Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a39240c3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a39240c3
编写于
1月 25, 2019
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add attr variance for box coder, test=develop
上级
6928f831
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
236 addition
and
53 deletion
+236
-53
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+7
-0
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+43
-16
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+34
-4
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+108
-18
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+1
-1
python/paddle/fluid/tests/unittests/test_box_coder_op.py
python/paddle/fluid/tests/unittests/test_box_coder_op.py
+43
-14
未找到文件。
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
a39240c3
...
...
@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include <vector>
namespace
paddle
{
namespace
operators
{
...
...
@@ -134,6 +135,12 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"when code type is decode_center_size"
)
.
SetDefault
(
0
)
.
InEnum
({
0
,
1
});
AddAttr
<
std
::
vector
<
float
>>
(
"variance"
,
"(vector<float>, default {}),"
"variance of prior box with shape [4]. PriorBoxVar and variance can"
"not be provided at the same time."
)
.
SetDefault
(
std
::
vector
<
float
>
{});
AddOutput
(
"OutputBox"
,
"(LoDTensor or Tensor) "
"When code_type is 'encode_center_size', the output tensor of "
...
...
paddle/fluid/operators/detection/box_coder_op.cu
浏览文件 @
a39240c3
...
...
@@ -9,6 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -16,12 +18,11 @@ namespace paddle {
namespace
operators
{
template
<
typename
T
>
__global__
void
EncodeCenterSizeKernel
(
const
T
*
prior_box_data
,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
const
bool
normalized
,
const
T
prior_box_var_size
,
T
*
output
)
{
__global__
void
EncodeCenterSizeKernel
(
const
T
*
prior_box_data
,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
const
bool
normalized
,
const
T
prior_box_var_size
,
const
float
*
variance
,
const
int
var_size
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
row_idx
=
idx
/
col
;
...
...
@@ -62,18 +63,20 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
output
[
idx
*
len
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
idx
*
len
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
output
[
idx
*
len
+
3
]
/=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
var_size
==
4
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
output
[
idx
*
len
+
k
]
/=
static_cast
<
T
>
(
variance
[
k
]);
}
}
}
}
template
<
typename
T
>
__global__
void
DecodeCenterSizeKernel
(
const
T
*
prior_box_data
,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
const
bool
normalized
,
const
T
prior_box_var_size
,
const
int
axis
,
T
*
output
)
{
__global__
void
DecodeCenterSizeKernel
(
const
T
*
prior_box_data
,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
const
bool
normalized
,
const
T
prior_box_var_size
,
const
float
*
variance
,
const
int
var_size
,
const
int
axis
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
prior_box_offset
=
0
;
if
(
idx
<
row
*
col
)
{
...
...
@@ -110,6 +113,20 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
}
else
if
(
var_size
==
4
)
{
target_box_width
=
exp
(
static_cast
<
T
>
(
variance
[
2
])
*
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
exp
(
static_cast
<
T
>
(
variance
[
3
])
*
target_box_data
[
idx
*
len
+
3
])
*
prior_box_height
;
target_box_center_x
=
static_cast
<
T
>
(
variance
[
0
])
*
target_box_data
[
idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
static_cast
<
T
>
(
variance
[
1
])
*
target_box_data
[
idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
}
else
{
target_box_width
=
exp
(
target_box_data
[
idx
*
len
+
2
])
*
prior_box_width
;
target_box_height
=
...
...
@@ -139,20 +156,30 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
auto
*
prior_box_var
=
context
.
Input
<
framework
::
Tensor
>
(
"PriorBoxVar"
);
auto
*
target_box
=
context
.
Input
<
framework
::
LoDTensor
>
(
"TargetBox"
);
auto
*
output_box
=
context
.
Output
<
framework
::
Tensor
>
(
"OutputBox"
);
std
::
vector
<
float
>
variance
=
context
.
Attr
<
std
::
vector
<
float
>>
(
"variance"
);
const
T
*
prior_box_data
=
prior_box
->
data
<
T
>
();
const
T
*
target_box_data
=
target_box
->
data
<
T
>
();
const
T
*
prior_box_var_data
=
nullptr
;
auto
prior_box_var_size
=
0
;
if
(
prior_box_var
)
{
PADDLE_ENFORCE
(
variance
.
empty
(),
"Input 'PriorBoxVar' and attribute 'variance' should not"
"be used at the same time."
);
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
prior_box_var_size
=
prior_box_var
->
dims
().
size
();
}
if
(
!
(
variance
.
empty
()))
{
PADDLE_ENFORCE
(
static_cast
<
int
>
(
variance
.
size
())
==
4
,
"Size of attribute 'variance' should be 4"
);
}
if
(
target_box
->
lod
().
size
())
{
PADDLE_ENFORCE_EQ
(
target_box
->
lod
().
size
(),
1
,
"Only support 1 level of LoD."
);
}
const
int
var_size
=
static_cast
<
T
>
(
variance
.
size
());
thrust
::
device_vector
<
float
>
dev_variance
(
variance
.
begin
(),
variance
.
end
());
const
float
*
dev_var_data
=
thrust
::
raw_pointer_cast
(
dev_variance
.
data
());
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
...
...
@@ -173,11 +200,11 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
normalized
,
prior_box_var_size
,
output
);
normalized
,
prior_box_var_size
,
dev_var_data
,
var_size
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
normalized
,
prior_box_var_size
,
axis
,
output
);
normalized
,
prior_box_var_size
,
dev_var_data
,
var_size
,
axis
,
output
);
}
}
};
...
...
paddle/fluid/operators/detection/box_coder_op.h
浏览文件 @
a39240c3
...
...
@@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -34,7 +35,8 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void
EncodeCenterSize
(
const
framework
::
Tensor
*
target_box
,
const
framework
::
Tensor
*
prior_box
,
const
framework
::
Tensor
*
prior_box_var
,
const
bool
normalized
,
T
*
output
)
const
{
const
bool
normalized
,
const
std
::
vector
<
float
>
variance
,
T
*
output
)
const
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
prior_box
->
dims
()[
0
];
int64_t
len
=
prior_box
->
dims
()[
1
];
...
...
@@ -85,6 +87,10 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output
[
offset
+
1
]
/=
prior_box_var_data
[
prior_var_offset
+
1
];
output
[
offset
+
2
]
/=
prior_box_var_data
[
prior_var_offset
+
2
];
output
[
offset
+
3
]
/=
prior_box_var_data
[
prior_var_offset
+
3
];
}
else
if
(
!
(
variance
.
empty
()))
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
output
[
offset
+
k
]
/=
static_cast
<
T
>
(
variance
[
k
]);
}
}
}
}
...
...
@@ -93,7 +99,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
const
framework
::
Tensor
*
prior_box
,
const
framework
::
Tensor
*
prior_box_var
,
const
bool
normalized
,
const
int
axis
,
T
*
output
)
const
{
const
std
::
vector
<
float
>
variance
,
T
*
output
)
const
{
int64_t
row
=
target_box
->
dims
()[
0
];
int64_t
col
=
target_box
->
dims
()[
1
];
int64_t
len
=
target_box
->
dims
()[
2
];
...
...
@@ -149,6 +155,20 @@ class BoxCoderKernel : public framework::OpKernel<T> {
std
::
exp
(
prior_box_var_data
[
prior_var_offset
+
3
]
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
}
else
if
(
!
(
variance
.
empty
()))
{
target_box_center_x
=
static_cast
<
T
>
(
variance
[
0
])
*
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
target_box_center_y
=
static_cast
<
T
>
(
variance
[
1
])
*
target_box_data
[
offset
+
1
]
*
prior_box_height
+
prior_box_center_y
;
target_box_width
=
std
::
exp
(
static_cast
<
T
>
(
variance
[
2
])
*
target_box_data
[
offset
+
2
])
*
prior_box_width
;
target_box_height
=
std
::
exp
(
static_cast
<
T
>
(
variance
[
3
])
*
target_box_data
[
offset
+
3
])
*
prior_box_height
;
}
else
{
target_box_center_x
=
target_box_data
[
offset
]
*
prior_box_width
+
prior_box_center_x
;
...
...
@@ -175,11 +195,21 @@ class BoxCoderKernel : public framework::OpKernel<T> {
auto
*
prior_box_var
=
context
.
Input
<
framework
::
Tensor
>
(
"PriorBoxVar"
);
auto
*
target_box
=
context
.
Input
<
framework
::
LoDTensor
>
(
"TargetBox"
);
auto
*
output_box
=
context
.
Output
<
framework
::
Tensor
>
(
"OutputBox"
);
std
::
vector
<
float
>
variance
=
context
.
Attr
<
std
::
vector
<
float
>>
(
"variance"
);
const
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
if
(
target_box
->
lod
().
size
())
{
PADDLE_ENFORCE_EQ
(
target_box
->
lod
().
size
(),
1UL
,
"Only support 1 level of LoD."
);
}
if
(
prior_box_var
)
{
PADDLE_ENFORCE
(
variance
.
empty
(),
"Input 'PriorBoxVar' and attribute 'variance' should not"
"be used at the same time."
);
}
if
(
!
(
variance
.
empty
()))
{
PADDLE_ENFORCE
(
static_cast
<
int
>
(
variance
.
size
())
==
4
,
"Size of attribute 'variance' should be 4"
);
}
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
bool
normalized
=
context
.
Attr
<
bool
>
(
"box_normalized"
);
...
...
@@ -195,10 +225,10 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T
*
output
=
output_box
->
data
<
T
>
();
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
output
);
variance
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSize
(
target_box
,
prior_box
,
prior_box_var
,
normalized
,
axis
,
output
);
variance
,
output
);
}
}
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
a39240c3
...
...
@@ -346,18 +346,104 @@ def box_coder(prior_box,
name
=
None
,
axis
=
0
):
"""
${comment}
**Box Coder Layer**
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
.. math::
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = \log(
\a
bs(tw / pw)) / pwv
oh = \log(
\a
bs(th / ph)) / phv
The Decoding schema described below:
.. math::
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = \exp(pwv * tw) * pw + tw / 2
oh = \exp(phv * th) * ph + th / 2
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates,
width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote
the priorbox's (anchor) center coordinates, width and height. `pxv`,
`pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`,
`ow`, `oh` denote the encoded/decoded coordinates, width and height.
During Box Decoding, two modes for broadcast are supported. Say target
box has shape [N, M, 4], and the shape of prior box can be [N, 4] or
[M, 4]. Then prior box will broadcast to target box along the
assigned axis.
Args:
prior_box(${prior_box_type}): ${prior_box_comment}
prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
target_box(${target_box_type}): ${target_box_comment}
code_type(${code_type_type}): ${code_type_comment}
box_normalized(${box_normalized_type}): ${box_normalized_comment}
axis(${axis_type}): ${axis_comment}
prior_box(Variable): Box list prior_box is a 2-D Tensor with shape
[M, 4] holds M boxes, each box is represented as
[xmin, ymin, xmax, ymax], [xmin, ymin] is the
left top coordinate of the anchor box, if the
input is image feature map, they are close to
the origin of the coordinate system. [xmax, ymax]
is the right bottom coordinate of the anchor box.
prior_box_var(Variable|list): prior_box_var supports two types of input.
One is variable with shape [M, 4] holds M group.
The other one is list consist of 4 elements
shared by all boxes.
target_box(Variable): This input can be a 2-D LoDTensor with shape
[N, 4] when code_type is 'encode_center_size'.
This input also can be a 3-D Tensor with shape
[N, M, 4] when code_type is 'decode_center_size'.
Each box is represented as
[xmin, ymin, xmax, ymax]. This tensor can
contain LoD information to represent a batch
of inputs.
code_type(string): The code type used with the target box. It can be
encode_center_size or decode_center_size
box_normalized(int): Whether treat the priorbox as a noramlized box.
Set true by default.
name(string): The name of box coder.
axis(int): Which axis in PriorBox to broadcast for box decode,
for example, if axis is 0 and TargetBox has shape
[N, M, 4] and PriorBox has shape [M, 4], then PriorBox
will broadcast to [N, M, 4] for decoding. It is only valid
when code type is decode_center_size. Set 0 by default.
Returns:
output_box(${output_box_type}): ${output_box_comment}
output_box(Variable): When code_type is 'encode_center_size', the
output tensor of box_coder_op with shape
[N, M, 4] representing the result of N target
boxes encoded with M Prior boxes and variances.
When code_type is 'decode_center_size',
N represents the batch size and M represents
the number of deocded boxes.
Examples:
.. code-block:: python
prior_box = fluid.layers.data(name='prior_box',
shape=[512, 4],
dtype='float32',
append_batch_size=False)
target_box = fluid.layers.data(name='target_box',
shape=[512,81,4],
dtype='float32',
append_batch_size=False)
output = fluid.layers.box_coder(prior_box=prior_box,
prior_box_var=[0.1,0.1,0.2,0.2],
target_box=target_box,
code_type="decode_center_size",
box_normalized=False,
axis=1)
"""
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
...
...
@@ -368,18 +454,22 @@ def box_coder(prior_box,
output_box
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
inputs
=
{
"PriorBox"
:
prior_box
,
"TargetBox"
:
target_box
}
attrs
=
{
"code_type"
:
code_type
,
"box_normalized"
:
box_normalized
,
"axis"
:
axis
}
if
isinstance
(
prior_box_var
,
Variable
):
inputs
[
'PriorBoxVar'
]
=
prior_box_var
elif
isinstance
(
prior_box_var
,
list
):
attrs
[
'variance'
]
=
prior_box_var
else
:
raise
TypeError
(
"Input variance of box_coder must be Variable or lisz"
)
helper
.
append_op
(
type
=
"box_coder"
,
inputs
=
{
"PriorBox"
:
prior_box
,
"PriorBoxVar"
:
prior_box_var
,
"TargetBox"
:
target_box
},
attrs
=
{
"code_type"
:
code_type
,
"box_normalized"
:
box_normalized
,
"axis"
:
axis
},
inputs
=
inputs
,
attrs
=
attrs
,
outputs
=
{
"OutputBox"
:
output_box
})
return
output_box
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
a39240c3
...
...
@@ -59,7 +59,7 @@ class TestDetection(unittest.TestCase):
iou
=
layers
.
iou_similarity
(
x
=
x
,
y
=
y
)
bcoder
=
layers
.
box_coder
(
prior_box
=
x
,
prior_box_var
=
y
,
prior_box_var
=
[
0.2
,
0.3
,
0.3
,
0.2
]
,
target_box
=
z
,
code_type
=
'encode_center_size'
)
self
.
assertIsNotNone
(
iou
)
...
...
python/paddle/fluid/tests/unittests/test_box_coder_op.py
浏览文件 @
a39240c3
...
...
@@ -106,9 +106,9 @@ class TestBoxCoderOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
,
10
,
4
)).
astype
(
'float32'
)
prior_box
=
np
.
random
.
random
((
81
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
81
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
...
...
@@ -132,9 +132,9 @@ class TestBoxCoderOpWithOneRankVar(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
6
,
4
)).
astype
(
'float32'
)
prior_box
=
np
.
random
.
random
((
81
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
3
,
6
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
...
...
@@ -159,9 +159,9 @@ class TestBoxCoderOpWithoutBoxVar(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
0
,
1
,
2
,
3
,
4
,
5
]]
prior_box
=
np
.
random
.
random
((
10
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
ones
((
10
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
,
10
,
4
)).
astype
(
'float32'
)
prior_box
=
np
.
random
.
random
((
81
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
ones
((
81
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
20
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
...
...
@@ -184,10 +184,10 @@ class TestBoxCoderOpWithLoD(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
4
,
8
,
8
]]
prior_box
=
np
.
random
.
random
((
1
0
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
1
0
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
2
0
,
4
)).
astype
(
'float32'
)
lod
=
[[
10
,
20
,
20
]]
prior_box
=
np
.
random
.
random
((
2
0
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
2
0
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
0
,
4
)).
astype
(
'float32'
)
code_type
=
"EncodeCenterSize"
box_normalized
=
True
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
...
...
@@ -209,9 +209,9 @@ class TestBoxCoderOpWithAxis(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
5
,
4
)).
astype
(
'float32'
)
prior_box
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
5
,
6
,
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
30
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
axis
=
1
...
...
@@ -231,5 +231,34 @@ class TestBoxCoderOpWithAxis(OpTest):
self
.
outputs
=
{
'OutputBox'
:
output_box
}
class
TestBoxCoderOpWithVariance
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"box_coder"
lod
=
[[
1
,
1
,
1
,
1
,
1
]]
prior_box
=
np
.
random
.
random
((
30
,
4
)).
astype
(
'float32'
)
prior_box_var
=
np
.
random
.
random
((
4
)).
astype
(
'float32'
)
target_box
=
np
.
random
.
random
((
30
,
81
,
4
)).
astype
(
'float32'
)
code_type
=
"DecodeCenterSize"
box_normalized
=
False
axis
=
1
output_box
=
batch_box_coder
(
prior_box
,
prior_box_var
,
target_box
,
lod
[
0
],
code_type
,
box_normalized
,
axis
)
self
.
inputs
=
{
'PriorBox'
:
prior_box
,
'TargetBox'
:
target_box
,
}
self
.
attrs
=
{
'code_type'
:
'decode_center_size'
,
'box_normalized'
:
False
,
'variance'
:
prior_box_var
.
astype
(
np
.
float
).
flatten
(),
'axis'
:
axis
}
self
.
outputs
=
{
'OutputBox'
:
output_box
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录