提交 72eccb23 编写于 作者: G gaoyuan

add box coder op

上级 430fdc52
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/box_coder_op.h"
namespace paddle {
namespace operators {
class BoxCoderOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("PriorBox"),
"Input(PriorBox) of BoxCoderOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("PriorBoxVar"),
"Input(PriorBoxVar) of BoxCoderOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("PriorBox"),
"Input(TargetBox) of BoxCoderOp should not be null.");
auto prior_box_dims = ctx->GetInputDim("PriorBox");
auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
auto target_box_dims = ctx->GetInputDim("TargetBox");
PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2UL,
"The shape of PriorBox is [N, 4]");
PADDLE_ENFORCE_EQ(prior_box_dims[1], 4UL,
"The shape of PriorBox is [N, 4]");
PADDLE_ENFORCE_EQ(prior_box_var_dims.size(), 2UL,
"The shape of PriorBoxVar is [N, 4]");
PADDLE_ENFORCE_EQ(prior_box_var_dims[1], 4UL,
"The shape of PriorBoxVar is [N, 4]");
PADDLE_ENFORCE_EQ(target_box_dims.size(), 2UL,
"The shape of TargetBox is [M, 4]");
PADDLE_ENFORCE_EQ(target_box_dims[1], 4UL,
"The shape of TargetBox is [M, 4]");
GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
ctx->SetOutputDim("OutputBox", framework::make_ddim({target_box_dims[0],
target_box_dims[1]}));
}
};
class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BoxCoderOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"PriorBox",
"(Tensor, default Tensor<float>) "
"Box list PriorBox is a 2-D Tensor with shape [M, 4] holds N boxes, "
"each box is represented as [xmin, ymin, xmax, ymax], "
"[xmin, ymin] is the left top coordinate of the anchor box, "
"if the input is image feature map, they are close to the origin "
"of the coordinate system. [xmax, ymax] is the right bottom "
"coordinate of the anchor box.");
AddInput("PriorBoxVar",
"(Tensor, default Tensor<float>) "
"PriorBoxVar is a 2-D Tensor with shape [M, 4] holds N group "
"of variance.");
AddInput(
"TargetBox",
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
"[N, 4], each box is represented as [xmin, ymin, xmax, ymax], "
"[xmin, ymin] is the left top coordinate of the box if the input "
"is image feature map, they are close to the origin of the coordinate "
"system. [xmax, ymax] is the right bottom coordinate of the box. "
"This tensor can contain LoD information to represent a batch "
"of inputs. One instance of this batch can contain different "
"numbers of entities.");
AddAttr<std::string>("code_type",
"(string, default encode_center_size) "
"the code type used with the target box")
.SetDefault("encode_center_size")
.InEnum({"encode_center_size", "decode_center_size"});
AddOutput(
"OutputBox",
"(Tensor, default Tensor<float>)"
"(Tensor) The output of box_coder_op, a tensor with shape [N, M, 4] "
"representing the result of N target boxes encoded/decoded with "
"M Prior boxes and variances.");
AddComment(R"DOC(
Bounding Box Coder Operator.
Encode/Decode the priorbox information with the target bounding box.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker);
REGISTER_OP_CPU_KERNEL(box_coder, ops::BoxCoderKernel<float>,
ops::BoxCoderKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/box_coder_op.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data, int row,
int col, T* output) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < row * col) {
const int row_idx = idx / col;
const int col_idx = idx % col;
T prior_box_width =
prior_box_data[col_idx * 4 + 2] - prior_box_data[col_idx * 4];
T prior_box_height =
prior_box_data[col_idx * 4 + 3] - prior_box_data[col_idx * 4 + 1];
T prior_box_center_x =
(prior_box_data[col_idx * 4 + 2] + prior_box_data[col_idx * 4]) / 2;
T prior_box_center_y =
(prior_box_data[col_idx * 4 + 3] + prior_box_data[col_idx * 4 + 1]) / 2;
T target_box_center_x =
(target_box_data[row_idx * 4 + 2] + target_box_data[row_idx * 4]) / 2;
T target_box_center_y =
(target_box_data[row_idx * 4 + 3] + target_box_data[row_idx * 4 + 1]) /
2;
T target_box_width =
target_box_data[row_idx * 4 + 2] - target_box_data[row_idx * 4];
T target_box_height =
target_box_data[row_idx * 4 + 3] - target_box_data[row_idx * 4 + 1];
output[idx * 4] = (target_box_center_x - prior_box_center_x) /
prior_box_width / prior_box_var_data[col_idx * 4];
output[idx * 4 + 1] = (target_box_center_y - prior_box_center_y) /
prior_box_height /
prior_box_var_data[col_idx * 4 + 1];
output[idx * 4 + 2] = log(fabs(target_box_width / prior_box_width)) /
prior_box_var_data[col_idx * 4 + 2];
output[idx * 4 + 3] = log(fabs(target_box_height / prior_box_height)) /
prior_box_var_data[col_idx * 4 + 3];
}
}
template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data, int row,
int col, T* output) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < row * col) {
const int row_idx = idx / col;
const int col_idx = idx % col;
T prior_box_width =
prior_box_data[col_idx * 4 + 2] - prior_box_data[col_idx * 4];
T prior_box_height =
prior_box_data[col_idx * 4 + 3] - prior_box_data[col_idx * 4 + 1];
T prior_box_center_x =
(prior_box_data[col_idx * 4 + 2] + prior_box_data[col_idx * 4]) / 2;
T prior_box_center_y =
(prior_box_data[col_idx * 4 + 3] + prior_box_data[col_idx * 4 + 1]) / 2;
T target_box_width = exp(prior_box_var_data[col_idx * 4 + 2] *
target_box_data[row_idx * 4 + 2]) *
prior_box_width;
T target_box_height = exp(prior_box_var_data[col_idx * 4 + 3] *
target_box_data[row_idx * 4 + 3]) *
prior_box_height;
T target_box_center_x = prior_box_var_data[col_idx * 4] *
target_box_data[row_idx * 4] * prior_box_width +
prior_box_center_x;
T target_box_center_y = prior_box_var_data[col_idx * 4 + 1] *
target_box_data[row_idx * 4 + 1] *
prior_box_height +
prior_box_center_y;
output[idx * 4] = target_box_center_x - target_box_width / 2;
output[idx * 4 + 1] = target_box_center_y - target_box_height / 2;
output[idx * 4 + 2] = target_box_center_x + target_box_width / 2;
output[idx * 4 + 3] = target_box_center_y + target_box_height / 2;
}
}
template <typename T>
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
"This kernel only runs on GPU device.");
auto* prior_box = context.Input<framework::Tensor>("PriorBox");
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<Tensor>("OutputBox");
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
int block = 512;
int grid = (row * col + block - 1) / block;
auto& device_ctx = context.cuda_device_context();
const T* prior_box_data = prior_box->data<T>();
const T* prior_box_var_data = prior_box_var->data<T>();
const T* target_box_data = target_box->data<T>();
output_box->mutable_data<T>({row, col, 4}, context.GetPlace());
T* output = output_box->data<T>();
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
prior_box_data, prior_box_var_data, target_box_data, row, col,
output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
prior_box_data, prior_box_var_data, target_box_data, row, col,
output);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(box_coder, ops::BoxCoderCUDAKernel<float>,
ops::BoxCoderCUDAKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };
inline BoxCodeType GetBoxCodeType(const std::string& type) {
if (type == "encode_center_size") {
return BoxCodeType::kEncodeCenterSize;
} else if (type == "decode_center_size") {
return BoxCodeType::kDecodeCenterSize;
}
PADDLE_THROW("Not support type %s.", type);
}
template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
public:
void EncodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
const Tensor& prior_box_var, T* output) const {
PADDLE_ENFORCE_EQ(target_box.dims().size(), 2,
"The rank of target_box must be 2.");
PADDLE_ENFORCE_EQ(prior_box.dims().size(), 2,
"The rank of prior_box must be 2.");
PADDLE_ENFORCE_EQ(prior_box_var.dims().size(), 2,
"The rank of prior_box_var must be 2.");
PADDLE_ENFORCE_EQ(prior_box.dims()[0], prior_box_var.dims()[0],
"The dims of prior_box must equal to prior_box_var.");
int64_t row = target_box.dims()[0];
int64_t col = prior_box.dims()[0];
auto* target_box_data = target_box.data<T>();
auto* prior_box_data = prior_box.data<T>();
auto* prior_box_var_data = prior_box_var.data<T>();
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
T prior_box_width = prior_box_data[j * 4 + 2] - prior_box_data[j * 4];
T prior_box_height =
prior_box_data[j * 4 + 3] - prior_box_data[j * 4 + 1];
T prior_box_center_x =
(prior_box_data[j * 4 + 2] + prior_box_data[j * 4]) / 2;
T prior_box_center_y =
(prior_box_data[j * 4 + 3] + prior_box_data[j * 4 + 1]) / 2;
T target_box_center_x =
(target_box_data[i * 4 + 2] + target_box_data[i * 4]) / 2;
T target_box_center_y =
(target_box_data[i * 4 + 3] + target_box_data[i * 4 + 1]) / 2;
T target_box_width =
target_box_data[i * 4 + 2] - target_box_data[i * 4];
T target_box_height =
target_box_data[i * 4 + 3] - target_box_data[i * 4 + 1];
size_t offset = i * col * 4 + j * 4;
output[offset] = (target_box_center_x - prior_box_center_x) /
prior_box_width / prior_box_var_data[j * 4];
output[offset + 1] = (target_box_center_y - prior_box_center_y) /
prior_box_height / prior_box_var_data[j * 4 + 1];
output[offset + 2] =
std::log(std::fabs(target_box_width / prior_box_width)) /
prior_box_var_data[j * 4 + 2];
output[offset + 3] =
std::log(std::fabs(target_box_height / prior_box_height)) /
prior_box_var_data[j * 4 + 3];
}
}
}
void DecodeCenterSize(const Tensor& target_box, const Tensor& prior_box,
const Tensor& prior_box_var, T* output) const {
PADDLE_ENFORCE_EQ(target_box.dims().size(), 2,
"The rank of target_box must be 2.");
PADDLE_ENFORCE_EQ(prior_box.dims().size(), 2,
"The rank of prior_box must be 2.");
PADDLE_ENFORCE_EQ(prior_box_var.dims().size(), 2,
"The rank of prior_box_var must be 2.");
PADDLE_ENFORCE_EQ(prior_box.dims()[0], prior_box_var.dims()[0],
"The dims of prior_box must equal to prior_box_var.");
int64_t row = target_box.dims()[0];
int64_t col = prior_box.dims()[0];
auto* target_box_data = target_box.data<T>();
auto* prior_box_data = prior_box.data<T>();
auto* prior_box_var_data = prior_box_var.data<T>();
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
T prior_box_width = prior_box_data[j * 4 + 2] - prior_box_data[j * 4];
T prior_box_height =
prior_box_data[j * 4 + 3] - prior_box_data[j * 4 + 1];
T prior_box_center_x =
(prior_box_data[j * 4 + 2] + prior_box_data[j * 4]) / 2;
T prior_box_center_y =
(prior_box_data[j * 4 + 3] + prior_box_data[j * 4 + 1]) / 2;
T target_box_center_x = prior_box_var_data[j * 4] *
target_box_data[i * 4] * prior_box_width +
prior_box_center_x;
T target_box_center_y = prior_box_var_data[j * 4 + 1] *
target_box_data[i * 4 + 1] *
prior_box_height +
prior_box_center_y;
T target_box_width = std::exp(prior_box_var_data[j * 4 + 2] *
target_box_data[i * 4 + 2]) *
prior_box_width;
T target_box_height = std::exp(prior_box_var_data[j * 4 + 3] *
target_box_data[i * 4 + 3]) *
prior_box_height;
size_t offset = i * col * 4 + j * 4;
output[offset] = target_box_center_x - target_box_width / 2;
output[offset + 1] = target_box_center_y - target_box_height / 2;
output[offset + 2] = target_box_center_x + target_box_width / 2;
output[offset + 3] = target_box_center_y + target_box_height / 2;
}
}
}
void Compute(const framework::ExecutionContext& context) const override {
auto* prior_box = context.Input<framework::Tensor>("PriorBox");
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<Tensor>("OutputBox");
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
output_box->mutable_data<T>({row, col, 4}, context.GetPlace());
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
T* output = output_box->data<T>();
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
}
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import sys
import math
from op_test import OpTest
def box_coder(target_box, prior_box, prior_box_var, output_box, code_type):
prior_box_x = (prior_box[:, 2] + prior_box[:, 0]) / 2
prior_box_y = (prior_box[:, 3] + prior_box[:, 1]) / 2
prior_box_width = (prior_box[:, 2] - prior_box[:, 0])
prior_box_height = (prior_box[:, 3] - prior_box[:, 1])
if (code_type == "EncodeCenterSize"):
target_box_x = (target_box[:, 2] + target_box[:, 0]) / 2
target_box_y = (target_box[:, 3] + target_box[:, 1]) / 2
target_box_width = (target_box[:, 2] - target_box[:, 0])
target_box_height = (target_box[:, 3] - target_box[:, 1])
for i in range(target_box.shape[0]):
output_box[i,:,0] = (target_box_x[i] - prior_box_x) / prior_box_width / \
prior_box_var[:,0]
output_box[i,:,1] = (target_box_y[i] - prior_box_y) / prior_box_height / \
prior_box_var[:,1]
output_box[i,:,2] = np.log(np.fabs(target_box_width[i] / prior_box_width)) / \
prior_box_var[:,2]
output_box[i,:,3] = np.log(np.fabs(target_box_height[i] / prior_box_height)) / \
prior_box_var[:,3]
elif (code_type == "DecodeCenterSize"):
for i in range(target_box.shape[0]):
target_box_x = prior_box_var[:,0] * target_box[i][0] * \
prior_box_width[:] + prior_box_x[:]
target_box_y = prior_box_var[:,1] * target_box[i][1] * \
prior_box_height[:] + prior_box_y[:]
target_box_width = np.exp(prior_box_var[:,2] * target_box[i][2]) * \
prior_box_width[:]
target_box_height = np.exp(prior_box_var[:,3] * target_box[i][3]) * \
prior_box_height[:]
output_box[i, :, 0] = target_box_x - target_box_width / 2
output_box[i, :, 1] = target_box_y - target_box_height / 2
output_box[i, :, 2] = target_box_x + target_box_width / 2
output_box[i, :, 3] = target_box_y + target_box_height / 2
def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type):
n = target_box.shape[0]
m = prior_box.shape[0]
output_box = np.zeros((n, m, 4), dtype=np.float32)
for i in range(len(lod) - 1):
box_coder(target_box[lod[i]:lod[i + 1], :], prior_box, prior_box_var,
output_box[lod[i]:lod[i + 1], :, :], code_type)
return output_box
class TestBoxCoderOp(OpTest):
def test_check_output(self):
self.check_output()
def setUp(self):
self.op_type = "box_coder"
lod = [[0, 20]]
prior_box = np.random.random((10, 4)).astype('float32')
prior_box_var = np.random.random((10, 4)).astype('float32')
target_box = np.random.random((20, 4)).astype('float32')
code_type = "DecodeCenterSize"
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
lod[0], code_type)
self.inputs = {
'PriorBox': prior_box,
'PriorBoxVar': prior_box_var,
'TargetBox': target_box,
}
self.attrs = {'code_type': 'decode_center_size'}
self.outputs = {'OutputBox': output_box}
class TestBoxCoderOpWithLoD(OpTest):
def test_check_output(self):
self.check_output()
def setUp(self):
self.op_type = "box_coder"
lod = [[0, 4, 12, 20]]
prior_box = np.random.random((10, 4)).astype('float32')
prior_box_var = np.random.random((10, 4)).astype('float32')
target_box = np.random.random((20, 4)).astype('float32')
code_type = "EncodeCenterSize"
output_box = batch_box_coder(prior_box, prior_box_var, target_box,
lod[0], code_type)
self.inputs = {
'PriorBox': prior_box,
'PriorBoxVar': prior_box_var,
'TargetBox': (target_box, lod),
}
self.attrs = {'code_type': 'encode_center_size'}
self.outputs = {'OutputBox': output_box}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册