box_coder_op.cu 9.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12 13
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
J
jerrywgz 已提交
14
#include "paddle/fluid/memory/memcpy.h"
B
baiyf 已提交
15
#include "paddle/fluid/operators/detection/box_coder_op.h"
D
dzhwinter 已提交
16
#include "paddle/fluid/platform/cuda_primitives.h"
G
gaoyuan 已提交
17 18 19 20 21

namespace paddle {
namespace operators {

template <typename T>
22 23 24 25 26
__global__ void EncodeCenterSizeKernel(
    const T* prior_box_data, const T* prior_box_var_data,
    const T* target_box_data, const int row, const int col, const int len,
    const bool normalized, const T prior_box_var_size, const float* variance,
    const int var_size, T* output) {
G
gaoyuan 已提交
27 28 29 30
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
31 32 33 34 35
    T prior_box_width = prior_box_data[col_idx * len + 2] -
                        prior_box_data[col_idx * len] + (normalized == false);
    T prior_box_height = prior_box_data[col_idx * len + 3] -
                         prior_box_data[col_idx * len + 1] +
                         (normalized == false);
J
jerrywgz 已提交
36 37 38
    T prior_box_center_x = prior_box_data[col_idx * len] + prior_box_width / 2;
    T prior_box_center_y =
        prior_box_data[col_idx * len + 1] + prior_box_height / 2;
G
gaoyuan 已提交
39 40

    T target_box_center_x =
G
gaoyuan 已提交
41
        (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
G
gaoyuan 已提交
42
        2;
G
gaoyuan 已提交
43 44 45
    T target_box_center_y = (target_box_data[row_idx * len + 3] +
                             target_box_data[row_idx * len + 1]) /
                            2;
46 47 48 49 50
    T target_box_width = target_box_data[row_idx * len + 2] -
                         target_box_data[row_idx * len] + (normalized == false);
    T target_box_height = target_box_data[row_idx * len + 3] -
                          target_box_data[row_idx * len + 1] +
                          (normalized == false);
G
gaoyuan 已提交
51

52 53 54 55 56 57 58
    output[idx * len] =
        (target_box_center_x - prior_box_center_x) / prior_box_width;
    output[idx * len + 1] =
        (target_box_center_y - prior_box_center_y) / prior_box_height;
    output[idx * len + 2] = log(fabs(target_box_width / prior_box_width));
    output[idx * len + 3] = log(fabs(target_box_height / prior_box_height));
    if (prior_box_var_data) {
59
      int prior_var_offset = col_idx * len;
J
jerrywgz 已提交
60 61 62 63
      output[idx * len] /= prior_box_var_data[prior_var_offset];
      output[idx * len + 1] /= prior_box_var_data[prior_var_offset + 1];
      output[idx * len + 2] /= prior_box_var_data[prior_var_offset + 2];
      output[idx * len + 3] /= prior_box_var_data[prior_var_offset + 3];
64 65 66 67
    } else if (var_size == 4) {
      for (int k = 0; k < 4; ++k) {
        output[idx * len + k] /= static_cast<T>(variance[k]);
      }
68
    }
G
gaoyuan 已提交
69 70 71 72
  }
}

template <typename T>
73 74 75 76 77
__global__ void DecodeCenterSizeKernel(
    const T* prior_box_data, const T* prior_box_var_data,
    const T* target_box_data, const int row, const int col, const int len,
    const bool normalized, const T prior_box_var_size, const float* variance,
    const int var_size, const int axis, T* output) {
G
gaoyuan 已提交
78
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
J
jerrywgz 已提交
79
  int prior_box_offset = 0;
G
gaoyuan 已提交
80 81
  if (idx < row * col) {
    const int col_idx = idx % col;
J
jerrywgz 已提交
82
    const int row_idx = idx / col;
83
    prior_box_offset = axis == 0 ? col_idx * len : row_idx * len;
J
jerrywgz 已提交
84 85 86 87 88
    T prior_box_width = prior_box_data[prior_box_offset + 2] -
                        prior_box_data[prior_box_offset] +
                        (normalized == false);
    T prior_box_height = prior_box_data[prior_box_offset + 3] -
                         prior_box_data[prior_box_offset + 1] +
89
                         (normalized == false);
G
gaoyuan 已提交
90
    T prior_box_center_x =
J
jerrywgz 已提交
91 92 93
        prior_box_data[prior_box_offset] + prior_box_width / 2;
    T prior_box_center_y =
        prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
94 95
    T target_box_width, target_box_height;
    T target_box_center_x, target_box_center_y;
J
jerrywgz 已提交
96 97
    T box_var_x = T(1), box_var_y = T(1);
    T box_var_w = T(1), box_var_h = T(1);
98
    if (prior_box_var_data) {
99
      int prior_var_offset = axis == 0 ? col_idx * len : row_idx * len;
J
jerrywgz 已提交
100 101 102 103
      box_var_x = prior_box_var_data[prior_var_offset];
      box_var_y = prior_box_var_data[prior_var_offset + 1];
      box_var_w = prior_box_var_data[prior_var_offset + 2];
      box_var_h = prior_box_var_data[prior_var_offset + 3];
104
    } else if (var_size == 4) {
J
jerrywgz 已提交
105 106 107 108
      box_var_x = static_cast<T>(variance[0]);
      box_var_y = static_cast<T>(variance[1]);
      box_var_w = static_cast<T>(variance[2]);
      box_var_h = static_cast<T>(variance[3]);
109
    }
J
jerrywgz 已提交
110 111 112 113 114 115 116 117 118 119
    target_box_width =
        exp(box_var_w * target_box_data[idx * len + 2]) * prior_box_width;
    target_box_height =
        exp(box_var_h * target_box_data[idx * len + 3]) * prior_box_height;
    target_box_center_x =
        box_var_x * target_box_data[idx * len] * prior_box_width +
        prior_box_center_x;
    target_box_center_y =
        box_var_y * target_box_data[idx * len + 1] * prior_box_height +
        prior_box_center_y;
G
gaoyuan 已提交
120

G
gaoyuan 已提交
121 122
    output[idx * len] = target_box_center_x - target_box_width / 2;
    output[idx * len + 1] = target_box_center_y - target_box_height / 2;
123 124 125 126
    output[idx * len + 2] =
        target_box_center_x + target_box_width / 2 - (normalized == false);
    output[idx * len + 3] =
        target_box_center_y + target_box_height / 2 - (normalized == false);
G
gaoyuan 已提交
127 128 129
  }
}

130
template <typename DeviceContext, typename T>
G
gaoyuan 已提交
131 132 133 134 135 136 137 138
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
139
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
140
    std::vector<float> variance = context.Attr<std::vector<float>>("variance");
141 142 143
    const T* prior_box_data = prior_box->data<T>();
    const T* target_box_data = target_box->data<T>();
    const T* prior_box_var_data = nullptr;
J
jerrywgz 已提交
144 145
    auto prior_box_var_size = 0;
    if (prior_box_var) {
146 147 148
      PADDLE_ENFORCE(variance.empty(),
                     "Input 'PriorBoxVar' and attribute 'variance' should not"
                     "be used at the same time.");
J
jerrywgz 已提交
149 150 151
      prior_box_var_data = prior_box_var->data<T>();
      prior_box_var_size = prior_box_var->dims().size();
    }
152 153 154 155
    if (!(variance.empty())) {
      PADDLE_ENFORCE(static_cast<int>(variance.size()) == 4,
                     "Size of attribute 'variance' should be 4");
    }
156

G
gaoyuan 已提交
157
    if (target_box->lod().size()) {
G
gaoyuan 已提交
158
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
G
gaoyuan 已提交
159 160
                        "Only support 1 level of LoD.");
    }
J
jerrywgz 已提交
161 162
    const int var_size = static_cast<int>(variance.size());

J
jerrywgz 已提交
163 164 165 166
    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    bool normalized = context.Attr<bool>("box_normalized");
    int axis = context.Attr<int>("axis");

G
gaoyuan 已提交
167 168
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
J
jerrywgz 已提交
169 170 171
    if (code_type == BoxCodeType::kDecodeCenterSize) {
      col = target_box->dims()[1];
    }
G
gaoyuan 已提交
172
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
173 174 175 176
    int block = 512;
    int grid = (row * col + block - 1) / block;
    auto& device_ctx = context.cuda_device_context();

J
jerrywgz 已提交
177 178 179 180 181 182 183 184 185 186
    auto& allocator =
        platform::DeviceTemporaryAllocator::Instance().Get(device_ctx);
    int bytes = var_size * sizeof(float);
    auto dev_var = allocator.Allocate(bytes);
    float* dev_var_data = reinterpret_cast<float*>(dev_var->ptr());
    auto cplace = platform::CPUPlace();
    const auto gplace = boost::get<platform::CUDAPlace>(context.GetPlace());
    memory::Copy(gplace, dev_var_data, cplace, &variance[0], bytes,
                 device_ctx.stream());

G
gaoyuan 已提交
187
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
188 189 190 191
    T* output = output_box->data<T>();

    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
192
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
193
          normalized, prior_box_var_size, dev_var_data, var_size, output);
G
gaoyuan 已提交
194 195
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
196
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
197
          normalized, prior_box_var_size, dev_var_data, var_size, axis, output);
G
gaoyuan 已提交
198 199 200 201 202 203 204 205
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
206 207 208 209
REGISTER_OP_CUDA_KERNEL(
    box_coder,
    ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, double>);