Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cee2e1b0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cee2e1b0
编写于
1月 28, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code, test=develop
上级
a39240c3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
67 addition
and
74 deletion
+67
-74
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+33
-37
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+20
-36
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+14
-1
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
cee2e1b0
...
...
@@ -11,6 +11,7 @@ limitations under the License. */
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -95,47 +96,33 @@ __global__ void DecodeCenterSizeKernel(
prior_box_data
[
prior_box_offset
+
1
]
+
prior_box_height
/
2
;
T
target_box_width
,
target_box_height
;
T
target_box_center_x
,
target_box_center_y
;
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var_data
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var_size
==
2
)
{
prior_var_offset
=
axis
==
0
?
col_idx
*
len
:
row_idx
*
len
;
}
target_box_width
=
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
prior_box_var_data
[
prior_var_offset
]
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
prior_box_var_data
[
prior_var_offset
+
1
]
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_h
=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
var_size
==
4
)
{
target_box_width
=
exp
(
static_cast
<
T
>
(
variance
[
2
])
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
static_cast
<
T
>
(
variance
[
3
])
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
static_cast
<
T
>
(
variance
[
0
])
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
static_cast
<
T
>
(
variance
[
1
])
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
}
else
{
target_box_width
=
exp
(
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
box_var_x
=
static_cast
<
T
>
(
variance
[
0
]);
box_var_y
=
static_cast
<
T
>
(
variance
[
1
]);
box_var_w
=
static_cast
<
T
>
(
variance
[
2
]);
box_var_h
=
static_cast
<
T
>
(
variance
[
3
]);
}
target_box_width
=
exp
(
box_var_w
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
box_var_h
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
box_var_x
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
box_var_y
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
output
[
idx
*
len
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
idx
*
len
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
...
...
@@ -177,9 +164,8 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
target_box
->
lod
().
size
(),
1
,
"Only support 1 level of LoD."
);
}
const
int
var_size
=
static_cast
<
T
>
(
variance
.
size
());
thrust
::
device_vector
<
float
>
dev_variance
(
variance
.
begin
(),
variance
.
end
());
const
float
*
dev_var_data
=
thrust
::
raw_pointer_cast
(
dev_variance
.
data
());
const
int
var_size
=
static_cast
<
int
>
(
variance
.
size
());
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
...
...
@@ -194,6 +180,16 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
int
grid
=
(
row
*
col
+
block
-
1
)
/
block
;
auto
&
device_ctx
=
context
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
device_ctx
);
int
bytes
=
var_size
*
sizeof
(
float
);
auto
dev_var
=
allocator
.
Allocate
(
bytes
);
float
*
dev_var_data
=
reinterpret_cast
<
float
*>
(
dev_var
->
ptr
());
auto
cplace
=
platform
::
CPUPlace
();
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
());
memory
::
Copy
(
gplace
,
dev_var_data
,
cplace
,
&
variance
[
0
],
bytes
,
device_ctx
.
stream
());
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
T
*
output
=
output_box
->
data
<
T
>
();
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
cee2e1b0
...
...
@@ -133,6 +133,8 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T
target_box_center_x
=
0
,
target_box_center_y
=
0
;
T
target_box_width
=
0
,
target_box_height
=
0
;
T
box_var_x
=
T
(
1
),
box_var_y
=
T
(
1
);
T
box_var_w
=
T
(
1
),
box_var_h
=
T
(
1
);
if
(
prior_box_var
)
{
int
prior_var_offset
=
0
;
if
(
prior_box_var
->
dims
().
size
()
==
2
)
{
...
...
@@ -141,44 +143,26 @@ class BoxCoderKernel : public framework::OpKernel<T> {
else
if
(
axis
==
1
)
prior_var_offset
=
i
*
len
;
}
target_box_center_x
=
prior_box_var_data
[
prior_var_offset
]
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
prior_box_var_data
[
prior_var_offset
+
1
]
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
2
]
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
box_var_x
=
prior_box_var_data
[
prior_var_offset
];
box_var_y
=
prior_box_var_data
[
prior_var_offset
+
1
];
box_var_w
=
prior_box_var_data
[
prior_var_offset
+
2
];
box_var_h
=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
!
(
variance
.
empty
()))
{
target_box_center_x
=
static_cast
<
T
>
(
variance
[
0
])
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
static_cast
<
T
>
(
variance
[
1
])
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
static_cast
<
T
>
(
variance
[
2
])
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
static_cast
<
T
>
(
variance
[
3
])
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
}
else
{
target_box_center_x
=
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
target_box_data
[
offset
+
3
])
*
prior_box_height
;
box_var_x
=
static_cast
<
T
>
(
variance
[
0
]);
box_var_y
=
static_cast
<
T
>
(
variance
[
1
]);
box_var_w
=
static_cast
<
T
>
(
variance
[
2
]);
box_var_h
=
static_cast
<
T
>
(
variance
[
3
]);
}
target_box_center_x
=
box_var_x
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
box_var_y
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
box_var_w
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
box_var_h
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
output
[
offset
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
offset
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
cee2e1b0
...
...
@@ -50,6 +50,19 @@ class TestDetection(unittest.TestCase):
self
.
assertEqual
(
out
.
shape
[
-
1
],
6
)
print
(
str
(
program
))
def
test_box_coder_api
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'z'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
bcoder
=
layers
.
box_coder
(
prior_box
=
x
,
prior_box_var
=
[
0.1
,
0.2
,
0.1
,
0.2
],
target_box
=
y
,
code_type
=
'encode_center_size'
)
self
.
assertIsNotNone
(
bcoder
)
print
(
str
(
program
))
def
test_detection_api
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
@@ -59,7 +72,7 @@ class TestDetection(unittest.TestCase):
iou
=
layers
.
iou_similarity
(
x
=
x
,
y
=
y
)
bcoder
=
layers
.
box_coder
(
prior_box
=
x
,
prior_box_var
=
[
0.2
,
0.3
,
0.3
,
0.2
]
,
prior_box_var
=
y
,
target_box
=
z
,
code_type
=
'encode_center_size'
)
self
.
assertIsNotNone
(
iou
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录