box_coder_op.cu 9.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12 13
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
J
jerrywgz 已提交
14
#include "paddle/fluid/memory/memcpy.h"
B
baiyf 已提交
15
#include "paddle/fluid/operators/detection/box_coder_op.h"
D
dzhwinter 已提交
16
#include "paddle/fluid/platform/cuda_primitives.h"
G
gaoyuan 已提交
17 18 19 20 21

namespace paddle {
namespace operators {

template <typename T>
22 23 24 25 26
__global__ void EncodeCenterSizeKernel(
    const T* prior_box_data, const T* prior_box_var_data,
    const T* target_box_data, const int row, const int col, const int len,
    const bool normalized, const T prior_box_var_size, const float* variance,
    const int var_size, T* output) {
G
gaoyuan 已提交
27 28 29 30
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
31 32 33 34 35
    T prior_box_width = prior_box_data[col_idx * len + 2] -
                        prior_box_data[col_idx * len] + (normalized == false);
    T prior_box_height = prior_box_data[col_idx * len + 3] -
                         prior_box_data[col_idx * len + 1] +
                         (normalized == false);
J
jerrywgz 已提交
36 37 38
    T prior_box_center_x = prior_box_data[col_idx * len] + prior_box_width / 2;
    T prior_box_center_y =
        prior_box_data[col_idx * len + 1] + prior_box_height / 2;
G
gaoyuan 已提交
39 40

    T target_box_center_x =
G
gaoyuan 已提交
41
        (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
G
gaoyuan 已提交
42
        2;
G
gaoyuan 已提交
43 44 45
    T target_box_center_y = (target_box_data[row_idx * len + 3] +
                             target_box_data[row_idx * len + 1]) /
                            2;
46 47 48 49 50
    T target_box_width = target_box_data[row_idx * len + 2] -
                         target_box_data[row_idx * len] + (normalized == false);
    T target_box_height = target_box_data[row_idx * len + 3] -
                          target_box_data[row_idx * len + 1] +
                          (normalized == false);
G
gaoyuan 已提交
51

52 53 54 55 56 57 58
    output[idx * len] =
        (target_box_center_x - prior_box_center_x) / prior_box_width;
    output[idx * len + 1] =
        (target_box_center_y - prior_box_center_y) / prior_box_height;
    output[idx * len + 2] = log(fabs(target_box_width / prior_box_width));
    output[idx * len + 3] = log(fabs(target_box_height / prior_box_height));
    if (prior_box_var_data) {
J
jerrywgz 已提交
59 60 61 62 63 64 65 66
      int prior_var_offset = 0;
      if (prior_box_var_size == 2) {
        prior_var_offset = col_idx * len;
      }
      output[idx * len] /= prior_box_var_data[prior_var_offset];
      output[idx * len + 1] /= prior_box_var_data[prior_var_offset + 1];
      output[idx * len + 2] /= prior_box_var_data[prior_var_offset + 2];
      output[idx * len + 3] /= prior_box_var_data[prior_var_offset + 3];
67 68 69 70
    } else if (var_size == 4) {
      for (int k = 0; k < 4; ++k) {
        output[idx * len + k] /= static_cast<T>(variance[k]);
      }
71
    }
G
gaoyuan 已提交
72 73 74 75
  }
}

template <typename T>
76 77 78 79 80
__global__ void DecodeCenterSizeKernel(
    const T* prior_box_data, const T* prior_box_var_data,
    const T* target_box_data, const int row, const int col, const int len,
    const bool normalized, const T prior_box_var_size, const float* variance,
    const int var_size, const int axis, T* output) {
G
gaoyuan 已提交
81
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
J
jerrywgz 已提交
82
  int prior_box_offset = 0;
G
gaoyuan 已提交
83 84
  if (idx < row * col) {
    const int col_idx = idx % col;
J
jerrywgz 已提交
85
    const int row_idx = idx / col;
86
    prior_box_offset = axis == 0 ? col_idx * len : row_idx * len;
J
jerrywgz 已提交
87 88 89 90 91
    T prior_box_width = prior_box_data[prior_box_offset + 2] -
                        prior_box_data[prior_box_offset] +
                        (normalized == false);
    T prior_box_height = prior_box_data[prior_box_offset + 3] -
                         prior_box_data[prior_box_offset + 1] +
92
                         (normalized == false);
G
gaoyuan 已提交
93
    T prior_box_center_x =
J
jerrywgz 已提交
94 95 96
        prior_box_data[prior_box_offset] + prior_box_width / 2;
    T prior_box_center_y =
        prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
97 98
    T target_box_width, target_box_height;
    T target_box_center_x, target_box_center_y;
J
jerrywgz 已提交
99 100
    T box_var_x = T(1), box_var_y = T(1);
    T box_var_w = T(1), box_var_h = T(1);
101
    if (prior_box_var_data) {
J
jerrywgz 已提交
102 103
      int prior_var_offset = 0;
      if (prior_box_var_size == 2) {
104
        prior_var_offset = axis == 0 ? col_idx * len : row_idx * len;
J
jerrywgz 已提交
105
      }
J
jerrywgz 已提交
106 107 108 109
      box_var_x = prior_box_var_data[prior_var_offset];
      box_var_y = prior_box_var_data[prior_var_offset + 1];
      box_var_w = prior_box_var_data[prior_var_offset + 2];
      box_var_h = prior_box_var_data[prior_var_offset + 3];
110
    } else if (var_size == 4) {
J
jerrywgz 已提交
111 112 113 114
      box_var_x = static_cast<T>(variance[0]);
      box_var_y = static_cast<T>(variance[1]);
      box_var_w = static_cast<T>(variance[2]);
      box_var_h = static_cast<T>(variance[3]);
115
    }
J
jerrywgz 已提交
116 117 118 119 120 121 122 123 124 125
    target_box_width =
        exp(box_var_w * target_box_data[idx * len + 2]) * prior_box_width;
    target_box_height =
        exp(box_var_h * target_box_data[idx * len + 3]) * prior_box_height;
    target_box_center_x =
        box_var_x * target_box_data[idx * len] * prior_box_width +
        prior_box_center_x;
    target_box_center_y =
        box_var_y * target_box_data[idx * len + 1] * prior_box_height +
        prior_box_center_y;
G
gaoyuan 已提交
126

G
gaoyuan 已提交
127 128
    output[idx * len] = target_box_center_x - target_box_width / 2;
    output[idx * len + 1] = target_box_center_y - target_box_height / 2;
129 130 131 132
    output[idx * len + 2] =
        target_box_center_x + target_box_width / 2 - (normalized == false);
    output[idx * len + 3] =
        target_box_center_y + target_box_height / 2 - (normalized == false);
G
gaoyuan 已提交
133 134 135
  }
}

136
template <typename DeviceContext, typename T>
G
gaoyuan 已提交
137 138 139 140 141 142 143 144
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
145
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
146
    std::vector<float> variance = context.Attr<std::vector<float>>("variance");
147 148 149
    const T* prior_box_data = prior_box->data<T>();
    const T* target_box_data = target_box->data<T>();
    const T* prior_box_var_data = nullptr;
J
jerrywgz 已提交
150 151
    auto prior_box_var_size = 0;
    if (prior_box_var) {
152 153 154
      PADDLE_ENFORCE(variance.empty(),
                     "Input 'PriorBoxVar' and attribute 'variance' should not"
                     "be used at the same time.");
J
jerrywgz 已提交
155 156 157
      prior_box_var_data = prior_box_var->data<T>();
      prior_box_var_size = prior_box_var->dims().size();
    }
158 159 160 161
    if (!(variance.empty())) {
      PADDLE_ENFORCE(static_cast<int>(variance.size()) == 4,
                     "Size of attribute 'variance' should be 4");
    }
162

G
gaoyuan 已提交
163
    if (target_box->lod().size()) {
G
gaoyuan 已提交
164
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
G
gaoyuan 已提交
165 166
                        "Only support 1 level of LoD.");
    }
J
jerrywgz 已提交
167 168
    const int var_size = static_cast<int>(variance.size());

J
jerrywgz 已提交
169 170 171 172
    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    bool normalized = context.Attr<bool>("box_normalized");
    int axis = context.Attr<int>("axis");

G
gaoyuan 已提交
173 174
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
J
jerrywgz 已提交
175 176 177
    if (code_type == BoxCodeType::kDecodeCenterSize) {
      col = target_box->dims()[1];
    }
G
gaoyuan 已提交
178
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
179 180 181 182
    int block = 512;
    int grid = (row * col + block - 1) / block;
    auto& device_ctx = context.cuda_device_context();

J
jerrywgz 已提交
183 184 185 186 187 188 189 190 191 192
    auto& allocator =
        platform::DeviceTemporaryAllocator::Instance().Get(device_ctx);
    int bytes = var_size * sizeof(float);
    auto dev_var = allocator.Allocate(bytes);
    float* dev_var_data = reinterpret_cast<float*>(dev_var->ptr());
    auto cplace = platform::CPUPlace();
    const auto gplace = boost::get<platform::CUDAPlace>(context.GetPlace());
    memory::Copy(gplace, dev_var_data, cplace, &variance[0], bytes,
                 device_ctx.stream());

G
gaoyuan 已提交
193
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
194 195 196 197
    T* output = output_box->data<T>();

    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
198
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
199
          normalized, prior_box_var_size, dev_var_data, var_size, output);
G
gaoyuan 已提交
200 201
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
202
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
203
          normalized, prior_box_var_size, dev_var_data, var_size, axis, output);
G
gaoyuan 已提交
204 205 206 207 208 209 210 211
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
212 213 214 215
REGISTER_OP_CUDA_KERNEL(
    box_coder,
    ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, double>);