeled socket or
  board position where the memory device is located.

\item
  \texttt{Manufacturer}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Unknown}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Manufacturer\\
  \textbf{Description}: Specifies the manufacturer of this memory device.

V
vit9696 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
  For empty slot this must be set to \texttt{NO DIMM} for macOS System Profiler
  to correctly display memory slots on certain Mac models, e.g. \texttt{MacPro7,1}.
  \texttt{MacPro7,1} imposes additional requirements on the memory layout:
  \begin{itemize}
    \tightlist
    \item The amount of installed sticks must one of the following: 4, 6, 8, 10, 12.
          Using any different value will cause an error in the System Profiler.
    \item The amount of memory slots must equal to 12. Using any different value
          will cause an error in the System Profiler.
    \item Memory sticks must be installed in dedicated memory slots as explained
          on the \href{https://support.apple.com/HT210103}{support page}. SMBIOS
          memory devices are mapped to the following slots:
          \texttt{8, 7, 10, 9, 12, 11, 5, 6, 3, 4, 1, 2}.
  \end{itemize}

J
John Davis 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
\item
  \texttt{PartNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Unknown}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Part Number\\
  \textbf{Description}: Specifies the part number of this memory device.

\item
  \texttt{SerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Unknown}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Serial Number\\
  \textbf{Description}: Specifies the serial number of this memory device.

\item
  \texttt{Size}\\
  \textbf{Type}: \texttt{plist\ integer}, 32-bit\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Size\\
  \textbf{Description}: Specifies the size of the memory device, in megabytes.
  \texttt{0} indicates this slot is not populated.

\item
  \texttt{Speed}\\
  \textbf{Type}: \texttt{plist\ integer}, 16-bit\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{SMBIOS}: Memory Device (Type 17) --- Speed\\
  \textbf{Description}: Specifies the maximum capable speed of the device,
  in megatransfers per second (MT/s). \texttt{0} indicates an unknown speed.

\end{enumerate}

V
vit9696 已提交
5410 5411 5412 5413 5414 5415
\subsection{PlatformNVRAM Properties}\label{platforminfonvram}

\begin{enumerate}
\item
  \texttt{BID}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5416
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5417 5418 5419 5420 5421 5422
  \textbf{Description}: Specifies the value of NVRAM variable
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_BID}.

\item
  \texttt{ROM}\\
  \textbf{Type}: \texttt{plist\ data}, 6 bytes\\
D
dakanji 已提交
5423
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5424
  \textbf{Description}: Specifies the values of NVRAM variables
V
vit9696 已提交
5425 5426 5427 5428 5429 5430
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_ROM} and
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM}.

\item
  \texttt{MLB}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5431
  \textbf{Failsafe}: Empty (Not installed)\\
V
vit9696 已提交
5432 5433 5434 5435
  \textbf{Description}: Specifies the values of NVRAM variables
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_MLB} and
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB}.

5436 5437 5438
\item
  \texttt{FirmwareFeatures}\\
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
D
dakanji 已提交
5439
  \textbf{Failsafe}: Empty (Not installed)\\
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
  \textbf{Description}: This variable comes in pair with \texttt{FirmwareFeaturesMask}.
  Specifies the values of NVRAM variables:
  \begin{itemize}
  \tightlist
  \item \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures}
  \item \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures}
  \end{itemize}

\item
  \texttt{FirmwareFeaturesMask}\\
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
D
dakanji 已提交
5451
  \textbf{Failsafe}: Empty (Not installed)\\
5452 5453 5454 5455 5456 5457 5458 5459
  \textbf{Description}: This variable comes in pair with \texttt{FirmwareFeatures}.
  Specifies the values of NVRAM variables:
  \begin{itemize}
  \tightlist
  \item \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask}
  \item \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask}
  \end{itemize}

5460 5461 5462 5463 5464 5465 5466 5467
\item
  \texttt{SystemSerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: Empty (Not installed)\\
  \textbf{Description}: Specifies the values of NVRAM variables
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW\_SSN} and
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:SSN}.

5468 5469 5470
\item
  \texttt{SystemUUID}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5471
  \textbf{Failsafe}: Empty (Not installed)\\
5472 5473
  \textbf{Description}: Specifies the value of NVRAM variable
  \texttt{4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:system-id}
D
dakanji 已提交
5474
  for boot services only. The value found on Macs is equal to SMBIOS
5475 5476
  \texttt{SystemUUID}.

V
vit9696 已提交
5477 5478 5479 5480 5481 5482 5483 5484
\end{enumerate}

\subsection{SMBIOS Properties}\label{platforminfosmbios}

\begin{enumerate}
\item
  \texttt{BIOSVendor}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5485
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5486 5487 5488 5489 5490 5491
  \textbf{SMBIOS}: BIOS Information (Type 0) --- Vendor\\
  \textbf{Description}: BIOS Vendor. All rules of
  \texttt{SystemManufacturer} do apply.
\item
  \texttt{BIOSVersion}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5492
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5493 5494 5495 5496
  \textbf{SMBIOS}: BIOS Information (Type 0) --- BIOS Version\\
  \textbf{Description}: Firmware version. This value gets updated and
  takes part in update delivery configuration and macOS version
  compatibility. This value could look like
D
dakanji 已提交
5497
  \texttt{MM71.88Z.0234.B00.1809171422} in older firmware and is
V
vit9696 已提交
5498
  described in
V
vit9696 已提交
5499
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Guid/BiosId.h}{BiosId.h}.
D
dakanji 已提交
5500
  In newer firmware, it should look like \texttt{236.0.0.0.0} or
V
vit9696 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
  \texttt{220.230.16.0.0\ (iBridge:\ 16.16.2542.0.0,0)}. iBridge version
  is read from \texttt{BridgeOSVersion} variable, and is only present on
  macs with T2.

\begin{verbatim}
Apple ROM Version
 BIOS ID:      MBP151.88Z.F000.B00.1811142212
 Model:        MBP151
 EFI Version:  220.230.16.0.0
 Built by:     root@quinoa
 Date:         Wed Nov 14 22:12:53 2018
 Revision:     220.230.16 (B&I)
 ROM Version:  F000_B00
 Build Type:   Official Build, RELEASE
 Compiler:     Apple LLVM version 10.0.0 (clang-1000.2.42)
 UUID:         E5D1475B-29FF-32BA-8552-682622BA42E1
 UUID:         151B0907-10F9-3271-87CD-4BF5DBECACF5
\end{verbatim}
\item
  \texttt{BIOSReleaseDate}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5522
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5523 5524 5525 5526 5527 5528
  \textbf{SMBIOS}: BIOS Information (Type 0) --- BIOS Release Date\\
  \textbf{Description}: Firmware release date. Similar to
  \texttt{BIOSVersion}. May look like \texttt{12/08/2017}.
\item
  \texttt{SystemManufacturer}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5529
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5530
  \textbf{SMBIOS}: System Information (Type 1) --- Manufacturer\\
5531 5532 5533
  \textbf{Description}: OEM manufacturer of the particular board. Use failsafe
  unless strictly required. Do not override to contain \texttt{Apple\ Inc.}
  on non-Apple hardware, as this confuses numerous services present in
V
vit9696 已提交
5534 5535
  the operating system, such as firmware updates, eficheck, as well as
  kernel extensions developed in Acidanthera, such as Lilu and its
V
vit9696 已提交
5536
  plugins. In addition it will also make some operating systems
D
dakanji 已提交
5537
  such as Linux unbootable.
V
vit9696 已提交
5538 5539 5540
\item
  \texttt{SystemProductName}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5541
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
  \textbf{SMBIOS}: System Information (Type 1), Product Name\\
  \textbf{Description}: Preferred Mac model used to mark the device as
  supported by the operating system. This value must be specified by any
  configuration for later automatic generation of the related values in
  this and other SMBIOS tables and related configuration parameters. If
  \texttt{SystemProductName} is not compatible with the target operating
  system, \texttt{-no\_compat\_check} boot argument may be used as an
  override.

  \emph{Note}: If \texttt{SystemProductName} is unknown, and related
  fields are unspecified, default values should be assumed as being set
  to \texttt{MacPro6,1} data. The list of known products can be found in
V
vit9696 已提交
5554
  \texttt{AppleModels}.
V
vit9696 已提交
5555 5556 5557
\item
  \texttt{SystemVersion}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5558
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5559 5560 5561 5562 5563 5564
  \textbf{SMBIOS}: System Information (Type 1) --- Version\\
  \textbf{Description}: Product iteration version number. May look like
  \texttt{1.1}.
\item
  \texttt{SystemSerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5565
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5566 5567 5568
  \textbf{SMBIOS}: System Information (Type 1) --- Serial Number\\
  \textbf{Description}: Product serial number in defined format. Known
  formats are described in
V
vit9696 已提交
5569
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macserial/FORMAT.md}{macserial}.
V
vit9696 已提交
5570 5571 5572
\item
  \texttt{SystemUUID}\\
  \textbf{Type}: \texttt{plist\ string}, GUID\\
D
dakanji 已提交
5573
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5574 5575 5576 5577 5578 5579 5580
  \textbf{SMBIOS}: System Information (Type 1) --- UUID\\
  \textbf{Description}: A UUID is an identifier that is designed to be
  unique across both time and space. It requires no central registration
  process.
\item
  \texttt{SystemSKUNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5581
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5582 5583 5584 5585 5586 5587 5588
  \textbf{SMBIOS}: System Information (Type 1) --- SKU Number\\
  \textbf{Description}: Mac Board ID (\texttt{board-id}). May look like
  \texttt{Mac-7BA5B2D9E42DDD94} or \texttt{Mac-F221BEC8} in older
  models. Sometimes it can be just empty.
\item
  \texttt{SystemFamily}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5589
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5590 5591 5592 5593 5594
  \textbf{SMBIOS}: System Information (Type 1) --- Family\\
  \textbf{Description}: Family name. May look like \texttt{iMac\ Pro}.
\item
  \texttt{BoardManufacturer}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5595
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5596 5597 5598 5599 5600 5601 5602
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) -
  Manufacturer\\
  \textbf{Description}: Board manufacturer. All rules of
  \texttt{SystemManufacturer} do apply.
\item
  \texttt{BoardProduct}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5603
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5604 5605 5606 5607 5608 5609 5610 5611
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) -
  Product\\
  \textbf{Description}: Mac Board ID (\texttt{board-id}). May look like
  \texttt{Mac-7BA5B2D9E42DDD94} or \texttt{Mac-F221BEC8} in older
  models.
\item
  \texttt{BoardVersion}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5612
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5613 5614 5615 5616 5617 5618 5619
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) -
  Version\\
  \textbf{Description}: Board version number. Varies, may match
  \texttt{SystemProductName} or \texttt{SystemProductVersion}.
\item
  \texttt{BoardSerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5620
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5621 5622 5623 5624 5625 5626 5627 5628
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) --- Serial
  Number\\
  \textbf{Description}: Board serial number in defined format. Known
  formats are described in
  \href{https://github.com/acidanthera/macserial/blob/master/FORMAT.md}{macserial}.
\item
  \texttt{BoardAssetTag}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5629
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5630 5631 5632 5633 5634 5635 5636
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) --- Asset
  Tag\\
  \textbf{Description}: Asset tag number. Varies, may be empty or
  \texttt{Type2\ -\ Board\ Asset\ Tag}.
\item
  \texttt{BoardType}\\
  \textbf{Type}: \texttt{plist\ integer}\\
5637
  \textbf{Failsafe}: \texttt{0} (OEM specified)\\
V
vit9696 已提交
5638 5639 5640
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) --- Board
  Type\\
  \textbf{Description}: Either \texttt{0xA} (Motherboard (includes
5641 5642
  processor, memory, and I/O) or \texttt{0xB} (Processor/Memory Module).
  Refer to Table 15 -- Baseboard: Board Type for details.
V
vit9696 已提交
5643 5644 5645
\item
  \texttt{BoardLocationInChassis}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5646
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5647 5648 5649 5650 5651 5652 5653
  \textbf{SMBIOS}: Baseboard (or Module) Information (Type 2) --- Location
  in Chassis\\
  \textbf{Description}: Varies, may be empty or
  \texttt{Part\ Component}.
\item
  \texttt{ChassisManufacturer}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5654
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5655 5656 5657 5658 5659 5660
  \textbf{SMBIOS}: System Enclosure or Chassis (Type 3) --- Manufacturer\\
  \textbf{Description}: Board manufacturer. All rules of
  \texttt{SystemManufacturer} do apply.
\item
  \texttt{ChassisType}\\
  \textbf{Type}: \texttt{plist\ integer}\\
5661
  \textbf{Failsafe}: \texttt{0} (OEM specified)\\
V
vit9696 已提交
5662
  \textbf{SMBIOS}: System Enclosure or Chassis (Type 3) --- Type\\
5663 5664
  \textbf{Description}: Chassis type. Refer to Table 17 --- System
  Enclosure or Chassis Types for details.
V
vit9696 已提交
5665 5666 5667
\item
  \texttt{ChassisVersion}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5668
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5669 5670 5671 5672 5673
  \textbf{SMBIOS}: System Enclosure or Chassis (Type 3) --- Version\\
  \textbf{Description}: Should match \texttt{BoardProduct}.
\item
  \texttt{ChassisSerialNumber}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5674
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5675 5676 5677 5678 5679
  \textbf{SMBIOS}: System Enclosure or Chassis (Type 3) --- Version\\
  \textbf{Description}: Should match \texttt{SystemSerialNumber}.
\item
  \texttt{ChassisAssetTag}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
5680
  \textbf{Failsafe}: Empty (OEM specified)\\
V
vit9696 已提交
5681 5682 5683 5684 5685 5686
  \textbf{SMBIOS}: System Enclosure or Chassis (Type 3) --- Asset Tag
  Number\\
  \textbf{Description}: Chassis type name. Varies, could be empty or
  \texttt{MacBook-Aluminum}.
\item
  \texttt{PlatformFeature}\\
5687
  \textbf{Type}: \texttt{plist\ integer}, 32-bit\\
5688
  \textbf{Failsafe}: \texttt{0xFFFFFFFF} (OEM specified on Apple hardware, do not provide the table otherwise)\\
V
vit9696 已提交
5689 5690
  \textbf{SMBIOS}: \texttt{APPLE\_SMBIOS\_TABLE\_TYPE133} -
  \texttt{PlatformFeature}\\
5691 5692
  \textbf{Description}: Platform features bitmask (Missing on older Macs). Refer to
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h}{AppleFeatures.h} for details.
5693 5694 5695
\item
  \texttt{SmcVersion}\\
  \textbf{Type}: \texttt{plist\ data}, 16 bytes\\
5696
  \textbf{Failsafe}: All zero (OEM specified on Apple hardware, do not provide the table otherwise)\\
5697 5698
  \textbf{SMBIOS}: \texttt{APPLE\_SMBIOS\_TABLE\_TYPE134} - \texttt{Version}\\
  \textbf{Description}: ASCII string containing SMC version in upper case.
5699
  Missing on T2 based Macs.
V
vit9696 已提交
5700 5701
\item
  \texttt{FirmwareFeatures}\\
V
vit9696 已提交
5702
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
5703
  \textbf{Failsafe}: \texttt{0} (OEM specified on Apple hardware, 0 otherwise)\\
V
vit9696 已提交
5704 5705 5706
  \textbf{SMBIOS}: \texttt{APPLE\_SMBIOS\_TABLE\_TYPE128} -
  \texttt{FirmwareFeatures} and \texttt{ExtendedFirmwareFeatures}\\
  \textbf{Description}: 64-bit firmware features bitmask. Refer to
V
vit9696 已提交
5707
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h}{AppleFeatures.h}
5708
  for details. Lower 32 bits match \texttt{FirmwareFeatures}. Upper
V
vit9696 已提交
5709 5710 5711
  64 bits match \texttt{ExtendedFirmwareFeatures}.
\item
  \texttt{FirmwareFeaturesMask}\\
V
vit9696 已提交
5712
  \textbf{Type}: \texttt{plist\ data}, 8 bytes\\
5713
  \textbf{Failsafe}: \texttt{0} (OEM specified on Apple hardware, 0 otherwise)\\
V
vit9696 已提交
5714 5715 5716 5717 5718
  \textbf{SMBIOS}: \texttt{APPLE\_SMBIOS\_TABLE\_TYPE128} -
  \texttt{FirmwareFeaturesMask} and
  \texttt{ExtendedFirmwareFeaturesMask}\\
  \textbf{Description}: Supported bits of extended firmware features
  bitmask. Refer to
V
vit9696 已提交
5719
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h}{AppleFeatures.h}
5720
  for details. Lower 32 bits match \texttt{FirmwareFeaturesMask}.
V
vit9696 已提交
5721 5722 5723 5724
  Upper 64 bits match \texttt{ExtendedFirmwareFeaturesMask}.
\item
  \texttt{ProcessorType}\\
  \textbf{Type}: \texttt{plist\ integer}, 16-bit\\
5725
  \textbf{Failsafe}: \texttt{0} (Automatic)\\
V
vit9696 已提交
5726 5727 5728
  \textbf{SMBIOS}: \texttt{APPLE\_SMBIOS\_TABLE\_TYPE131} -
  \texttt{ProcessorType}\\
  \textbf{Description}: Combined of Processor Major and Minor types.
5729

5730 5731 5732
  Automatic value generation attempts to provide the most accurate value for
  the currently installed CPU. When this fails, please raise an
  \href{https://github.com/acidanthera/bugtracker/issues}{issue} and
5733 5734 5735
  provide \texttt{sysctl machdep.cpu} and
  \href{https://github.com/acidanthera/dmidecode}{\texttt{dmidecode}} output.
  For a full list of available values and their limitations (the value will
5736
  only apply if the CPU core count matches), refer to the Apple SMBIOS definitions header
5737
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleSmBios.h}{here}.
V
vit9696 已提交
5738 5739 5740 5741 5742 5743 5744 5745
\end{enumerate}

\section{UEFI}\label{uefi}

\subsection{Introduction}\label{uefiintro}

\href{https://uefi.org/specifications}{UEFI} (Unified Extensible Firmware Interface)
is a specification that defines a software interface between an operating system and
5746 5747
platform firmware. This section allows loading additional UEFI modules as well as applying
tweaks to the onboard firmware. To inspect firmware contents, apply modifications
V
vit9696 已提交
5748 5749
and perform upgrades \href{https://github.com/LongSoft/UEFITool/releases}{UEFITool}
and supplementary utilities can be used.
V
vit9696 已提交
5750

V
vit9696 已提交
5751 5752
\subsection{Drivers}\label{uefidrivers}

5753
Depending on the firmware, a different set of drivers may be required.
5754
Loading an incompatible driver may lead the system to unbootable state or
V
vit9696 已提交
5755 5756
even cause permanent firmware damage. Some of the known drivers are listed below:

V
vit9696 已提交
5757
\begin{tabular}{p{1.3in}p{5.55in}}
A
Andrey1970AppleLife 已提交
5758
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{AudioDxe}}\textbf{*}
D
dakanji 已提交
5759
& HDA audio support driver in UEFI firmware for most Intel and some other analog audio controllers.
V
vit9696 已提交
5760
  Staging driver, refer to \href{https://github.com/acidanthera/bugtracker/issues/740}{acidanthera/bugtracker\#740}
V
vit9696 已提交
5761
  for known issues in AudioDxe. \\
5762 5763 5764 5765 5766
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{CrScreenshotDxe}}\textbf{*}
& Screenshot making driver saving images to the root of OpenCore partition (ESP) or
  any available writeable filesystem upon pressing \texttt{F10}.
  This is a modified version of \href{https://github.com/LongSoft/CrScreenshotDxe}{\texttt{CrScreenshotDxe}}
  driver by \href{https://github.com/NikolajSchlej}{Nikolaj Schlej}. \\
V
vit9696 已提交
5767 5768
\href{https://github.com/acidanthera/OcBinaryData}{\texttt{ExFatDxe}}
& Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
D
dakanji 已提交
5769
  firmware. For Sandy Bridge and earlier CPUs, the \texttt{ExFatDxeLegacy} driver should be
V
vit9696 已提交
5770 5771
  used due to the lack of \texttt{RDRAND} instruction support. \\
\href{https://github.com/acidanthera/OcBinaryData}{\texttt{HfsPlus}}
A
Andrey1970AppleLife 已提交
5772
& Recommended. Proprietary HFS file system driver with bless support commonly found in Apple
D
dakanji 已提交
5773
  firmware. For Sandy Bridge and earlier CPUs, the \texttt{HfsPlusLegacy} driver should be
V
vit9696 已提交
5774 5775 5776
  used due to the lack of \texttt{RDRAND} instruction support. \\
\href{https://github.com/acidanthera/audk}{\texttt{HiiDatabase}}\textbf{*}
& HII services support driver from \texttt{MdeModulePkg}. This driver is included in
D
dakanji 已提交
5777 5778
  most types of firmware starting with the Ivy Bridge generation. Some applications with GUI,
  such as UEFI Shell, may need this driver to work properly. \\
V
vit9696 已提交
5779 5780
\href{https://github.com/acidanthera/audk}{\texttt{EnhancedFatDxe}}
& FAT filesystem driver from \texttt{FatPkg}. This driver is embedded in all
D
dakanji 已提交
5781 5782
  UEFI firmware and cannot be used from OpenCore. Several types of firmware
  have defective FAT support implementation that may lead to corrupted filesystems
D
dakanji 已提交
5783 5784
  on write attempts. Embedding this driver within the firmware may be required in case
  writing to the EFI partition is needed during the boot process. \\
5785
\href{https://github.com/acidanthera/audk}{\texttt{NvmExpressDxe}}\textbf{*}
V
vit9696 已提交
5786
& NVMe support driver from \texttt{MdeModulePkg}. This driver is included in most
D
dakanji 已提交
5787
  firmware starting with the Broadwell generation. For Haswell and earlier, embedding it
V
vit9696 已提交
5788 5789 5790 5791 5792 5793
  within the firmware may be more favourable in case a NVMe SSD drive is installed. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{OpenCanopy}}\textbf{*}
& \hyperref[ueficanopy]{OpenCore plugin} implementing graphical interface. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{OpenRuntime}}\textbf{*}
& \hyperref[uefiruntime]{OpenCore plugin} implementing \texttt{OC\_FIRMWARE\_RUNTIME} protocol. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{OpenUsbKbDxe}}\textbf{*}
D
dakanji 已提交
5794
& USB keyboard driver adding support for \texttt{AppleKeyMapAggregator} protocols
V
vit9696 已提交
5795
  on top of a custom USB keyboard driver implementation. This is an alternative to
V
vit9696 已提交
5796
  builtin \texttt{KeySupport}, which may work better or worse depending on the firmware. \\
5797 5798 5799 5800
\href{https://github.com/acidanthera/OcBinaryData}{\texttt{OpenPartitionDxe}}\textbf{*}
& Partition management driver with Apple Partitioning Scheme support.
  This driver can be used to support loading older DMG recoveries such as
  macOS 10.9 using Apple Partitioning Scheme. OpenDuet already includes this driver. \\
5801
\href{https://github.com/acidanthera/audk}{\texttt{Ps2KeyboardDxe}}\textbf{*}
D
dakanji 已提交
5802
& PS/2 keyboard driver from \texttt{MdeModulePkg}. \texttt{OpenDuetPkg} and some types of firmware
5803 5804 5805
  may not include this driver, but it is necessary for PS/2 keyboard to work.
  Note, unlike \texttt{OpenUsbKbDxe} this driver has no \texttt{AppleKeyMapAggregator}
  support and thus requires \texttt{KeySupport} to be enabled. \\
5806
\href{https://github.com/acidanthera/audk}{\texttt{Ps2MouseDxe}}\textbf{*}
D
dakanji 已提交
5807 5808 5809
& PS/2 mouse driver from \texttt{MdeModulePkg}. Some very old laptop firmware
  may not include this driver but it is necessary for the touchpad to work
  in UEFI graphical interfaces such as \texttt{OpenCanopy}. \\
5810
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{OpenHfsPlus}}\textbf{*}
V
vit9696 已提交
5811
& HFS file system driver with bless support. This driver is an alternative to
D
dakanji 已提交
5812
  a closed source \texttt{HfsPlus} driver commonly found in Apple firmware. While
V
vit9696 已提交
5813
  it is feature complete, it is approximately 3~times slower and is yet to undergo
V
vit9696 已提交
5814
  a security audit. \\
5815 5816 5817 5818
\href{https://github.com/acidanthera/audk}{\texttt{UsbMouseDxe}}\textbf{*}
& USB mouse driver from \texttt{MdeModulePkg}. Some virtual machine firmware
  such as OVMF may not include this driver but it is necessary for the mouse to work
  in UEFI graphical interfaces such as \texttt{OpenCanopy}. \\
V
vit9696 已提交
5819 5820
\href{https://github.com/acidanthera/audk}{\texttt{XhciDxe}}\textbf{*}
& XHCI USB controller support driver from \texttt{MdeModulePkg}. This driver is
D
dakanji 已提交
5821 5822
  included in most types of firmware starting with the Sandy Bridge generation. For earlier firmware
  or legacy systems, it may be used to support external USB 3.0 PCI cards.
V
vit9696 已提交
5823
\end{tabular}
V
vit9696 已提交
5824

V
vit9696 已提交
5825
Driver marked with \textbf{*} are bundled with OpenCore.
5826 5827
To compile the drivers from UDK (EDK II) the same command used for
OpenCore compilation can be taken, but choose a corresponding package:
V
vit9696 已提交
5828 5829 5830 5831 5832 5833 5834 5835 5836
\begin{lstlisting}[label=compileudk, style=ocbash]
git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc
\end{lstlisting}

5837
\subsection{Tools and Applications}\label{uefitools}
V
vit9696 已提交
5838 5839

Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below.
5840 5841
While some tools can be launched from within OpenCore (Refer to the \hyperref[misctools]{Tools} subsection
for more details), most should be run separately either directly or from \texttt{Shell}.
V
vit9696 已提交
5842

V
vit9696 已提交
5843
To boot into OpenShell or any other tool directly save \texttt{OpenShell.efi}
V
vit9696 已提交
5844
under the name of \texttt{EFI\textbackslash BOOT\textbackslash BOOTX64.EFI}
D
dakanji 已提交
5845
on a FAT32 partition. It is typically unimportant whether the partition scheme
V
vit9696 已提交
5846 5847 5848 5849 5850 5851 5852
is \texttt{GPT} or \texttt{MBR}.

While the previous approach works both on Macs and other computers,
an alternative Mac-only approach to bless the tool on an HFS+ or APFS
volume:

\begin{lstlisting}[caption=Blessing tool, label=blesstool, style=ocbash]
V
vit9696 已提交
5853
sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
V
vit9696 已提交
5854 5855 5856
  --folder /Volumes/VOLNAME/DIR/ --setBoot
\end{lstlisting}

5857
\emph{Note 1}: \texttt{/System/Library/CoreServices/BridgeVersion.bin} should be copied
V
vit9696 已提交
5858
  to \texttt{/Volumes/VOLNAME/DIR}. \\
D
dakanji 已提交
5859
\emph{Note 2}: To be able to use the \texttt{bless} command,
5860 5861 5862
  \href{https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html}{disabling System Integrity Protection} is necessary. \\
\emph{Note 3}: To be able to boot \href{https://support.apple.com/HT208330}{Secure Boot}
  might be disabled if present.
V
vit9696 已提交
5863

V
vit9696 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
Some of the known tools are listed below (builtin tools are marked with \textbf{*}):

\begin{tabular}{p{1.3in}p{5.55in}}
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{BootKicker}}\textbf{*}
& Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs). \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{ChipTune}}\textbf{*}
& Test BeepGen protocol and generate audio signals of different style and length. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{CleanNvram}}\textbf{*}
& Reset NVRAM alternative bundled as a standalone tool. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{GopStop}}\textbf{*}
& Test GraphicsOutput protocol with a
  \href{https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop}{simple scenario}. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{KeyTester}}\textbf{*}
& Test keyboard input in \texttt{SimpleText} mode. \\
\href{https://www.memtest86.com}{\texttt{MemTest86}}
& Memory testing utility. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{OpenControl}}\textbf{*}
& Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM access
  when launching from OpenCore. \\
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{OpenShell}}\textbf{*}
& OpenCore-configured \href{http://github.com/tianocore/edk2}{\texttt{UEFI Shell}} for compatibility
D
dakanji 已提交
5885
  with a broad range of firmware. \\
V
vit9696 已提交
5886 5887
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{PavpProvision}}
& Perform EPID provisioning (requires certificate data configuration). \\
V
vit9696 已提交
5888 5889
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{ResetSystem}}\textbf{*}
& Utility to perform system reset. Takes reset type as an argument:
5890 5891
  \texttt{coldreset}, \texttt{firmware}, \texttt{shutdown}, \texttt{warmreset}.
  Defaults to \texttt{coldreset}. \\
V
vit9696 已提交
5892 5893
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{RtcRw}}\textbf{*}
& Utility to read and write RTC (CMOS) memory. \\
5894
\href{https://github.com/acidanthera/OpenCorePkg}{\texttt{ControlMsrE2}}\textbf{*}
Z
zhen-zen 已提交
5895 5896
& Check \texttt{CFG Lock} (MSR \texttt{0xE2} write protection) consistency
across all cores and change such hidden options on selected platforms.
V
vit9696 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
\end{tabular}

\subsection{OpenCanopy}\label{ueficanopy}

OpenCanopy is a graphical OpenCore user interface that runs in
\texttt{External} \texttt{PickerMode} and relies on
\href{https://github.com/acidanthera/OpenCorePkg}{OpenCorePkg} \texttt{OcBootManagementLib}
similar to the builtin text interface.

OpenCanopy requires graphical resources located in \texttt{Resources} directory to run.
Sample resources (fonts and images) can be found in
5908
\href{https://github.com/acidanthera/OcBinaryData}{OcBinaryData repository}. Customised icons can be found over the internet
A
Andrey1970AppleLife 已提交
5909
(e.g. \href{https://github.com/blackosx/OpenCanopyIcons}{here} or \href{https://applelife.ru/threads/kastomizacija-opencanopy.2945020/}{there}).
V
vit9696 已提交
5910

5911 5912 5913 5914 5915
OpenCanopy provides full support for \texttt{PickerAttributes} and offers a configurable
builtin icon set. The default chosen icon set depends on the \texttt{DefaultBackgroundColor}
variable value. For Light Gray \texttt{Old} icon set will be used, for other colours ---
the one without a prefix.

D
dakanji 已提交
5916 5917 5918 5919
Predefined icons are saved in the
\texttt{\textbackslash EFI\textbackslash OC\textbackslash Resources\textbackslash Image}
directory. A full list of supported icons (in \texttt{.icns} format) is provided below. When optional icons
are missing, the closest available icon will be used. External entries will use \texttt{Ext}-prefixed
5920 5921
icon if available (e.g. \texttt{OldExtHardDrive.icns}).

5922 5923 5924
\emph{Note}: In the following all dimensions are normative for the 1x scaling level and shall be
scaled accordingly for other levels.

5925 5926
\begin{itemize}
\tightlist
5927 5928 5929 5930 5931 5932
  \item \texttt{Cursor} --- Mouse cursor (mandatory, up to 144x144).
  \item \texttt{Selected} --- Selected item (mandatory, 144x144).
  \item \texttt{Selector} --- Selecting item (mandatory, up to 144x40).
  \item \texttt{Left} --- Scrolling left (mandatory, 40x40).
  \item \texttt{Right} --- Scrolling right (mandatory, 40x40).
  \item \texttt{HardDrive} --- Generic OS (mandatory, 128x128).
5933
  \item \texttt{Background} --- Centred background image.
5934 5935 5936 5937 5938 5939 5940 5941
  \item \texttt{Apple} --- Apple OS (128x128).
  \item \texttt{AppleRecv} --- Apple Recovery OS (128x128).
  \item \texttt{AppleTM} --- Apple Time Machine (128x128).
  \item \texttt{Windows} --- Windows (128x128).
  \item \texttt{Other} --- Custom entry (see \texttt{Entries}, 128x128).
  \item \texttt{ResetNVRAM} --- Reset NVRAM system action or tool (128x128).
  \item \texttt{Shell} --- Entry with UEFI Shell name for e.g. \texttt{OpenShell} (128x128).
  \item \texttt{Tool} --- Any other tool (128x128).
5942 5943
\end{itemize}

D
dakanji 已提交
5944 5945
Predefined labels are saved in the
\texttt{\textbackslash EFI\textbackslash OC\textbackslash Resources\textbackslash Label}
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
directory. Each label has \texttt{.lbl} or \texttt{.l2x} suffix to represent the scaling level.
Full list of labels is provided below. All labels are mandatory.

\begin{itemize}
\tightlist
  \item \texttt{EFIBoot} --- Generic OS.
  \item \texttt{Apple} --- Apple OS.
  \item \texttt{AppleRecv} --- Apple Recovery OS.
  \item \texttt{AppleTM} --- Apple Time Machine.
  \item \texttt{Windows} --- Windows.
  \item \texttt{Other} --- Custom entry (see \texttt{Entries}).
  \item \texttt{ResetNVRAM} --- Reset NVRAM system action or tool.
  \item \texttt{Shell} --- Entry with UEFI Shell name (e.g. \texttt{OpenShell}).
  \item \texttt{Tool} --- Any other tool.
\end{itemize}

5962 5963
\emph{Note}: All labels must have a height of exactly 12 px. There is no limit for their width.

5964
Label and icon generation can be performed with bundled utilities: \texttt{disklabel} and
5965
\texttt{icnspack}. Font is Helvetica 12 pt times scale factor.
5966 5967 5968 5969 5970 5971

Font format corresponds to \href{https://www.angelcode.com/products/bmfont}{AngelCode binary BMF}.
While there are many utilities to generate font files, currently it is recommended to use
\href{https://github.com/danpla/dpfontbaker}{dpFontBaker} to generate bitmap font
(\href{https://github.com/danpla/dpfontbaker/pull/1}{using CoreText produces best results})
and \href{https://github.com/usr-sse2/fonverter}{fonverter} to export it to binary format.
5972

V
vit9696 已提交
5973 5974 5975 5976 5977 5978
\subsection{OpenRuntime}\label{uefiruntime}

\texttt{OpenRuntime} is an OpenCore plugin implementing \texttt{OC\_FIRMWARE\_RUNTIME} protocol.
This protocol implements multiple features required for OpenCore that are otherwise not possible
to implement in OpenCore itself as they are needed to work in runtime, i.e. during operating system
functioning. Feature highlights:
V
vit9696 已提交
5979 5980

\begin{itemize}
V
vit9696 已提交
5981 5982 5983
  \item NVRAM namespaces, allowing to isolate operating systems from accessing select
  variables (e.g. \texttt{RequestBootVarRouting} or \texttt{ProtectSecureBoot}).
  \item Read-only and write-only NVRAM variables, enhancing the security of OpenCore,
D
dakanji 已提交
5984
  Lilu, and Lilu plugins, such as VirtualSMC, which implements \texttt{AuthRestart} support.
V
vit9696 已提交
5985 5986 5987 5988
  \item NVRAM isolation, allowing to protect all variables from being written from
  an untrusted operating system (e.g. \texttt{DisableVariableWrite}).
  \item UEFI Runtime Services memory protection management to workaround read-only
  mapping (e.g. \texttt{EnableWriteUnprotector}).
V
vit9696 已提交
5989 5990
\end{itemize}

V
vit9696 已提交
5991 5992 5993
\subsection{Properties}\label{uefiprops}

\begin{enumerate}
V
vit9696 已提交
5994 5995 5996 5997
\item
  \texttt{APFS}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Failsafe}: None\\
D
dakanji 已提交
5998
  \textbf{Description}: Provide APFS support as configured in the
V
vit9696 已提交
5999 6000
  \hyperref[uefiapfsprops]{APFS Properties} section below.

6001 6002 6003 6004 6005
\item
  \texttt{Audio}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Failsafe}: None\\
  \textbf{Description}: Configure audio backend support described
D
dakanji 已提交
6006
  in the \hyperref[uefiaudioprops]{Audio Properties} section below.
6007 6008 6009 6010

  Audio support provides a way for upstream protocols to interact with the
  selected hardware and audio resources. All audio resources should reside
  in \texttt{\textbackslash EFI\textbackslash OC\textbackslash Resources\textbackslash Audio}
6011
  directory. Currently the supported audio file formats are MP3 and WAVE PCM. While it is
6012 6013 6014 6015
  driver-dependent which audio stream format is supported, most common audio cards
  support 16-bit signed stereo audio at 44100 or 48000 Hz.

  Audio file path is determined by audio type, audio localisation, and audio path. Each filename
6016 6017 6018 6019
  looks as follows: \texttt{[audio type]\_[audio localisation]\_[audio path].[audio ext]}.
  For unlocalised files filename does not include the language code and looks as follows:
  \texttt{[audio type]\_[audio path].[audio ext]}. Audio extension can either be \texttt{mp3}
  or \texttt{wav}.
6020 6021 6022 6023 6024 6025 6026

  \begin{itemize}
  \tightlist
  \item Audio type can be \texttt{OCEFIAudio} for OpenCore audio files or
    \texttt{AXEFIAudio} for macOS bootloader audio files.
  \item Audio localisation is a two letter language code (e.g. \texttt{en})
  with an exception for Chinese, Spanish, and Portuguese. Refer to
V
vit9696 已提交
6027
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h}{\texttt{APPLE\_VOICE\_OVER\_LANGUAGE\_CODE} definition}
6028 6029
  for the list of all supported localisations.
  \item Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
V
vit9696 已提交
6030
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h}{\texttt{APPLE\_VOICE\_OVER\_AUDIO\_FILE} definition}.
6031
  For OpenCore audio paths refer to
R
ryan 已提交
6032
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h}{\texttt{OC\_VOICE\_OVER\_AUDIO\_FILE} definition}.
6033
  The only exception is OpenCore boot chime file, which is \texttt{OCEFIAudio\_VoiceOver\_Boot.mp3}.
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
  \end{itemize}

  Audio localisation is determined separately for macOS bootloader and OpenCore.
  For macOS bootloader it is set in \texttt{preferences.efires} archive in
  \texttt{systemLanguage.utf8} file and is controlled by the operating system.
  For OpenCore the value of \texttt{prev-lang:kbd} variable is used.
  When native audio localisation of a particular file is missing, English language
  (\texttt{en}) localisation is used. Sample audio files can be found in
  \href{https://github.com/acidanthera/OcBinaryData}{OcBinaryData repository}.

V
vit9696 已提交
6044 6045 6046
\item
  \texttt{ConnectDrivers}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
6047
  \textbf{Failsafe}: \texttt{false}\\
6048 6049
  \textbf{Description}: Perform UEFI controller connection after driver loading.

6050 6051 6052 6053
  This option is useful for loading drivers following UEFI driver model
  as they may not start by themselves. Examples of such drivers are filesystem
  or audio drivers. While effective, this option may not be necessary for drivers
  performing automatic connection, and may slightly slowdown the boot.
V
vit9696 已提交
6054

D
dakanji 已提交
6055
  \emph{Note}: Some types of firmware, particularly those made by Apple, only connect the boot
G
Goldfish64 已提交
6056
  drive to speed up the boot process. Enable this option to be able to see all the
D
dakanji 已提交
6057
  boot options when running multiple drives.
6058

V
vit9696 已提交
6059 6060 6061
\item
  \texttt{Drivers}\\
  \textbf{Type}: \texttt{plist\ array}\\
6062
  \textbf{Failsafe}: None\\
V
vit9696 已提交
6063 6064 6065
  \textbf{Description}: Load selected drivers from \texttt{OC/Drivers}
  directory.

D
dakanji 已提交
6066
  To be filled with string filenames meant to be loaded as UEFI drivers.
6067

V
vit9696 已提交
6068 6069 6070 6071
\item
  \texttt{Input}\\
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Failsafe}: None\\
D
dakanji 已提交
6072
  \textbf{Description}: Apply individual settings designed for input (keyboard and mouse) in the
V
vit9696 已提交
6073 6074
  \hyperref[uefiinputprops]{Input Properties} section below.

6075
\item
6076
  \texttt{Output}\\
6077 6078
  \textbf{Type}: \texttt{plist\ dict}\\
  \textbf{Failsafe}: None\\
D
dakanji 已提交
6079
  \textbf{Description}: Apply individual settings designed for output (text and graphics) in the
6080
  \hyperref[uefioutputprops]{Output Properties} section below.
V
vit9696 已提交
6081

6082
\item
6083
  \texttt{ProtocolOverrides}\\
6084
  \textbf{Type}: \texttt{plist\ dict}\\
6085
  \textbf{Failsafe}: None\\
D
dakanji 已提交
6086 6087
  \textbf{Description}: Force builtin versions of certain protocols described
  in the \hyperref[uefiprotoprops]{ProtocolOverrides Properties} section below.
6088

V
vit9696 已提交
6089 6090
  \emph{Note}: all protocol instances are installed prior to driver loading.

V
vit9696 已提交
6091 6092 6093
\item
  \texttt{Quirks}\\
  \textbf{Type}: \texttt{plist\ dict}\\
6094
  \textbf{Failsafe}: None\\
D
dakanji 已提交
6095
  \textbf{Description}: Apply individual firmware quirks described in the
V
vit9696 已提交
6096 6097
  \hyperref[uefiquirkprops]{Quirks Properties} section below.

6098 6099 6100
\item
  \texttt{ReservedMemory}\\
  \textbf{Type}: \texttt{plist\ array}\\
D
dakanji 已提交
6101
  \textbf{Description}: To be filled with \texttt{plist\ dict} values,
6102 6103 6104
  describing memory areas exclusive to specific firmware and hardware functioning,
  which should not be used by the operating system. Examples of such memory regions
  could be the second 256 MB corrupted by the Intel HD 3000 or an area with faulty RAM.
6105
  Refer to the \hyperref[uefirsvdprops]{ReservedMemory Properties} section below for details.
6106

V
vit9696 已提交
6107 6108
\end{enumerate}

V
vit9696 已提交
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
\subsection{APFS Properties}\label{uefiapfsprops}

\begin{enumerate}

\item
  \texttt{EnableJumpstart}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Load embedded APFS drivers from APFS containers.

6119 6120 6121
  An APFS EFI driver is bundled in all bootable APFS containers. This
  option performs the loading of signed APFS drivers (consistent with the
  \texttt{ScanPolicy}). Refer to the ``EFI Jumpstart'' section of the
6122
  \href{https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf}{Apple File System Reference} for details.
V
vit9696 已提交
6123

6124 6125 6126 6127 6128 6129 6130

\item
  \texttt{GlobalConnect}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Perform full device connection during APFS loading.

6131 6132 6133 6134
  Every handle is connected recursively instead of the partition handle connection
  typically used for APFS driver loading. This may result in additional time being
  taken but can sometimes be the only way to access APFS partitions on certain
  firmware, such as those on older HP laptops.
6135

V
vit9696 已提交
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
\item
  \texttt{HideVerbose}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Hide verbose output from APFS driver.

  APFS verbose output can be useful for debugging.

\item
  \texttt{JumpstartHotPlug}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Load APFS drivers for newly connected devices.

6150 6151
  Permits APFS USB hot plug which enables loading APFS drivers, both at OpenCore
  startup and during OpenCore picker dusplay. Disable if not required.
V
vit9696 已提交
6152 6153 6154 6155 6156 6157 6158

\item
  \texttt{MinDate}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Minimal allowed APFS driver date.

6159 6160 6161 6162 6163
  The APFS driver date connects the APFS driver with the calendar release date.
  Apple ultimately drops support for older macOS releases and APFS drivers from
  such releases may contain vulnerabilities that can be used to compromise
  a computer if such drivers are used after support ends. This option
  permits restricting APFS drivers to current macOS versions.
V
vit9696 已提交
6164 6165 6166 6167 6168

  \begin{itemize}
    \tightlist
    \item \texttt{0} --- require the default supported release date of APFS
    in OpenCore. The default release date will increase with time and thus
6169
    this setting is recommended. Currently set to 2018/06/21.
V
vit9696 已提交
6170 6171 6172
    \item \texttt{-1} --- permit any release date to load (strongly discouraged).
    \item Other --- use custom minimal APFS release date, e.g. \texttt{20200401}
    for 2020/04/01. APFS release dates can be found in OpenCore boot log
R
ryan 已提交
6173
    and \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h}{\texttt{OcApfsLib}}.
V
vit9696 已提交
6174 6175 6176 6177 6178 6179 6180 6181
  \end{itemize}

\item
  \texttt{MinVersion}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Minimal allowed APFS driver version.

6182 6183 6184 6185 6186
  The APFS driver version connects the APFS driver with the macOS release.
  Apple ultimately drops support for older macOS releases and APFS drivers from
  such releases may contain vulnerabilities that can be used to compromise
  a computer if such drivers are used after support ends. This option
  permits restricting APFS drivers to current macOS versions.
V
vit9696 已提交
6187 6188 6189 6190 6191 6192

  \begin{itemize}
    \tightlist
    \item \texttt{0} --- require the default supported version of APFS
    in OpenCore. The default version will increase with time and thus
    this setting is recommended. Currently set to the latest point release
6193
    from High Sierra from App Store (\texttt{748077008000000}).
V
vit9696 已提交
6194 6195 6196
    \item \texttt{-1} --- permit any version to load (strongly discouraged).
    \item Other --- use custom minimal APFS version, e.g. \texttt{1412101001000000}
    from macOS Catalina 10.15.4. APFS versions can be found in OpenCore boot log
R
ryan 已提交
6197
    and \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h}{\texttt{OcApfsLib}}.
V
vit9696 已提交
6198 6199 6200 6201
  \end{itemize}

\end{enumerate}

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
\subsection{AppleInput Properties}\label{uefiappleinputprops}

\begin{enumerate}

  \item
  \texttt{AppleEvent}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Auto}\\
  \textbf{Description}: Determine whether OC builtin or OEM Apple Event protocol is used.

  This option determines whether Apple's OEM Apple Event protocol is used (where available), or
  whether OpenCore's reversed engineered and updated re-implementation is used. In general
  OpenCore's re-implementation should be preferred, since it contains updates such as noticeably
  improved fine mouse cursor movement and configurable key repeat delays.

  \begin{itemize}
  \tightlist
6219 6220
  \item \texttt{Auto} --- Use OEM Apple Event implementation if available, connected and
  recent enough to be used, otherwise use OC reimplementation.
M
MikeBeaton 已提交
6221 6222
  On non-Apple hardware this will use the OpenCore builtin implementation.
  On some Macs (e.g. classic Mac Pro) this will find the Apple implementation. On both older and
6223 6224 6225 6226 6227
  newer Macs than this, this option will always or often use the OC implementation. On older Macs
  this is because the implementation available is too old to be used, on newer Macs it is
  because of optimisations added by Apple which do not connect the Apple Event protocol
  except when needed -- e.g. except when the Apple boot picker is explicitly started.
  Due to its somewhat unpredicatable results, this option is not normally recommended.
M
MikeBeaton 已提交
6228 6229
  \item \texttt{Builtin} ---  Always use OpenCore's updated re-implementation of the Apple Event protocol.
  Use of this setting is recommended even on Apple hardware, due to
6230 6231
  improvements (better fine mouse control, configurable key delays) made in the OC re-implementation
  of the protocol.
M
MikeBeaton 已提交
6232 6233 6234 6235 6236
  \item \texttt{OEM} --- Assume Apple's protocol will be available at driver connection. On all Apple hardware
  where a recent enough Apple OEM version of the protocol is available -- whether or not connected automatically
  by Apple's firmware -- this option will reliably access the Apple implementation. On all other systems, this
  option will result in no keyboard or mouse support. For the reasons stated, \texttt{Builtin} is recommended in
  preference to this option in most cases.
6237 6238 6239 6240
  \end{itemize}

\item
  \texttt{CustomDelays}\\
M
MikeBeaton 已提交
6241 6242
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6243 6244
  \textbf{Description}: Enable custom key repeat delays when using the OpenCore implementation of the Apple Event protocol.
  Has no effect when using the OEM Apple implementation (see \texttt{AppleEvent} setting).
6245

6246 6247
  \begin{itemize}
  \tightlist
M
MikeBeaton 已提交
6248 6249
  \item \texttt{true} --- The values of \texttt{KeyInitialDelay} and \texttt{KeySubsequentDelay} are used.
  \item \texttt{false} --- Apple default values of 500ms (\texttt{50}) and 50ms (\texttt{5}) are used.
6250
  \end{itemize}
6251 6252 6253 6254

\item
  \texttt{KeyInitialDelay}\\
  \textbf{Type}: \texttt{plist\ integer}\\
M
MikeBeaton 已提交
6255 6256
  \textbf{Failsafe}: \texttt{50} (500ms before first key repeat)\\
  \textbf{Description}: Configures the initial delay before keyboard key repeats in OpenCore implementation
6257 6258
  of Apple Event protocol, in units of 10ms.

M
MikeBeaton 已提交
6259 6260 6261 6262
  The Apple OEM default value is \texttt{50} (500ms).

  \emph{Note 1}: On systems not using \texttt{KeySupport}, this setting may be freely used
  to configure key repeat behaviour.
6263

M
MikeBeaton 已提交
6264 6265 6266 6267 6268
  \emph{Note 2}: On systems using \texttt{KeySupport}, but which do not show the `two long
  delays' behavior (see Note 3) and/or which always show a solid `set default' indicator (see \texttt{KeyForgetThreshold})
  then this setting may also be freely used to configure key repeat initial delay behaviour,
  except that it should never be set to less than \texttt{KeyForgetThreshold} to avoid
  uncontrolled key repeats.
6269

M
MikeBeaton 已提交
6270 6271 6272 6273
  \emph{Note 3}: On some systems using \texttt{KeySupport}, you may find that you see
  one additional slow key repeat before normal speed key repeat starts, when holding a
  key down. If so, you may wish to configure \texttt{KeyInitialDelay} and \texttt{KeySubsequentDelay}
  according to the instructions at Note 3 of \texttt{KeySubsequentDelay}.
6274

6275 6276 6277 6278

\item
  \texttt{KeySubsequentDelay}\\
  \textbf{Type}: \texttt{plist\ integer}\\
M
MikeBeaton 已提交
6279 6280
  \textbf{Failsafe}: \texttt{5} (50ms between subsequent key repeats)\\
  \textbf{Description}: Configures the gap between keyboard key repeats in OpenCore implementation
6281 6282
  of Apple Event protocol, in units of 10ms.

M
MikeBeaton 已提交
6283 6284 6285 6286 6287
  The Apple OEM default value is \texttt{5} (50ms).
  \texttt{0} is an invalid value for this option (will issue a debug log warning and use \texttt{1} instead).

  \emph{Note 1}: On systems not using \texttt{KeySupport}, this setting may be freely used
  to configure key repeat behaviour.
6288

M
MikeBeaton 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
  \emph{Note 2}: On systems using \texttt{KeySupport}, but which do not show the `two long
  delays' behaviour (see Note 3) and/or which always show a solid `set default' indicator
  (see \texttt{KeyForgetThreshold}) (which should apply to many/most systems using \texttt{AMI}
  \texttt{KeySupport} mode) then this setting may be freely used to configure key repeat
  subsequent delay behaviour, except that it should never be set to less than \texttt{KeyForgetThreshold}
  to avoid uncontrolled key repeats.

  \emph{Note 3}: On some systems using \texttt{KeySupport}, particularly \texttt{KeySupport}
  in non-\texttt{AMI} mode, you may find that after configuring \texttt{KeyForgetThreshold}
  you get one additional slow key repeat before normal speed key repeat starts, when holding a key down.
  On systems where this is the case, it is an unavoidable artefect of using \texttt{KeySupport} to emulate
  raw keyboard data, which is not made available by UEFI. While this `two long delays' issue has minimal
  effect on overall usability, nevertheless you may wish to resolve it, and it is possible to do
  so as follows:
  \begin{itemize}
    \tightlist
    \item Set \texttt{CustomDelays} to \texttt{true}
    \item Set \texttt{KeyInitialDelay} to \texttt{0}
    \item Set \texttt{KeySubsequentDelay} to at least the value of your \texttt{KeyForgetThreshold} setting
  \end{itemize}
  The above procedure works as follows:
  \begin{itemize}
    \tightlist
    \item Setting \texttt{KeyInitialDelay} to \texttt{0} cancels the Apple Event initial repeat
    delay (when using the OC builtin Apple Event implementation with \texttt{CustomDelays} enabled),
    therefore the only long delay you will see is the the non-configurable and non-avoidable initial
    long delay introduced by the BIOS key support on these machines.
    \item Key-smoothing parameter \texttt{KeyForgetThreshold}
    effectively acts as the shortest time for which a key can appear to be held, therefore a
    key repeat delay of less than this will guarantee at least one extra repeat for every
    key press, however quickly the key is physically tapped.
    \item In the unlikely event that you still get frequent, or occasional, double key responses after
    setting \texttt{KeySubsequentDelay} equal to your system's value of \texttt{KeyForgetThreshold},
    then increase \texttt{KeySubsequentDelay} by one or two more until this effect goes away.
  \end{itemize}
6324

M
MikeBeaton 已提交
6325
  \item
6326 6327
  \texttt{PointerSpeedDiv}\\
  \textbf{Type}: \texttt{plist\ integer}\\
6328
  \textbf{Failsafe}: \texttt{1}\\
6329 6330
  \textbf{Description}: Configure pointer speed divisor in OpenCore implementation
  of Apple Event protocol.
6331
  Has no effect when using the OEM Apple implementation (see \texttt{AppleEvent} setting).
6332 6333 6334 6335

  Configures the divisor for pointer movements. The Apple OEM default value is \texttt{1}.
  \texttt{0} is an invalid value for this option.

6336 6337 6338 6339
  \emph{Note}: The recommended value for this option is \texttt{1}. This value may
  optionally be modified in combination with \texttt{PointerSpeedMul}, according to user
  preference, to achieve customised mouse movement scaling.

6340 6341 6342
\item
  \texttt{PointerSpeedMul}\\
  \textbf{Type}: \texttt{plist\ integer}\\
M
MikeBeaton 已提交
6343
  \textbf{Failsafe}: \texttt{1}\\
6344 6345
  \textbf{Description}: Configure pointer speed multiplier in OpenCore implementation
  of Apple Event protocol.
6346
  Has no effect when using the OEM Apple implementation (see \texttt{AppleEvent} setting).
6347 6348 6349

  Configures the multiplier for pointer movements. The Apple OEM default value is \texttt{1}.

6350 6351 6352 6353
  \emph{Note}: The recommended value for this option is \texttt{1}. This value may
  optionally be modified in combination with \texttt{PointerSpeedDiv}, according to user
  preference, to achieve customised mouse movement scaling.

6354
\end{enumerate}
6355 6356 6357 6358 6359 6360 6361 6362

\subsection{Audio Properties}\label{uefiaudioprops}

\begin{enumerate}

\item
  \texttt{AudioCodec}\\
  \textbf{Type}: \texttt{plist\ integer}\\
A
Andrey1970AppleLife 已提交
6363
  \textbf{Failsafe}: \texttt{0}\\
6364 6365
  \textbf{Description}: Codec address on the specified audio controller for audio support.

6366
  This typically contains the first audio codec address on the builtin analog audio controller (\texttt{HDEF}).
V
vit9696 已提交
6367
  Audio codec addresses, e.g. \texttt{2}, can be found in the debug log (marked in bold-italic):
6368

V
vit9696 已提交
6369 6370 6371
  \texttt{OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,\textit{\textbf{00000000}}) (4 outputs)}\\
  \texttt{OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,\textit{\textbf{00000000}}) (1 outputs)}\\
  \texttt{OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,\textit{\textbf{02000000}}) (7 outputs)}
6372

6373
  As an alternative, this value can be obtained from \texttt{IOHDACodecDevice} class in I/O Registry
6374 6375 6376 6377 6378
  containing it in \texttt{IOHDACodecAddress} field.

\item
  \texttt{AudioDevice}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
6379
  \textbf{Failsafe}: Empty\\
6380 6381
  \textbf{Description}: Device path of the specified audio controller for audio support.

6382
  This typically contains builtin analog audio controller (\texttt{HDEF}) device path,
6383
  e.g. \texttt{PciRoot(0x0)/Pci(0x1b,0x0)}. The list of recognised audio controllers can be
V
vit9696 已提交
6384
  found in the debug log (marked in bold-italic):
6385

V
vit9696 已提交
6386 6387 6388
  \texttt{OCAU: 1/3 \textit{\textbf{PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)}}/VenMsg(<redacted>,00000000) (4 outputs)}\\
  \texttt{OCAU: 2/3 \textit{\textbf{PciRoot(0x0)/Pci(0x3,0x0)}}/VenMsg(<redacted>,00000000) (1 outputs)}\\
  \texttt{OCAU: 3/3 \textit{\textbf{PciRoot(0x0)/Pci(0x1B,0x0)}}/VenMsg(<redacted>,02000000) (7 outputs)}
6389

6390 6391
  As an alternative, \texttt{gfxutil -f HDEF} command can be used in macOS. Specifying an empty device
  path will result in the first available audio controller being used.
6392 6393 6394 6395 6396 6397 6398

\item
  \texttt{AudioOut}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Index of the output port of the specified codec starting from 0.

6399
  This typically contains the index of the green out of the builtin analog audio controller (\texttt{HDEF}).
V
vit9696 已提交
6400
  The number of output nodes (\texttt{N}) in the debug log (marked in bold-italic):
6401

V
vit9696 已提交
6402 6403 6404
  \texttt{OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (\textit{\textbf{4 outputs}})}\\
  \texttt{OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (\textit{\textbf{1 outputs}})}\\
  \texttt{OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (\textit{\textbf{7 outputs}})}
V
vit9696 已提交
6405 6406

  The quickest way to find the right port is to bruteforce the values from \texttt{0} to \texttt{N - 1}.
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423

\item
  \texttt{AudioSupport}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Activate audio support by connecting to a backend driver.

  Enabling this setting routes audio playback from builtin protocols to a dedicated
  audio port (\texttt{AudioOut}) of the specified codec (\texttt{AudioCodec}) located
  on the audio controller (\texttt{AudioDevice}).

\item
  \texttt{MinimumVolume}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Minimal heard volume level from \texttt{0} to \texttt{100}.

6424 6425 6426
  The screen reader will use this volume level when the calculated volume level is lower
  than \texttt{MinimumVolume} and the boot chime will not play if the calculated
  volume level is lower than \texttt{MinimumVolume}.
6427 6428 6429

\item
  \texttt{PlayChime}\\
6430
  \textbf{Type}: \texttt{plist\ string}\\
6431
  \textbf{Failsafe}: \texttt{Auto}\\
6432 6433
  \textbf{Description}: Play chime sound at startup.

6434 6435 6436
  Enabling this setting plays the boot chime using the builtin audio support. The volume
  level is determined by the \texttt{MinimumVolume} and \texttt{VolumeAmplifier} settings
  as well as the \texttt{SystemAudioVolume} NVRAM variable. Possible values include:
6437 6438 6439 6440 6441 6442 6443 6444

  \begin{itemize}
    \tightlist
    \item \texttt{Auto} --- Enables chime when \texttt{StartupMute} NVRAM variable
      is not present or set to \texttt{00}.
    \item \texttt{Enabled} --- Enables chime unconditionally.
    \item \texttt{Disabled} --- Disables chime unconditionally.
  \end{itemize}
6445

6446
  \emph{Note}: \texttt{Enabled} can be used in separate from \texttt{StartupMute}
6447
  NVRAM variable to avoid conflicts when the firmware is able to play the boot chime.
6448

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
\item
  \texttt{ResetTrafficClass}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Set HDA Traffic Class Select Register to \texttt{TC0}.

  AppleHDA kext will function correctly only if \texttt{TCSEL} register is configured
  to use \texttt{TC0} traffic class. Refer to Intel I/O Controller Hub 9 (ICH9) Family
  Datasheet (or any other ICH datasheet) for more details about this register.

6459
  \emph{Note}: This option is independent from \texttt{AudioSupport}. If AppleALC is used
6460 6461
  it is preferred to use AppleALC \texttt{alctsel} property instead.

6462 6463 6464 6465 6466 6467 6468
\item
  \texttt{SetupDelay}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Audio codec reconfiguration delay in microseconds.

  Some codecs require a vendor-specific delay after the reconfiguration
D
dakanji 已提交
6469 6470
  (e.g. volume setting). This option makes it configurable. A typical
  delay can be up to 0.5 seconds.
6471

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
\item
  \texttt{VolumeAmplifier}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Multiplication coefficient for system volume to raw volume linear translation
  from \texttt{0} to \texttt{1000}.

  Volume level range read from \texttt{SystemAudioVolume} varies depending on the codec.
  To transform read value in \texttt{[0, 127]} range into raw volume range \texttt{[0, 100]}
  the read value is scaled to \texttt{VolumeAmplifier} percents:
  \begin{align*}
      RawVolume &= MIN(\frac{SystemAudioVolume * VolumeAmplifier}{100}, 100)
  \end{align*}
  \emph{Note}: the transformation used in macOS is not linear, but it is very close
  and this nuance is thus ignored.

\end{enumerate}

V
vit9696 已提交
6490 6491 6492 6493
\subsection{Input Properties}\label{uefiinputprops}

\begin{enumerate}

6494 6495 6496 6497 6498 6499
\item
  \texttt{KeyFiltering}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Enable keyboard input sanity checking.

D
dakanji 已提交
6500
  Apparently some boards such as the GA Z77P-D3 may return uninitialised data
6501 6502 6503 6504
  in \texttt{EFI\_INPUT\_KEY} with all input protocols.
  This option discards keys that are neither ASCII, nor are defined
  in the UEFI specification (see tables 107 and 108 in version 2.8).

V
vit9696 已提交
6505 6506 6507 6508
\item
  \texttt{KeyForgetThreshold}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
6509 6510
  \textbf{Description}: Treat duplicate key presses as held keys if they arrive
  during this timeout, in 10 ms units. Only applies to systems using \texttt{KeySupport}.
V
vit9696 已提交
6511 6512

  \texttt{AppleKeyMapAggregator} protocol is supposed to contain a fixed length buffer
6513 6514 6515 6516 6517 6518
  of currently pressed keys. However, the majority of the drivers which require
  \texttt{KeySupport} report key presses as interrupts, with automatically generated
  key repeat behaviour with some defined initial and subsequent delay. As a result,
  to emulate the raw key behaviour required by several Apple boot systems, we use a
  timeout to merge multiple repeated keys which are submitted within a small timeout
  window.
6519

6520
  This option allows setting this timeout based on the platform. The recommended
6521 6522 6523 6524 6525 6526 6527 6528 6529
  value for the majority of platforms is from \texttt{5} (\texttt{50} milliseconds)
  to \texttt{7} (\texttt{70} milliseconds), although values up to \texttt{9}
  (\texttt{90} milliseconds) have been observed to be required on some PS/2 systems.
  For reference, holding a key on VMware will repeat roughly every \texttt{20}
  milliseconds and the equivalent value for APTIO V is \texttt{30-40} milliseconds.
  \texttt{KeyForgetThreshold} should be configured to be longer than this. Thus,
  it is possible to configure a lower \texttt{KeyForgetThreshold} value on platforms
  with a faster native driver key repeat rate, for more responsive input, and it is
  required to set a higher value on slower platforms.
V
vit9696 已提交
6530

6531
  Pressing keys one after the other results in delays of at least \texttt{60} and
6532 6533 6534
  \texttt{100} milliseconds for the same platforms. Ideally, \texttt{KeyForgetThreshold}
  should remain lower than this value, to avoid merging real key presses.

M
MikeBeaton 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
  Tuning the value of \texttt{KeyForgetThreshold} is necessary for accurate
  and responsive keyboard input on systems on which \texttt{KeySupport} is
  enabled, and it is recommended to follow the instructions below
  to tune it correctly for your system.

  \emph{Note 1}: To tune \texttt{KeyForgetThreshold}, you may use
  the `set default' indicator within either OpenCanopy or the builtin picker.
  If \texttt{KeyForgetThreshold} is too low then the `set default' indicator
  will continue to flicker while \texttt{CTRL} or \texttt{=/+} is held down.
  You should configure the lowest value which avoids this flicker.
  On some systems (e.g. Aptio IV and potentially other systems using \texttt{AMI}
  \texttt{KeySupport} mode) you will be able to find a minimum \texttt{KeyForgetThreshold}
  value at which the `set default' indicator goes on and stays on with no flicker
  at all - if so, use this value. On most other systems using \texttt{KeySupport},
  you will find that the `set default' indicator will flicker once, when first pressing
  and holding the \texttt{CTRL} or \texttt{=/+} key, and then after a further very brief
  interval will go on and stay on. On such systems, you should chose the lowest value of
  \texttt{KeyForgetThreshold} at which you see only one initial flicker and then
  no subsequent flickering. (Where this happens, it is an unavoidable artefect
  on those systems of using \texttt{KeySupport} to emulate raw keyboard data, which
  is not made available by UEFI.)
6556

M
MikeBeaton 已提交
6557 6558 6559 6560 6561 6562
  \emph{Note 2}: \texttt{KeyForgetThreshold} should never need to be more than about \texttt{9}
  or \texttt{10} at most. If it is set to a value much higher than this, it will result in noticeably unresponsive
  keyboard input. Therefore, for overall key responsiveness, it is strongly recommended to configure a
  relatively lower value, at which the `set default' indicator flickers once and then does not flicker, rather
  than using a much higher value (i.e. significantly greater than \texttt{10}), which you may be
  able to find but should not use, where the `set default' indicator does not flicker at all.
6563

V
vit9696 已提交
6564 6565 6566 6567 6568 6569 6570 6571
\item
  \texttt{KeySupport}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Enable internal keyboard input translation to
  \texttt{AppleKeyMapAggregator} protocol.

  This option activates the internal keyboard interceptor driver, based on
D
dakanji 已提交
6572
  \texttt{AppleGenericInput}, also known as \texttt{AptioInputFix}, to fill
6573 6574
  the \texttt{AppleKeyMapAggregator} database for input functioning. In cases
  where a separate driver such as \texttt{OpenUsbKbDxe} is used, this option
6575 6576
  should never be enabled. Additionally, this option is not required and
  should not be enabled with Apple firmware.
V
vit9696 已提交
6577 6578 6579 6580

\item
  \texttt{KeySupportMode}\\
  \textbf{Type}: \texttt{plist\ string}\\
6581
  \textbf{Failsafe}: \texttt{Auto}\\
V
vit9696 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
  \textbf{Description}: Set internal keyboard input translation to
  \texttt{AppleKeyMapAggregator} protocol mode.

  \begin{itemize}
  \tightlist
  \item \texttt{Auto} --- Performs automatic choice as available with the following preference: \texttt{AMI}, \texttt{V2}, \texttt{V1}.
  \item \texttt{V1} --- Uses UEFI standard legacy input protocol \texttt{EFI\_SIMPLE\_TEXT\_INPUT\_PROTOCOL}.
  \item \texttt{V2} --- Uses UEFI standard modern input protocol \texttt{EFI\_SIMPLE\_TEXT\_INPUT\_EX\_PROTOCOL}.
  \item \texttt{AMI} --- Uses APTIO input protocol \texttt{AMI\_EFIKEYCODE\_PROTOCOL}.
  \end{itemize}

6593 6594 6595
  \emph{Note}: Currently \texttt{V1}, \texttt{V2}, and \texttt{AMI} unlike \texttt{Auto} only do filtering of
  the particular specified protocol. This may change in the future versions.

V
vit9696 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
\item
  \texttt{KeySwap}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Swap \texttt{Command} and \texttt{Option} keys during submission.

  This option may be useful for keyboard layouts with \texttt{Option} key situated to the right
  of \texttt{Command} key.

\item
  \texttt{PointerSupport}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Enable internal pointer driver.

  This option implements standard UEFI pointer protocol (\texttt{EFI\_SIMPLE\_POINTER\_PROTOCOL})
D
dakanji 已提交
6612
  through certain OEM protocols. The option may be useful on Z87 ASUS boards, where
D
dakanji 已提交
6613
  \texttt{EFI\_SIMPLE\_POINTER\_PROTOCOL} is defective.
V
vit9696 已提交
6614 6615 6616 6617

\item
  \texttt{PointerSupportMode}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
6618
  \textbf{Failsafe}: Empty\\
V
vit9696 已提交
6619 6620 6621
  \textbf{Description}: Set OEM protocol used for internal pointer driver.

  Currently the only supported variant is \texttt{ASUS}, using specialised protocol available
D
dakanji 已提交
6622
  on certain Z87 and Z97 ASUS boards. More details can be found in
V
vit9696 已提交
6623
  \href{https://github.com/LongSoft/UEFITool/pull/116}{\texttt{LongSoft/UefiTool\#116}}.
6624
  The value of this property cannot be empty if \texttt{PointerSupport} is enabled.
V
vit9696 已提交
6625 6626 6627 6628 6629 6630 6631

\item
  \texttt{TimerResolution}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Set architecture timer resolution.

6632 6633
  This option allows updating the firmware architecture timer period with the specified value
  in \texttt{100} nanosecond units. Setting a lower value typically improves performance
V
vit9696 已提交
6634
  and responsiveness of the interface and input handling.
6635

V
vit9696 已提交
6636 6637
  The recommended value is \texttt{50000} (\texttt{5} milliseconds) or slightly higher. Select
  ASUS Z87 boards use \texttt{60000} for the interface. Apple boards use \texttt{100000}.
6638
  In case of issues, this option can be left as \texttt{0}.
V
vit9696 已提交
6639 6640 6641

\end{enumerate}

6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
\subsection{Output Properties}\label{uefioutputprops}

\begin{enumerate}

\item
  \texttt{TextRenderer}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{BuiltinGraphics}\\
  \textbf{Description}: Chooses renderer for text going through standard
  console output.

  Currently two renderers are supported: \texttt{Builtin} and
  \texttt{System}. \texttt{System} renderer uses firmware services
  for text rendering. \texttt{Builtin} bypassing firmware services
  and performs text rendering on its own. Different renderers support
  a different set of options. It is recommended to use \texttt{Builtin}
  renderer, as it supports HiDPI mode and uses full screen resolution.

6660
  UEFI firmware typically supports \texttt{ConsoleControl} with two
D
dakanji 已提交
6661
  rendering modes: \texttt{Graphics} and \texttt{Text}. Some types of firmware
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
  do not support \texttt{ConsoleControl} and rendering modes. OpenCore
  and macOS expect text to only be shown in \texttt{Graphics} mode and
  graphics to be drawn in any mode. Since this is not required by UEFI
  specification, exact behaviour varies.

  Valid values are combinations of text renderer and rendering mode:

  \begin{itemize}
  \tightlist
  \item \texttt{BuiltinGraphics} --- Switch to \texttt{Graphics}
    mode and use \texttt{Builtin} renderer with
    custom \texttt{ConsoleControl}.
6674 6675 6676
  \item \texttt{BuiltinText} --- Switch to \texttt{Text}
    mode and use \texttt{Builtin} renderer with
    custom \texttt{ConsoleControl}.
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
  \item \texttt{SystemGraphics} --- Switch to \texttt{Graphics}
    mode and use \texttt{System} renderer with
    custom \texttt{ConsoleControl}.
  \item \texttt{SystemText} --- Switch to \texttt{Text}
    mode and use \texttt{System} renderer with
    custom \texttt{ConsoleControl}.
  \item \texttt{SystemGeneric} --- Use \texttt{System} renderer with
    system \texttt{ConsoleControl} assuming it behaves correctly.
  \end{itemize}

6687 6688 6689
  The use of \texttt{BuiltinGraphics} is straightforward.
  For most platforms, it is necessary to enable \texttt{ProvideConsoleGop}
  and set \texttt{Resolution} to \texttt{Max}. The \texttt{BuiltinText} variant is
D
dakanji 已提交
6690
  an alternative \texttt{BuiltinGraphics} for some very old and defective
D
dakanji 已提交
6691
  laptop firmware, which can only draw in \texttt{Text} mode.
6692

D
dakanji 已提交
6693
  The use of \texttt{System} protocols is more complicated. Typically,
6694 6695 6696 6697 6698 6699 6700
  the preferred setting is \texttt{SystemGraphics} or \texttt{SystemText}.
  Enabling \texttt{ProvideConsoleGop}, setting \texttt{Resolution} to
  \texttt{Max}, enabling \texttt{ReplaceTabWithSpace} is useful on almost
  all platforms. \texttt{SanitiseClearScreen}, \texttt{IgnoreTextInGraphics},
  and \texttt{ClearScreenOnModeSwitch} are more specific, and their use
  depends on the firmware.

D
dakanji 已提交
6701 6702
  \emph{Note}: Some Macs, such as the \texttt{MacPro5,1}, may have incompatible
  console output when using modern GPUs, and thus only \texttt{BuiltinGraphics}
6703 6704
  may work for them in such cases. NVIDIA GPUs may require additional
  \href{https://github.com/acidanthera/bugtracker/issues/1280}{firmware upgrades}.
6705 6706 6707 6708

\item
  \texttt{ConsoleMode}\\
  \textbf{Type}: \texttt{plist\ string}\\
6709
  \textbf{Failsafe}: Empty (Maintain current console mode)\\
6710 6711 6712
  \textbf{Description}: Sets console output mode as specified
  with the \texttt{WxH} (e.g. \texttt{80x24}) formatted string.

6713 6714 6715
  Set to \texttt{Max} to attempt using the largest available console mode.
  This option is currently ignored as the \texttt{Builtin} text renderer
  only supports one console mode.
6716

D
dakanji 已提交
6717
  \emph{Note}: This field is best left empty on most types of firmware.
6718 6719 6720 6721

\item
  \texttt{Resolution}\\
  \textbf{Type}: \texttt{plist\ string}\\
6722
  \textbf{Failsafe}: Empty (Maintain current screen resolution)\\
6723 6724 6725 6726 6727 6728
  \textbf{Description}: Sets console output screen resolution.

  \begin{itemize}
  \tightlist
  \item Set to \texttt{WxH@Bpp} (e.g. \texttt{1920x1080@32}) or \texttt{WxH}
  (e.g. \texttt{1920x1080}) formatted string to request custom resolution
D
dakanji 已提交
6729 6730
  from GOP if available.
  \item Set to \texttt{Max} to attempt using the largest
6731
  available screen resolution.
A
Andrey1970AppleLife 已提交
6732
  \end{itemize}
6733 6734 6735

  On HiDPI screens \texttt{APPLE\_VENDOR\_VARIABLE\_GUID} \texttt{UIScale}
  NVRAM variable may need to be set to \texttt{02} to enable HiDPI scaling
6736
  in \texttt{Builtin} text renderer, FileVault 2 UEFI password interface,
D
dakanji 已提交
6737
  and boot screen logo. Refer to the \hyperref[nvramvarsrec]{Recommended Variables}
6738
  section for details.
6739 6740 6741 6742 6743

  \emph{Note}: This will fail when console handle has no GOP protocol. When
  the firmware does not provide it, it can be added with \texttt{ProvideConsoleGop}
  set to \texttt{true}.

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
\item
  \texttt{ForceResolution}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Forces \texttt{Resolution} to be set in cases where the desired
  resolution is not available by default, such as on legacy Intel GMA and first
  generation Intel HD Graphics (Ironlake/Arrandale). Setting \texttt{Resolution} to
  \texttt{Max} will try to pull the largest available resolution from the connected
  display's EDID.

  \emph{Note}: This option depends on the \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcForceResolution.h}{\texttt{OC\_FORCE\_RESOLUTION\_PROTOCOL}}
  protocol being present. This protocol is currently only supported by \texttt{OpenDuetPkg}. The
  \texttt{OpenDuetPkg} implementation currently only supports Intel iGPUs.

6758 6759 6760 6761
\item
  \texttt{ClearScreenOnModeSwitch}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
6762 6763
  \textbf{Description}: Some types of firmware only clear part of the screen when switching
  from graphics to text mode, leaving a fragment of previously drawn images visible.
V
vit9696 已提交
6764
  This option fills the entire graphics screen with black colour before switching to
6765 6766 6767 6768
  text mode.

  \emph{Note}: This option only applies to \texttt{System} renderer.

6769 6770 6771 6772 6773 6774
\item
  \texttt{DirectGopRendering}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Use builtin graphics output protocol renderer for console.

D
dakanji 已提交
6775
  On certain firmware, such as on the \texttt{MacPro5,1}, this may provide better
D
dakanji 已提交
6776 6777
  performance or fix rendering issues. However, this option is not recommended unless
  there is an obvious benefit as it may result in issues such as slower scrolling.
6778

6779 6780 6781 6782 6783
\item
  \texttt{GopPassThrough}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Provide GOP protocol instances on top of UGA protocol instances.
D
dakanji 已提交
6784 6785 6786

  This option provides the GOP protocol via a UGA-based proxy
  for firmware that do not implement the protocol.
P
PMheart 已提交
6787 6788

  \emph{Note}: This option requires \texttt{ProvideConsoleGop} to be enabled.
6789

6790 6791 6792 6793
\item
  \texttt{IgnoreTextInGraphics}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
6794 6795
  \textbf{Description}: Some types of firmware output text onscreen in both graphics and
  text mode. This is typically unexpected as random text may appear over
6796
  graphical images and cause UI corruption. Setting this option to \texttt{true} will
D
dakanji 已提交
6797
  discard all text output when console control is in a different mode from \texttt{Text}.
6798

D
dakanji 已提交
6799
  \emph{Note}: This option only applies to the \texttt{System} renderer.
6800 6801 6802 6803 6804

\item
  \texttt{ReplaceTabWithSpace}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
6805 6806
  \textbf{Description}: Some types of firmware do not print tab characters or everything
  that follows them, causing difficulties in using the UEFI Shell's builtin
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
  text editor to edit property lists and other documents. This option makes the console
  output spaces instead of tabs.

  \emph{Note}: This option only applies to \texttt{System} renderer.

\item
  \texttt{ProvideConsoleGop}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Ensure GOP (Graphics Output Protocol) on console handle.

6818 6819 6820 6821
  macOS bootloader requires GOP or UGA (for 10.4 EfiBoot) to be present on console
  handle, yet the exact location of the graphics protocol is not covered by the
  UEFI specification. This option will ensure GOP and UGA, if present, are available
  on the console handle.
6822

D
dakanji 已提交
6823 6824
  \emph{Note}: This option will also replace incompatible implementations of GOP on the
  console handle, as may be the case on the \texttt{MacPro5,1} when using modern GPUs.
6825 6826 6827 6828 6829 6830 6831

\item
  \texttt{ReconnectOnResChange}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Reconnect console controllers after changing screen resolution.

D
dakanji 已提交
6832 6833 6834
  On certain firmware, the controllers that produce the console protocols (simple text out)
  must be reconnected when the screen resolution is changed via GOP. Otherwise, they will
  not produce text based on the new resolution.
6835 6836 6837 6838 6839 6840 6841 6842 6843

  \emph{Note}: On several boards this logic may result in black screen when launching
  OpenCore from Shell and thus it is optional. In versions prior to 0.5.2 this option
  was mandatory and not configurable. Please do not use this unless required.

\item
  \texttt{SanitiseClearScreen}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
6844 6845
  \textbf{Description}: Some types of firmware reset screen resolutions to a failsafe
  value (such as \texttt{1024x768}) on the attempts to clear screen contents
6846 6847 6848
  when large display (e.g. 2K or 4K) is used. This option attempts to apply
  a workaround.

6849 6850 6851
  \emph{Note}: This option only applies to the \texttt{System} renderer.
   On all known affected systems, \texttt{ConsoleMode} must be set to
   an empty string for this option to work.
6852

6853 6854 6855 6856
\item
  \texttt{UgaPassThrough}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6857
  \textbf{Description}: Provide UGA protocol instances on top of GOP protocol instances.
6858

D
dakanji 已提交
6859 6860
  Some types of firmware do not implement the legacy UGA protocol but this may be required
  for screen output by older EFI applications such as EfiBoot from 10.4.
6861

6862 6863 6864
\end{enumerate}


6865
\subsection{ProtocolOverrides Properties}\label{uefiprotoprops}
6866 6867 6868

\begin{enumerate}

6869 6870 6871 6872
\item
  \texttt{AppleAudio}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6873
  \textbf{Description}: Replaces Apple audio protocols with builtin
6874 6875
  versions.

6876
  Apple audio protocols allow OpenCore and the macOS bootloader to play
6877
  sounds and signals for screen reading or audible error reporting.
6878
  Supported protocols are beep generation and VoiceOver. The VoiceOver protocol
6879
  is specific to Gibraltar machines (T2) and is not supported before
6880 6881
  macOS High Sierra (10.13). Older macOS versions use the AppleHDA protocol
  (which is not currently implemented) instead.
6882

6883 6884 6885
  Only one set of audio protocols can be available at a time, so this setting should
  be enabled in order to enable audio playback in the OpenCore user interface on Mac
  systems implementing some of these protocols.
6886

6887
  \emph{Note}: The backend audio driver needs to be configured in \texttt{UEFI Audio}
6888 6889
  section for these protocols to be able to stream audio.

6890 6891 6892
\item
  \texttt{AppleBootPolicy}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
6893
  \textbf{Failsafe}: \texttt{false}\\
6894
  \textbf{Description}: Replaces the Apple Boot Policy protocol with a builtin
D
dakanji 已提交
6895
  version. This may be used to ensure APFS compatibility on VMs and legacy Macs.
6896

D
dakanji 已提交
6897 6898 6899
  \emph{Note}: This option is advisable on certain Macs, such as
  the \texttt{MacPro5,1}, that are APFS compatible but on which
  the Apple Boot Policy protocol has recovery detection issues.
6900

6901 6902 6903 6904
\item
  \texttt{AppleDebugLog}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6905
  \textbf{Description}: Replaces the Apple Debug Log protocol with a builtin
6906 6907
  version.

6908 6909 6910 6911
\item
  \texttt{AppleFramebufferInfo}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6912
  \textbf{Description}: Replaces the Apple Framebuffer Info protocol with a builtin
D
dakanji 已提交
6913
  version. This may be used to override framebuffer information on VMs and legacy Macs
D
dakanji 已提交
6914
  to improve compatibility with legacy EfiBoot such as the one in macOS 10.4.
6915

D
dakanji 已提交
6916 6917 6918
  \emph{Note}: The current implementation of this property results in it only being
  active when GOP is available (it is always equivalent to \texttt{false} otherwise).

6919 6920 6921 6922
\item
  \texttt{AppleImageConversion}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6923
  \textbf{Description}: Replaces the Apple Image Conversion protocol with a builtin
6924 6925
  version.

6926 6927 6928 6929
\item
  \texttt{AppleImg4Verification}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6930
  \textbf{Description}: Replaces the Apple IMG4 Verification protocol with a builtin
6931 6932 6933
  version. This protocol is used to verify \texttt{im4m} manifest files used by
  Apple Secure Boot.

6934 6935 6936 6937
\item
  \texttt{AppleKeyMap}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6938
  \textbf{Description}: Replaces Apple Key Map protocols with builtin
6939 6940
  versions.

6941
\item
R
Rodion Shingarev 已提交
6942
  \texttt{AppleRtcRam}\\
6943 6944
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6945
  \textbf{Description}: Replaces the Apple RTC RAM protocol with a builtin
6946 6947 6948
  version.

  \emph{Note}: Builtin version of Apple RTC RAM protocol may filter out
D
dakanji 已提交
6949
  I/O attempts to certain RTC memory addresses. The list of addresses
6950 6951 6952
  can be specified in \texttt{4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist}
  variable as a data array.

6953 6954 6955 6956
\item
  \texttt{AppleSecureBoot}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6957
  \textbf{Description}: Replaces the Apple Secure Boot protocol with a builtin
6958 6959
  version.

6960 6961 6962 6963
\item
  \texttt{AppleSmcIo}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6964
  \textbf{Description}: Replaces the Apple SMC I/O protocol with a builtin
6965 6966
  version.

6967
  This protocol replaces the legacy \texttt{VirtualSmc} UEFI driver, and is compatible
D
dakanji 已提交
6968
  with any SMC kernel extension. However, in case the \texttt{FakeSMC} kernel extension
6969 6970
  is used, manual NVRAM key variable addition may be needed.

6971 6972 6973 6974
\item
  \texttt{AppleUserInterfaceTheme}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
6975
  \textbf{Description}: Replaces the Apple User Interface Theme protocol with a builtin
6976 6977
  version.

6978 6979 6980
\item
  \texttt{DataHub}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
6981
  \textbf{Failsafe}: \texttt{false}\\
6982
  \textbf{Description}: Replaces the Data Hub protocol with a builtin version.
6983 6984

  \emph{Note}: This will discard all previous entries if the protocol was already
6985 6986
  installed, so all properties required for the safe operation of the system must
  be specified in the configuration file.
6987

6988 6989 6990
\item
  \texttt{DeviceProperties}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
6991
  \textbf{Failsafe}: \texttt{false}\\
6992
  \textbf{Description}: Replaces the Device Property protocol with a builtin
D
dakanji 已提交
6993
  version. This may be used to ensure full compatibility on VMs and legacy Macs.
6994 6995 6996

  \emph{Note}: This will discard all previous entries if the protocol was already
  installed, so all properties required for safe operation of the system must be
6997
  specified in the configuration file.
6998

6999 7000 7001 7002
\item
  \texttt{FirmwareVolume}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
7003
  \textbf{Description}: Wraps Firmware Volume protocols, or installs a new version,
7004
  to support custom cursor images for FileVault 2. Set to \texttt{true} to ensure
D
dakanji 已提交
7005
  FileVault 2 compatibility on anything other than on VMs and legacy Macs.
7006

7007
  \emph{Note}: Several virtual machines, including VMware, may have corrupted
7008
  cursor images in HiDPI mode and thus, may also require enabling this setting.
7009

7010 7011 7012 7013
\item
  \texttt{HashServices}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
7014
  \textbf{Description}: Replaces Hash Services protocols with builtin versions.
7015
  Set to \texttt{true} to ensure FileVault 2 compatibility on platforms with
D
dakanji 已提交
7016
  defective SHA-1 hash implementations. This can be determined by an invalid
7017 7018
  cursor size when \texttt{UIScale} is set to \texttt{02}. Platforms earlier
  than APTIO V (Haswell and older) are typically affected.
7019

7020 7021 7022 7023
\item
  \texttt{OSInfo}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
7024 7025 7026
  \textbf{Description}: Replaces the OS Info protocol with a builtin
  version. This protocol is typically used by the firmware and other
  applications to receive notifications from the macOS bootloader.
7027

7028 7029 7030 7031
\item
  \texttt{UnicodeCollation}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
7032
  \textbf{Description}: Replaces unicode collation services with builtin
7033
  versions. Set to \texttt{true} to ensure UEFI Shell compatibility on platforms
D
dakanji 已提交
7034
  with defective unicode collation implementations. Legacy Insyde and APTIO platforms
7035
  on Ivy Bridge, and earlier, are typically affected.
7036

7037 7038
\end{enumerate}

V
vit9696 已提交
7039 7040 7041 7042
\subsection{Quirks Properties}\label{uefiquirkprops}

\begin{enumerate}

7043 7044 7045 7046 7047 7048 7049 7050 7051
\item
  \texttt{ActivateHpetSupport}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Activates HPET support.

  Older boards like ICH6 may not always have HPET setting in the firmware preferences,
  this option tries to force enable it.

7052 7053 7054 7055 7056 7057 7058
  \item
  \texttt{EnableVectorAcceleration}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Enable AVX vector acceleration of SHA-512 and SHA-384 hashing algorithms.

  \item
7059 7060 7061 7062 7063 7064
  \texttt{DisableSecurityPolicy}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Disable platform security policy.

  \emph{Note}: This setting disables various security features of the firmware,
D
dakanji 已提交
7065
  defeating the purpose of any kind of Secure Boot. Do NOT enable if using
7066 7067
  UEFI Secure Boot.

7068 7069 7070
\item
  \texttt{ExitBootServicesDelay}\\
  \textbf{Type}: \texttt{plist\ integer}\\
7071
  \textbf{Failsafe}: \texttt{0}\\
7072 7073 7074
  \textbf{Description}: Adds delay in microseconds after \texttt{EXIT\_BOOT\_SERVICES}
  event.

D
dakanji 已提交
7075 7076 7077
  This is a very rough workaround to circumvent the \texttt{Still\ waiting\ for\ root\ device} message
  on some APTIO IV firmware (ASUS Z87-Pro) particularly when using FileVault 2.
  It appears that for some reason, they execute code in parallel to \texttt{EXIT\_BOOT\_SERVICES},
7078 7079
  which results in the SATA controller being inaccessible from macOS. A better approach is required
  and Acidanthera is open to suggestions. Expect 3 to 5 seconds to be adequate when this quirk is needed.
7080

7081 7082 7083 7084 7085 7086 7087 7088 7089
\item
  \texttt{ForgeUefiSupport}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Implement partial UEFI 2.x support on EFI 1.x firmware.

  This setting allows running some software written for UEFI 2.x firmware like NVIDIA GOP
  Option ROMs on hardware with older EFI 1.x firmware like \texttt{MacPro5,1}.

V
vit9696 已提交
7090 7091 7092
\item
  \texttt{IgnoreInvalidFlexRatio}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
7093
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
7094
  \textbf{Description}: Some types of firmware (such as APTIO IV) may contain invalid values in the
V
vit9696 已提交
7095
  \texttt{MSR\_FLEX\_RATIO} (\texttt{0x194}) MSR register. These values may cause
D
dakanji 已提交
7096
  macOS boot failures on Intel platforms.
V
vit9696 已提交
7097

D
dakanji 已提交
7098
  \emph{Note}: While the option is not expected to harm unaffected firmware,
7099
  its use is recommended only when specifically required.
V
vit9696 已提交
7100

7101 7102 7103
\item
  \texttt{ReleaseUsbOwnership}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
7104
  \textbf{Failsafe}: \texttt{false}\\
7105
  \textbf{Description}: Attempt to detach USB controller ownership from
7106 7107 7108
  the firmware driver. While most types of firmware manage to do this properly,
  or at least have an option for this, some do not. As a result, the operating
  system may freeze upon boot. Not recommended unless specifically required.
7109

7110 7111 7112 7113 7114 7115 7116 7117 7118
\item
  \texttt{ReloadOptionRoms}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: Query PCI devices and reload their Option ROMs if available.

  For example, this option allows reloading NVIDIA GOP Option ROM on older Macs
  after the firmware version is upgraded via \texttt{ForgeUefiSupport}.

7119 7120 7121
\item
  \texttt{RequestBootVarRouting}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
7122
  \textbf{Failsafe}: \texttt{false}\\
7123 7124
  \textbf{Description}: Request redirect of all \texttt{Boot} prefixed variables from
  \texttt{EFI\_GLOBAL\_VARIABLE\_GUID} to \newline \texttt{OC\_VENDOR\_VARIABLE\_GUID}.
7125

7126
  This quirk requires \texttt{OC\_FIRMWARE\_RUNTIME} protocol implemented
V
vit9696 已提交
7127
  in \texttt{OpenRuntime.efi}. The quirk lets default boot entry
D
dakanji 已提交
7128 7129 7130
  preservation at times when the firmware deletes incompatible boot entries.
  In summary, this quirk is required to reliably
  use the \href{https://support.apple.com/HT202796}{Startup Disk} preference
7131
  pane in firmware that is not compatible with macOS boot entries by design.
7132

7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
  By redirecting \texttt{Boot} prefixed variables to a separate GUID namespace
  with the help of \texttt{RequestBootVarRouting} quirk we achieve multiple goals:
  \begin{itemize}
  \tightlist
  \item Operating systems are jailed and only controlled by OpenCore boot
  environment to enhance security.
  \item Operating systems do not mess with OpenCore boot priority, and guarantee
  fluent updates and hibernation wakes for cases that require reboots with OpenCore
  in the middle.
  \item Potentially incompatible boot entries, such as macOS entries, are not deleted
7143
  or corrupted in any way.
7144 7145
  \end{itemize}

7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
\item
  \texttt{TscSyncTimeout}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Attempts to perform TSC synchronisation with a specified timeout.

  The primary purpose of this quirk is to enable early bootstrap TSC synchronisation
  on some server and laptop models when running a debug XNU kernel. For the debug kernel
  the TSC needs to be kept in sync across the cores before any kext could kick in rendering
  all other solutions problematic. The timeout is specified in microseconds and depends on the
  amount of cores present on the platform, the recommended starting value is \texttt{500000}.

  This is an experimental quirk, which should only be used for the aforementioned problem.
7159
  In all other cases, the quirk may render the operating system unstable and is not recommended.
D
dakanji 已提交
7160
  The recommended solution in the other cases is to install a kernel extension such as
7161 7162 7163 7164 7165
  \href{https://github.com/RehabMan/VoodooTSCSync}{VoodooTSCSync},
  \href{https://github.com/interferenc/TSCAdjustReset}{TSCAdjustReset},
  or \href{https://github.com/lvs1974/CpuTscSync}{CpuTscSync} (a more specialised
  variant of VoodooTSCSync for newer laptops).

D
dakanji 已提交
7166
  \emph{Note}: This quirk cannot replace the kernel extension because it cannot operate in
7167 7168
  ACPI S3 (sleep wake) mode and because the UEFI firmware only provides very limited
  multicore support which prevents precise updates of the MSR registers.
7169

7170
\item
7171
  \texttt{UnblockFsConnect}\\
7172 7173
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
D
dakanji 已提交
7174
  \textbf{Description}: Some types of firmware block partition handles by opening them
7175
  in \texttt{By\ Driver} mode, resulting in an inability to install File System protocols.
7176

7177 7178
  \emph{Note}: This quirk is useful in cases where unsuccessful drive detection
  results in an absence of boot entries.
7179

V
vit9696 已提交
7180 7181
\end{enumerate}

7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
\subsection{ReservedMemory Properties}\label{uefirsvdprops}

\begin{enumerate}

\item
  \texttt{Address}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Start address of the reserved memory region, which should be allocated
  as reserved effectively marking the memory of this type inaccessible to the operating system.

7193 7194
  The addresses written here must be part of the memory map, have a \texttt{EfiConventionalMemory}
  type, and be page-aligned (4 KBs).
7195

D
dakanji 已提交
7196
  \emph{Note}: Some types of firmware may not allocate memory areas used by S3 (sleep) and S4 (hibernation)
7197
  code unless CSM is enabled causing wake failures. After comparing the memory maps with CSM disabled
7198
  and enabled, these areas can be found in the lower memory and can be fixed up by doing the reservation.
7199
  Refer to the \texttt{Sample.plist} file for details.
7200

7201 7202 7203
\item
  \texttt{Comment}\\
  \textbf{Type}: \texttt{plist\ string}\\
D
dakanji 已提交
7204
  \textbf{Failsafe}: Empty\\
7205
  \textbf{Description}: Arbitrary ASCII string used to provide human readable
7206
  reference for the entry. Whether this value is used is implementation defined.
7207 7208 7209 7210 7211 7212 7213

\item
  \texttt{Size}\\
  \textbf{Type}: \texttt{plist\ integer}\\
  \textbf{Failsafe}: \texttt{0}\\
  \textbf{Description}: Size of the reserved memory region, must be page-aligned (4 KBs).

7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
\item
  \texttt{Type}\\
  \textbf{Type}: \texttt{plist\ string}\\
  \textbf{Failsafe}: \texttt{Reserved}\\
  \textbf{Description}: Memory region type matching the UEFI specification memory descriptor
  types. Mapping:

  \begin{itemize}
    \tightlist
    \item \texttt{Reserved} --- \texttt{EfiReservedMemoryType}
    \item \texttt{LoaderCode} --- \texttt{EfiLoaderCode}
    \item \texttt{LoaderData} --- \texttt{EfiLoaderData}
    \item \texttt{BootServiceCode} --- \texttt{EfiBootServicesCode}
    \item \texttt{BootServiceData} --- \texttt{EfiBootServicesData}
    \item \texttt{RuntimeCode} --- \texttt{EfiRuntimeServicesCode}
    \item \texttt{RuntimeData} --- \texttt{EfiRuntimeServicesData}
    \item \texttt{Available} --- \texttt{EfiConventionalMemory}
    \item \texttt{Persistent} --- \texttt{EfiPersistentMemory}
    \item \texttt{UnusableMemory} --- \texttt{EfiUnusableMemory}
    \item \texttt{ACPIReclaimMemory} --- \texttt{EfiACPIReclaimMemory}
    \item \texttt{ACPIMemoryNVS} --- \texttt{EfiACPIMemoryNVS}
    \item \texttt{MemoryMappedIO} --- \texttt{EfiMemoryMappedIO}
    \item \texttt{MemoryMappedIOPortSpace} --- \texttt{EfiMemoryMappedIOPortSpace}
    \item \texttt{PalCode} --- \texttt{EfiPalCode}
  \end{itemize}

7240 7241 7242 7243 7244 7245 7246 7247
\item
  \texttt{Enabled}\\
  \textbf{Type}: \texttt{plist\ boolean}\\
  \textbf{Failsafe}: \texttt{false}\\
  \textbf{Description}: This region will not be reserved unless set to \texttt{true}.

\end{enumerate}

V
vit9696 已提交
7248 7249
\section{Troubleshooting}\label{troubleshooting}

7250 7251
\subsection{Legacy Apple OS}\label{legacyapple}

7252 7253
Older operating systems may be more complicated to install, but are sometimes
necessary for various reasons. While a compatible board identifier
G
Goldfish64 已提交
7254
and CPUID are the obvious requirements for proper functioning of an older
7255
operating system, there are many other less obvious things to consider.
7256
This section covers a common set of issues relevant to installing
7257 7258
older macOS operating systems.

V
vit9696 已提交
7259 7260
While newer operating systems can be downloaded over the internet,
older operating systems did not have installation media for every minor
D
dakanji 已提交
7261 7262 7263 7264 7265
release. For compatible distributions of such, download a device-specific
image and modify it if necessary. Visit this archived Apple Support
\href{https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319}{article}
for a list of the bundled device-specific builds for legacy operating systems.
However, as this may not always be accurate, the latest versions are listed below.
V
vit9696 已提交
7266

7267 7268 7269
\subsubsection{macOS 10.8 and 10.9}\label{legacy108}

\begin{itemize}
7270 7271
  \item Disk images on these systems use the Apple Partitioning Scheme
    and require the \texttt{OpenPartitionDxe} driver to run DMG recovery
7272
    and installation (included in OpenDuet). It is possible to set
7273
    \texttt{DmgLoading} to \texttt{Disabled} to run the recovery
7274
    without DMG loading avoiding the need for \texttt{OpenPartitionDxe}.
7275 7276
  \item Cached kernel images often do not contain family drivers
    for networking (\texttt{IONetworkingFamily}) or audio
7277
    (\texttt{IOAudioFamily}) requiring the use of \texttt{Force}
7278 7279 7280 7281 7282 7283 7284
    loading in order to inject networking or audio drivers.
\end{itemize}

\subsubsection{macOS 10.7}\label{legacy107}

\begin{itemize}
  \item All previous issues apply.
V
vit9696 已提交
7285 7286 7287 7288
  \item \texttt{SSSE3} support (not to be confused with \texttt{SSE3} support)
    is a hard requirement for macOS 10.7 kernel.
  \item Many kexts, including \texttt{Lilu} when 32-bit kernel
    is used and a lot of \texttt{Lilu} plugins, are
7289 7290 7291
    unsupported on macOS~10.7 and older as they require newer
    kernel APIs, which are not part of the macOS~10.7 SDK.
  \item Prior to macOS~10.8 KASLR sliding is not supported, which
D
dakanji 已提交
7292
    will result in memory allocation failures on firmware
7293 7294 7295 7296 7297 7298 7299 7300 7301
    that utilise lower memory for their own purposes. Refer to
    \href{https://github.com/acidanthera/bugtracker/issues/1125}{acidanthera/bugtracker\#1125}
    for tracking.
\end{itemize}

\subsubsection{macOS 10.6}\label{legacy106}

\begin{itemize}
  \item All previous issues apply.
V
vit9696 已提交
7302 7303 7304
  \item \texttt{SSSE3} support is a requirement for macOS 10.6 kernel
    with 64-bit userspace enabled. This limitation can mostly be lifted
    by enabling the \texttt{LegacyCommpage} quirk.
7305
  \item Last released installer images for macOS~10.6 are macOS~10.6.7
7306 7307 7308 7309 7310
    builds \texttt{10J3250} (for \texttt{MacBookPro8,x}) and
    \texttt{10J4139} (for \texttt{iMac12,x}), without Xcode). These
    images are limited to their target model identifiers and have no
    \texttt{-no\_compat\_check} boot argument support. Modified images
    (with \texttt{ACDT} suffix) without model restrictions can be found
K
khronokernel 已提交
7311 7312
    \href{https://archive.org/details/10.6.7-10j3250-disk-images}{here}
    (\href{https://mega.nz/folder/z5YUhYTb#gA\_IRY5KMuYpnNCg7kR3ug}{MEGA Mirror}),
7313 7314
    assuming macOS~10.6 is legally owned. Refer to the \texttt{DIGEST.txt} file
    for details. Note that these are the earliest tested
7315 7316 7317
    versions of macOS~10.6 with OpenCore.
\end{itemize}

7318
  Model checking may also be erased by editing \texttt{OSInstall.mpkg}
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
  with e.g. \texttt{Flat Package Editor} by making \texttt{Distribution}
  script to always return \texttt{true} in \texttt{hwbeModelCheck} function.
  Since updating the only file in the image and not corrupting other files
  can be difficult and may cause slow booting due to kernel cache date
  changes, it is recommended to script image rebuilding as shown below:

\begin{lstlisting}[label=snowrebuild, style=ocbash]
#!/bin/bash
# Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW
xattr -c OSInstall.mpkg
hdiutil mount ReadWrite.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RW
cp OSInstall.mpkg RW/System/Installation/Packages/OSInstall.mpkg
killall Finder fseventsd
rm -rf RW/.fseventsd
cp DS_STORE RW/.DS_Store
hdiutil detach RW -force
rm -rf DS_STORE RW
hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dmg
\end{lstlisting}

V
vit9696 已提交
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
\subsubsection{macOS 10.5}\label{legacy105}

\begin{itemize}
  \item All previous issues apply.
  \item This macOS version does not support \texttt{x86\_64} kernel
    and requires \texttt{i386} kernel extensions and patches.
  \item This macOS version uses the first (V1) version of \texttt{prelinkedkernel},
    which has kext symbol tables corrupted by the kext tools. This nuance
    renders \texttt{prelinkedkernel} kext injection impossible in OpenCore.
    \texttt{Mkext} kext injection will still work without noticeable
    performance drain and will be chosen automatically when
    \texttt{KernelCache} is set to \texttt{Auto}.
  \item Last released installer image for macOS~10.5 is macOS~10.5.7
    build \texttt{9J3050} (for \texttt{MacBookPro5,3}). Unlike the others,
    this image is not limited to the target model identifiers and can be used
    as is. The original \texttt{9J3050} image can be found
K
khronokernel 已提交
7362 7363
    \href{https://archive.org/details/10.5.7-9-j-3050}{here}
    (\href{https://mega.nz/folder/inRBTarD#zanf7fUbviwz3WHBU5xpCg}{MEGA Mirror}),
7364 7365
    assuming macOS~10.5 is legally owned. Refer to the \texttt{DIGEST.txt} file
    for details. Note that this is the earliest tested
V
vit9696 已提交
7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
    version of macOS~10.5 with OpenCore.
\end{itemize}

\subsubsection{macOS 10.4}\label{legacy104}

\begin{itemize}
  \item All previous issues apply.
  \item This macOS version has a hard requirement to access all the optional
    packages on the second DVD disk installation media, requiring either two
    disks or USB media installation.
  \item Last released installer images for macOS~10.4 are macOS~10.4.10
    builds \texttt{8R4061a} (for \texttt{MacBookPro3,1}) and
    \texttt{8R4088} (for \texttt{iMac7,1})). These images are limited
D
dakanji 已提交
7379
    to their target model identifiers as on newer macOS versions.
V
vit9696 已提交
7380 7381
    Modified \texttt{8R4088} images (with \texttt{ACDT} suffix) without
    model restrictions can be found
K
khronokernel 已提交
7382 7383
    \href{https://archive.org/details/10.4.10-8-r-4088-acdt}{here}
    (\href{https://mega.nz/folder/D3ASzLzA\#7sjYXE2X09f6aGjol\_C7dg}{MEGA Mirror}),
7384 7385
    assuming macOS~10.4 is legally owned. Refer to the \texttt{DIGEST.txt} file
    for details. Note that these are the earliest tested
V
vit9696 已提交
7386 7387
    versions of macOS~10.4 with OpenCore.
\end{itemize}
7388 7389 7390

\subsection{UEFI Secure Boot}\label{uefisecureboot}

7391 7392
OpenCore is designed to provide a secure boot chain between firmware
and operating system. On most x86 platforms trusted loading is implemented
V
vit9696 已提交
7393 7394 7395 7396 7397
via \href{https://en.wikipedia.org/wiki/UEFI_Secure_Boot}{UEFI Secure Boot} model.
Not only OpenCore fully supports this model, but it also extends its capabilities
to ensure sealed configuration via \hyperref[securevaulting]{vaulting} and
provide trusted loading to the operating systems using custom verification,
such as \hyperref[secureapplesb]{Apple Secure Boot}. Proper secure boot chain
D
dakanji 已提交
7398
requires several steps and careful configuration of certain settings as explained below:
V
vit9696 已提交
7399 7400

\begin{enumerate}
7401
\item Enable Apple Secure Boot by setting \texttt{SecureBootModel} to
V
vit9696 已提交
7402 7403 7404 7405
  run macOS. Note, that not every macOS is compatible with Apple Secure Boot and
  there are several other restrictions as explained in
  \hyperref[secureapplesb]{Apple Secure Boot} section.
\item Disable DMG loading by setting \texttt{DmgLoading} to \texttt{Disabled}
7406
  if users have concerns of loading old vulnerable DMG recoveries. This is
V
vit9696 已提交
7407 7408 7409 7410 7411
  \textbf{not} required, but recommended. For the actual tradeoffs
  see the details in \hyperref[securedmgloading]{DMG loading} section.
\item Make sure that APFS JumpStart functionality restricts the loading
  of old vulnerable drivers by setting \texttt{MinDate} and \texttt{MinVersion}
  to \texttt{0}. More details are provided in \hyperref[uefiapfsprops]{APFS JumpStart}
7412
  section. An alternative is to install \texttt{apfs.efi} driver manually.
7413 7414
\item Make sure that \texttt{Force} driver loading is not needed and
  all the operating systems are still bootable.
V
vit9696 已提交
7415 7416 7417
\item Make sure that \texttt{ScanPolicy} restricts loading from undesired
  devices. It is a good idea to prohibit all removable drivers or unknown
  filesystems.
7418
\item Sign all the installed drivers and tools with the private key. Do not sign
D
dakanji 已提交
7419
  tools that provide administrative access to the computer, such as UEFI Shell.
7420
\item Vault the configuration as explained \hyperref[securevaulting]{Vaulting}
V
vit9696 已提交
7421 7422
  section.
\item Sign all OpenCore binaries (\texttt{BOOTX64.efi}, \texttt{BOOTIa32.efi},
7423
  \texttt{OpenCore.efi}, custom launchers) used on this system with
V
vit9696 已提交
7424 7425
  the same private key.
\item Sign all third-party operating system (not made by Microsoft or Apple)
7426
  bootloaders if needed. For Linux there is an option to install
V
vit9696 已提交
7427
  Microsoft-signed Shim bootloader as explained on e.g.
7428
  \href{https://wiki.debian.org/SecureBoot}{Debian Wiki}.
7429
\item Enable UEFI Secure Boot in firmware preferences and install the
7430
  certificate with a private key. Details on how to generate a certificate
D
dakanji 已提交
7431
  can be found in various articles, such as \href{https://habr.com/en/post/273497}{this one},
7432
  and are out of the scope of this document. If Windows is needed one
V
vit9696 已提交
7433 7434
  will also need to add the
  \href{http://go.microsoft.com/fwlink/?LinkID=321192}{Microsoft Windows Production CA 2011}.
7435
  To launch option ROMs or to use signed Linux drivers,
7436
  \href{http://go.microsoft.com/fwlink/?LinkId=321194}{Microsoft UEFI Driver Signing CA} will also be needed.
V
vit9696 已提交
7437
\item Password-protect changing firmware settings to ensure that UEFI Secure Boot
7438
  cannot be disabled without the user's knowledge.
V
vit9696 已提交
7439
\end{enumerate}
7440

V
vit9696 已提交
7441
\subsection{Windows support}\label{troubleshootingwin}
V
vit9696 已提交
7442

V
vit9696 已提交
7443 7444 7445
  \textbf{Can I install Windows?}

  While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and
V
vit9696 已提交
7446
  above) prepared with Boot Camp are supposed to work. Third-party UEFI installations
D
dakanji 已提交
7447
  as well as systems partially supporting UEFI boot, such as Windows 7, might work with
7448
  some extra precautions. Things to consider:
7449

V
vit9696 已提交
7450 7451 7452
  \begin{itemize}
  \item MBR (Master Boot Record) installations are legacy and will not be supported.
  \item All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed
V
vit9696 已提交
7453
  to be operating system agnostic, i.e. apply equally regardless of the OS booted.
V
vit9696 已提交
7454 7455 7456 7457 7458 7459
  This enables Boot Camp software experience on Windows.
  \item macOS requires the first partition to be EFI System Partition, and does
  not support the default Windows layout. While OpenCore does have a
  \href{https://github.com/acidanthera/bugtracker/issues/327}{workaround}
  for this, it is highly recommend not to rely on it and install properly.
  \item Windows may need to be reactivated. To avoid it consider
D
dakanji 已提交
7460 7461
  setting SystemUUID to the original firmware UUID. Be aware that it may be invalid
  on old firmware, i.e., not random. If there still are issues,
7462 7463
  consider using HWID or KMS38 license or making the use \texttt{Custom}
  \texttt{UpdateSMBIOSMode}. Other nuances of Windows activation are out of the
7464
  scope of this document and can be found online.
V
vit9696 已提交
7465 7466 7467
  \end{itemize}

  \textbf{What additional software do I need?}
7468

7469
  To enable operating system switching and install relevant drivers in the majority of
7470 7471
  cases Windows support software from
  \href{https://support.apple.com/boot-camp}{Boot Camp} is required. For simplicity of the download
7472 7473
  process or when configuring an already installed Windows version a third-party utility,
  \href{https://github.com/timsutton/brigadier}{Brigadier}, can be used successfully.
7474
  Note, that \href{https://www.7-zip.org}{7-Zip} may be downloaded and installed
V
vit9696 已提交
7475 7476
  prior to using Brigadier.

V
vit9696 已提交
7477 7478 7479 7480 7481
  Remember to always use the latest version of Windows support software from Boot Camp,
  as versions prior to 6.1 do not support APFS, and thus will not function correctly.
  To download newest software pass most recent Mac model to Brigadier, for example
  \texttt{./brigadier.exe -m iMac19,1}. To install Boot Camp on an unsupported Mac model
  afterwards run PowerShell as Administrator and enter \texttt{msiexec /i BootCamp.msi}.
7482 7483
  If there is a previous version of Boot Camp installed it should be
  removed first by running \texttt{msiexec /x BootCamp.msi} command. \texttt{BootCamp.msi}
V
vit9696 已提交
7484 7485 7486
  file is located in \texttt{BootCamp/Drivers/Apple} directory and can be reached through
  Windows Explorer.

V
vit9696 已提交
7487
  While Windows support software from Boot Camp solves most of compatibility problems,
7488
  the rest may still have to be addressed manually:
7489

V
vit9696 已提交
7490 7491 7492 7493 7494
  \begin{itemize}
  \item To invert mouse wheel scroll direction \texttt{FlipFlopWheel} must be set
  to \texttt{1} as explained on \href{https://superuser.com/a/364353}{SuperUser}.
  \item \texttt{RealTimeIsUniversal} must be set to \texttt{1} to avoid time
  desync between Windows and macOS as explained on
D
dakanji 已提交
7495
  \href{https://superuser.com/q/494432}{SuperUser} (this is typically not required).
D
dakanji 已提交
7496
  \item To access Apple filesystems such as HFS+ and APFS, separate software may need to
V
vit9696 已提交
7497
  be installed. Some of the known utilities are:
V
vit9696 已提交
7498
  \href{https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/}{Apple HFS+ driver}
D
dakanji 已提交
7499
  (\href{https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079}{workaround for Windows 10}),
V
vit9696 已提交
7500 7501 7502 7503
  \href{http://www.catacombae.org/hfsexplorer}{HFSExplorer}, MacDrive, Paragon APFS,
  Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems
  from Windows as this often leads to irrecoverable data loss.
  \end{itemize}
7504

7505
  \textbf{Why do I see \texttt{Basic data partition} in the Boot Camp Startup Disk control panel?}
7506

7507 7508 7509
  The Boot Camp control panel uses the GPT partition table to obtain each boot option name.
  After installing Windows separately, the partition has to be relabelled manually.
  This can be done with many utilities including the open-source
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
  \href{https://sourceforge.net/projects/gptfdisk}{gdisk} utility. Reference example:

\begin{lstlisting}[caption=Relabeling Windows volume, label=relabel, style=ocbash]
PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)

Number  Start (sector)    End (sector)  Size       Code  Name
   1            2048         1023999   499.0 MiB   2700  Basic data partition
   2         1024000         1226751   99.0 MiB    EF00  EFI system partition
   3         1226752         1259519   16.0 MiB    0C01  Microsoft reserved ...
   4         1259520       419428351   199.4 GiB   0700  Basic data partition

Command (? for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldrive0.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.
\end{lstlisting}

V
vit9696 已提交
7546

7547
  \textbf{How do I choose Windows BOOTCAMP with custom NTFS drivers?}
7548 7549 7550

  Third-party drivers providing NTFS support, such as
  \href{https://www.tuxera.com/community/open-source-ntfs-3g}{NTFS-3G}, Paragon NTFS,
7551
  Tuxera NTFS or \href{https://www.seagate.com/support/software/paragon}{Seagate Paragon Driver}
7552
  disrupt certain macOS functionality, including the
7553 7554 7555
  \href{https://support.apple.com/HT202796}{Startup Disk} preference
  pane normally used for operating system selection. While the recommended option
  remains not to use such drivers as they commonly corrupt the filesystem, and prefer
7556 7557 7558
  the driver bundled with macOS with optional write support (
  \href{http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x}{command} or
  \href{https://mounty.app}{GUI}),
7559 7560 7561 7562
  there still exist vendor-specific workarounds for their products:
  \href{https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq}{Tuxera},
  \href{https://kb.paragon-software.com/article/6604}{Paragon}, etc.

V
vit9696 已提交
7563 7564 7565 7566 7567 7568
\subsection{Debugging}\label{troubleshootingdebug}

Similar to other projects working with hardware OpenCore supports auditing and debugging.
The use of \texttt{NOOPT} or \texttt{DEBUG} build modes instead of \texttt{RELEASE}
can produce a lot more debug output. With \texttt{NOOPT} source level debugging with
GDB or IDA Pro is also available. For GDB check
7569
\href{https://github.com/acidanthera/OpenCorePkg/tree/master/Debug}{OpenCore Debug}
7570
page. For IDA Pro, version 7.3 or newer is needed, and
7571
\href{https://www.hex-rays.com/products/ida/support/tutorials/index.shtml}{Debugging the XNU Kernel with IDA Pro}
7572
may also help.
V
vit9696 已提交
7573

7574
To obtain the log during boot serial port debugging can be used. Serial port
7575 7576
debugging is enabled in \texttt{Target}, e.g. \texttt{0xB} for onscreen with serial. To
initialise serial within OpenCore use \texttt{SerialInit} configuration option.
7577
For macOS the best choice is CP2102-based UART devices. Connect motherboard \texttt{TX}
7578
to USB UART \texttt{RX}, and motherboard \texttt{GND} to USB UART \texttt{GND}. Use
V
vit9696 已提交
7579 7580 7581
\texttt{screen} utility to get the output, or download GUI software, such as
\href{https://freeware.the-meiers.org}{CoolTerm}.

7582
\emph{Note}: On several motherboards (and possibly USB UART dongles) PIN naming may be
7583 7584
incorrect. It is very common to have \texttt{GND} swapped with \texttt{RX}, thus,
motherboard ``\texttt{TX}'' must be connected to USB UART \texttt{GND}, and motherboard ``\texttt{GND}''
7585 7586
to USB UART \texttt{RX}.

V
vit9696 已提交
7587 7588
Remember to enable \texttt{COM} port in firmware settings, and never use USB cables longer
than 1 meter to avoid output corruption. To additionally enable XNU kernel serial output
7589
\texttt{debug=0x8} boot argument is needed.
V
vit9696 已提交
7590

V
vit9696 已提交
7591 7592 7593 7594
\subsection{Tips and Tricks}\label{troubleshootingtricks}

\begin{enumerate}
\item
7595
  \textbf{How do I debug boot failures?}
V
vit9696 已提交
7596

7597
  Obtaining the actual error message is usually adequate. For this, ensure that:
V
vit9696 已提交
7598 7599
  \begin{itemize}
  \tightlist
7600
  \item A \texttt{DEBUG} or \texttt{NOOPT} version of OpenCore is used.
V
vit9696 已提交
7601 7602 7603 7604 7605 7606 7607 7608
  \item Logging is enabled (\texttt{1}) and shown onscreen (\texttt{2}):
  \texttt{Misc} $\rightarrow$ \texttt{Debug} $\rightarrow$ \texttt{Target}
  $=$ \texttt{3}.
  \item Logged messages from at least \texttt{DEBUG\_ERROR}
  (\texttt{0x80000000}), \texttt{DEBUG\_WARN} (\texttt{0x00000002}), and
  \texttt{DEBUG\_INFO} (\texttt{0x00000040}) levels are visible onscreen:
  \texttt{Misc} $\rightarrow$ \texttt{Debug} $\rightarrow$ \texttt{DisplayLevel}
  $=$ \texttt{0x80000042}.
D
dakanji 已提交
7609
  \item Critical error messages, such as \texttt{DEBUG\_ERROR}, stop booting:
V
vit9696 已提交
7610 7611 7612
  \texttt{Misc} $\rightarrow$ \texttt{Security}
  $\rightarrow$ \texttt{HaltLevel} $=$ \texttt{0x80000000}.
  \item Watch Dog is disabled to prevent automatic reboot:
A
Andrey1970AppleLife 已提交
7613
  \texttt{Misc} $\rightarrow$ \texttt{Debug} $\rightarrow$
V
vit9696 已提交
7614 7615 7616 7617 7618
  \texttt{DisableWatchDog} $=$ \texttt{true}.
  \item Boot Picker (entry selector) is enabled: \texttt{Misc}
  $\rightarrow$ \texttt{Boot} $\rightarrow$ \texttt{ShowPicker} $=$ \texttt{true}.
  \end{itemize}

D
dakanji 已提交
7619
  If there is no obvious error, check the available workarounds in the \texttt{Quirks} sections
V
vit9696 已提交
7620
  one by one. For early boot troubleshooting, for instance, when OpenCore menu does not appear,
A
Andrey1970AppleLife 已提交
7621
  using \texttt{UEFI Shell} (bundled with OpenCore) may help to see
V
vit9696 已提交
7622
  early debug messages.
V
vit9696 已提交
7623

V
vit9696 已提交
7624
\item
7625
  \textbf{How do I debug macOS boot failures?}
V
vit9696 已提交
7626 7627 7628

  \begin{itemize}
  \tightlist
D
dakanji 已提交
7629
  \item Refer to \texttt{boot-args} values such as \texttt{debug=0x100}, \texttt{keepsyms=1},
V
vit9696 已提交
7630 7631 7632
    \texttt{-v}, and similar.
  \item Do not forget about \texttt{AppleDebug} and \texttt{ApplePanic} properties.
  \item Take care of \texttt{Booter}, \texttt{Kernel}, and \texttt{UEFI} quirks.
7633 7634
  \item Consider using serial port to inspect early kernel boot failures. For this
    \texttt{debug=0x108}, \texttt{serial=5}, and \texttt{msgbuf=1048576} boot arguments are needed.
V
vit9696 已提交
7635 7636 7637 7638
    Refer to the patches in Sample.plist when dying before serial init.
  \item Always read the logs carefully.
  \end{itemize}

V
vit9696 已提交
7639
\item
7640
  \textbf{How do I customise boot entries?}
V
vit9696 已提交
7641 7642 7643 7644 7645 7646

  OpenCore follows standard Apple Bless model and extracts the entry name
  from \texttt{.contentDetails} and \texttt{.disk\_label.contentDetails} files in the
  booter directory if present. These files contain an ASCII string with an entry title,
  which may then be customised by the user.

V
vit9696 已提交
7647
\item
7648
  \textbf{How do I choose the default boot entry?}
V
vit9696 已提交
7649 7650 7651 7652 7653 7654

  OpenCore uses the primary UEFI boot option to select the default entry. This choice
  can be altered from UEFI Setup, with the macOS
  \href{https://support.apple.com/HT202796}{Startup Disk} preference, or the Windows
  \href{https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac}{Boot Camp} Control Panel.
  Since choosing OpenCore's \texttt{BOOTx64.EFI} as a primary boot option limits this
D
dakanji 已提交
7655
  functionality in addition to several types of firmware deleting incompatible boot options,
7656 7657
  potentially including those created by macOS, users are strongly encouraged to use the
  \texttt{RequestBootVarRouting} quirk, which will preserve the selection made in
V
vit9696 已提交
7658 7659 7660
  the operating system within the OpenCore variable space. Note, that \texttt{RequestBootVarRouting}
  requires a separate driver for functioning.

7661
\item \label{reinstallmacos}
V
vit9696 已提交
7662 7663 7664 7665
  \textbf{What is the simplest way to install macOS?}

  Copy online recovery image (\texttt{*.dmg} and \texttt{*.chunklist} files)
  to \texttt{com.apple.recovery.boot} directory on a FAT32 partition with OpenCore.
D
dakanji 已提交
7666
  Load the OpenCore picker and choose the entry, it will have a \texttt{(dmg)} suffix.
V
vit9696 已提交
7667 7668
  Custom name may be created by providing \texttt{.contentDetails} file.

7669 7670 7671
  To download recovery online
  \href{https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py}{macrecovery.py}
  can be used.
V
vit9696 已提交
7672

V
vit9696 已提交
7673 7674
  For offline installation refer to
  \href{https://support.apple.com/HT201372}{How to create a bootable installer for macOS}
7675
  article. Apart from App Store and \texttt{softwareupdate} utility there also are
V
vit9696 已提交
7676
  \href{https://github.com/corpnewt/gibMacOS}{third-party utilities} to download an offline image.
V
vit9696 已提交
7677

7678
\item
V
vit9696 已提交
7679
  \textbf{Why do online recovery images (\texttt{*.dmg}) fail to load?}
7680 7681

  This may be caused by missing HFS+ driver, as all presently known recovery volumes
A
Andrey1970AppleLife 已提交
7682
  have HFS+ filesystem.
7683

V
vit9696 已提交
7684 7685 7686 7687 7688
\item
  \textbf{Can I use this on Apple hardware or virtual machines?}

  Sure, most relatively modern Mac models including \texttt{MacPro5,1} and virtual machines
  are fully supported. Even though there are little to none specific details relevant to
V
vit9696 已提交
7689 7690
  Mac hardware, some ongoing instructions can be found on
  \href{https://forums.macrumors.com/threads/opencore-on-the-mac-pro.2207814}{MacRumors.com}.
V
vit9696 已提交
7691

7692
\item
7693
  \textbf{Why must Find\&Replace patches be equal in size?}
7694

A
Andrey1970AppleLife 已提交
7695
  For machine code (x86 code) it is not possible to do differently sized replacements due to
7696 7697 7698
  \href{https://en.wikipedia.org/w/index.php?title=Relative_addressing}{relative addressing}.
  For ACPI code this is risky, and is technically equivalent to ACPI table replacement,
  thus not implemented. More detailed explanation can be found on
V
vit9696 已提交
7699 7700 7701 7702 7703 7704 7705 7706
  \href{https://applelife.ru/posts/819790}{AppleLife.ru} or in the ACPI section of this document.

\item
  \textbf{How can I decide which \texttt{Booter} quirks to use?}

  These quirks originate from \texttt{AptioMemoryFix} driver but provide a wider
  set of changes specific to modern systems. Note, that \texttt{OpenRuntime}
  driver is required for most configurations. To get a configuration similar
7707
  to \texttt{AptioMemoryFix} the following set of quirks should be enabled:
V
vit9696 已提交
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
  \begin{itemize}
  \tightlist
  \item \texttt{ProvideConsoleGop} (UEFI quirk)
  \item \texttt{AvoidRuntimeDefrag}
  \item \texttt{DiscardHibernateMap}
  \item \texttt{EnableSafeModeSlide}
  \item \texttt{EnableWriteUnprotector}
  \item \texttt{ForceExitBootServices}
  \item \texttt{ProtectMemoryRegions}
  \item \texttt{ProvideCustomSlide}
  \item \texttt{RebuildAppleMemoryMap}
  \item \texttt{SetupVirtualMap}
  \end{itemize}

D
dakanji 已提交
7722
  However, as of today, such set is strongly discouraged as some of these quirks
V
vit9696 已提交
7723 7724 7725 7726 7727
  are not necessary to be enabled or need additional quirks. For example,
  \texttt{DevirtualiseMmio} and \texttt{ProtectUefiServices} are often required,
  while \texttt{DiscardHibernateMap} and \texttt{ForceExitBootServices} are rarely
  necessary.

D
dakanji 已提交
7728
  Unfortunately for some quirks such as \texttt{RebuildAppleMemoryMap},
V
vit9696 已提交
7729
  \texttt{EnableWriteUnprotector}, \texttt{ProtectMemoryRegions},
7730 7731 7732
  \texttt{SetupVirtualMap}, and \texttt{SyncRuntimePermissions} there
  is no definite approach even on similar systems, so trying all their
  combinations may be required for optimal setup. Refer to individual quirk
7733
  descriptions in this document for details.
7734

V
vit9696 已提交
7735
\end{enumerate}
V
vit9696 已提交
7736 7737

\end{document}