framework.py 109.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
S
add doc  
sneaxiy 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    '''
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
    '''
S
sneaxiy 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
S
add doc  
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
    '''
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
    '''
S
sneaxiy 已提交
148 149 150 151 152 153
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
S
add doc  
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
    '''
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
    '''
S
sneaxiy 已提交
168 169 170 171 172 173 174
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
201
@signature_safe_contextmanager
202 203 204 205 206 207 208 209 210 211 212 213
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
214

215 216 217 218
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
219 220
          with name_scope("attention"):
             ...
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
240 241 242
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
243 244 245 246


def grad_var_name(var_name):
    """
247 248
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
249 250 251
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
252

253
def convert_np_dtype_to_dtype_(np_dtype):
254 255
    """
    Convert the data type in numpy to the data type in Paddle
256

257
    Args:
258
        np_dtype(np.dtype): the data type in numpy.
259

260 261
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
262 263

    """
264 265
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
266
        return core.VarDesc.VarType.FP32
267
    elif dtype == np.float64:
268
        return core.VarDesc.VarType.FP64
269
    elif dtype == np.float16:
270
        return core.VarDesc.VarType.FP16
271
    elif dtype == np.int32:
272
        return core.VarDesc.VarType.INT32
273
    elif dtype == np.int16:
274
        return core.VarDesc.VarType.INT16
275
    elif dtype == np.int64:
276
        return core.VarDesc.VarType.INT64
277
    elif dtype == np.bool:
278
        return core.VarDesc.VarType.BOOL
279 280
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
281 282
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
283 284
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
285
    else:
M
minqiyang 已提交
286
        raise ValueError("Not supported numpy dtype %s" % dtype)
287 288 289


def dtype_is_floating(dtype):
290 291 292
    """
    Check the data type is floating or not.
    Args:
293
        dtype(np.dtype|core.VarDesc.VarType): data type.
294 295 296 297 298
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
299
    if not isinstance(dtype, core.VarDesc.VarType):
300 301
        dtype = convert_np_dtype_to_dtype_(dtype)

302 303 304 305
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
306 307


Y
Yang Yang(Tony) 已提交
308
def _debug_string_(proto, throw_on_error=True):
309 310 311 312 313 314 315 316 317 318 319
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
320
    error_fields = list()
Y
Yang Yang(Tony) 已提交
321
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
322 323
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
324 325 326
    return proto.__str__()


X
Xin Pan 已提交
327
class Variable(object):
328
    """
329 330 331
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
332
    two variables in different blocks could have the same name.
333

334 335
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
336

337
    Most of a Variable's member variables can be setted to be None. It mean
338
    it is not available or will be specified later.
339 340

    Args:
341
        block(Block): The block that the variable belongs to.
342 343
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
344 345
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
346
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
347
            Some kinds of variable do not contain shape, just set it to None.
348 349 350
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
351
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
352
            series data.
353
            Default: None
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
376 377
    """

Y
Yu Yang 已提交
378 379
    def __init__(self,
                 block,
Y
Yu Yang 已提交
380
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
381 382 383 384
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
385
                 capacity=None,
Q
QI JUN 已提交
386
                 persistable=None,
F
fengjiayi 已提交
387
                 error_clip=None,
Y
Yu Yang 已提交
388
                 stop_gradient=False,
F
fengjiayi 已提交
389
                 is_data=False,
Y
Yu Yang 已提交
390
                 **kwargs):
Y
Yu Yang 已提交
391 392
        self.block = block
        if name is None:
Y
Yu Yang 已提交
393
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
394

Y
Yu Yang 已提交
395
        if dtype is not None:
396
            if not isinstance(dtype, core.VarDesc.VarType):
397
                dtype = convert_np_dtype_to_dtype_(dtype)
398

X
Xin Pan 已提交
399
        if _in_imperative_mode():
M
minqiyang 已提交
400
            # record vars in tracer rather than blocks
M
minqiyang 已提交
401 402
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
403 404 405
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
406 407
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
408
            if persistable:
409
                _imperative_tracer().trace_var(name, self)
M
minqiyang 已提交
410
        else:
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
483
            self.block.vars[name] = self
484 485 486
            self.op = None
            self.stop_gradient = stop_gradient
            self.is_data = is_data
Y
Yu Yang 已提交
487

488
    def _numpy(self):
M
minqiyang 已提交
489
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
490
        return np.array(new_ivar.value().get_tensor())
491 492

    def _backward(self):
X
Xin Pan 已提交
493
        self._ivar._run_backward()
494 495

    def _gradient(self):
M
minqiyang 已提交
496
        return np.array(self._ivar._grad_value())
497

X
Xin Pan 已提交
498 499
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
500

501
    def __str__(self):
Y
Yang Yang(Tony) 已提交
502 503
        return self.to_string(True)

F
update  
fengjiayi 已提交
504
    def to_string(self, throw_on_error, with_details=False):
505 506 507 508
        """
        Get debug string.

        Args:
509 510
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
511
            with_details(bool): more details about variables and parameters
512 513
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
514

515 516
        Returns:
            str: The debug string.
517
        """
518
        if _in_imperative_mode():
X
polish  
Xin Pan 已提交
519
            # TODO(panyx0718): add more imperative debug info.
520 521 522
            return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
                                                     self.shape)

F
update  
fengjiayi 已提交
523 524
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
525
        protostr = self.desc.serialize_to_string()
526
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
527 528 529 530
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
531 532
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
533
        return res_str
534 535 536

    __repr__ = __str__

W
Wu Yi 已提交
537
    def _set_desc(self, input):
538 539 540 541 542 543 544 545 546
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
547 548
        self.desc = input

549 550
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
551 552 553 554
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
555 556 557

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
558 559
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
560 561
        else:
            self.stop_gradient = s
562

563 564
    @property
    def persistable(self):
565 566 567 568
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            return self.desc.persistable()
569

Y
Yu Yang 已提交
570 571
    @persistable.setter
    def persistable(self, p):
572 573 574 575
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
576

Y
Yu Yang 已提交
577 578
    @property
    def name(self):
579 580 581 582
        if _in_imperative_mode():
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
583

T
typhoonzero 已提交
584 585
    @name.setter
    def name(self, new_name):
586 587 588 589
        if _in_imperative_mode():
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
590

Y
Yu Yang 已提交
591 592 593
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
594 595 596 597
        if _in_imperative_mode():
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
598 599

    @property
F
fengjiayi 已提交
600
    def dtype(self):
601 602 603 604
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
605 606 607

    @property
    def lod_level(self):
608
        # TODO(minqiyang): Support lod_level in imperative mode
609
        return self.desc.lod_level()
Y
Yu Yang 已提交
610

Y
Yu Yang 已提交
611 612
    @property
    def type(self):
613 614 615 616
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
617

W
Wu Yi 已提交
618
    def _set_error_clip(self, error_clip):
619 620 621 622 623 624 625 626 627
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
628 629
        self.error_clip = error_clip

Y
Yu Yang 已提交
630

F
fengjiayi 已提交
631 632 633
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
634

635 636
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
637 638 639 640
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
641
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
642 643 644 645 646
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
647 648 649 650
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
651 652 653 654 655 656 657 658 659
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
660
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
661 662 663 664 665 666
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
667 668 669 670 671 672 673 674
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
675 676
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
677 678
        return self.op_proto_map[type]

679 680 681 682
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
683
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
684 685
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
686 687
        }

F
fengjiayi 已提交
688

X
Xin Pan 已提交
689
class Operator(object):
690
    """
691 692 693 694 695 696 697
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
698
        type(str): The type of operator. Default None.
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
719
        Block.append_op or Block._prepend_op instead.
720 721 722 723 724 725 726 727 728 729

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
730
    """
731
    OP_WITHOUT_KERNEL_SET = {
732 733 734
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
735
    }
736

Y
Yu Yang 已提交
737 738
    def __init__(self,
                 block,
Y
Yu Yang 已提交
739
                 desc,
Y
Yu Yang 已提交
740 741 742
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
743
                 attrs=None):
X
Xin Pan 已提交
744
        if _in_imperative_mode():
745 746
            if type is None:
                raise ValueError(
X
Xin Pan 已提交
747
                    "`type` to initialized an Operator can not be None.")
748
            self.iop = core.OpBase(type)
M
minqiyang 已提交
749

750 751
            # TODO(minqiyang): remove these lines after we take apart all
            # backward grads and forward variables
X
Xin Pan 已提交
752
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
753
            if inputs is not None:
X
Xin Pan 已提交
754 755 756 757 758
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
759

X
Xin Pan 已提交
760
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
761
            if outputs is not None:
X
Xin Pan 已提交
762 763 764 765 766
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
            self.attrs = attrs if attrs else {}
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
                        if not _in_imperative_mode():
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
883
    def _has_kernel(self, op_type):
884 885
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
886
    def to_string(self, throw_on_error):
887
        """
888 889
        Get debug string.

890
        Args:
891 892
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
893

894 895
        Returns:
            str: The debug string.
896 897

        """
898
        protostr = self.desc.serialize_to_string()
899
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
900 901 902 903
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
904 905 906

    __repr__ = __str__

F
fengjiayi 已提交
907 908
    @property
    def type(self):
X
polish  
Xin Pan 已提交
909 910 911 912
        if _in_imperative_mode():
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
913 914

    def input(self, name):
915
        """
916
        Get the input arguments according to the input parameter name.
917

918 919
        Args:
            name(str): The input parameter name.
920

921 922 923
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
924
        """
F
fengjiayi 已提交
925 926
        return self.desc.input(name)

W
Wu Yi 已提交
927
    def _rename_input(self, old_name, new_name):
928 929 930 931 932 933 934 935 936 937
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
938
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
939

W
Wu Yi 已提交
940
    def _rename_output(self, old_name, new_name):
941 942 943 944 945 946 947 948 949 950
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
951
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
952

F
fengjiayi 已提交
953 954 955 956
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
957 958 959 960 961 962 963 964
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
965
    def output(self, name):
966
        """
967
        Get output arguments by the output parameter name.
968

969 970
        Args:
            name(str): The output parameter name.
971

972 973 974
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
975
        """
F
fengjiayi 已提交
976 977 978 979 980 981
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

982 983 984 985 986 987 988 989
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
990
    def has_attr(self, name):
991
        """
992 993
        Whether this Operator has the attribute with name or not.

994
        Args:
995
            name(str): the attribute name.
996

997 998
        Returns:
            bool: True if has this attribute.
999 1000

        """
F
fengjiayi 已提交
1001 1002 1003
        return self.desc.has_attr(name)

    def attr_type(self, name):
1004
        """
1005
        Get the type of attribute by attribute's name.
1006

1007 1008
        Args:
            name(str): the attribute name.
1009

1010 1011
        Returns:
            core.AttrType: the attribute type.
1012
        """
F
fengjiayi 已提交
1013 1014
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1015
    def _set_attr(self, name, val):
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1039 1040
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1041 1042
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1043
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1044 1045 1046 1047
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1048
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1049

F
fengjiayi 已提交
1050 1051 1052 1053 1054
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1055
        """
1056 1057
        Get the attribute by name.

1058
        Args:
1059
            name(str): the attribute name.
1060

1061 1062
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1063 1064
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1065
        return self.desc.attr(name)
Y
Yu Yang 已提交
1066

W
Wu Yi 已提交
1067
    def _block_attr_id(self, name):
1068
        """
G
gongweibao 已提交
1069
        Get the block attribute's id by name.
1070

1071 1072
        Args:
            name(str): the attribute name.
1073

1074 1075
        Returns:
            int: the block index.
1076
        """
W
Wu Yi 已提交
1077
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1078

W
Wu Yi 已提交
1079
    def _block_attr(self, name):
G
gongweibao 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1090
        id = self._block_attr_id(name)
G
gongweibao 已提交
1091 1092 1093
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1094
    def _blocks_attr(self, name):
G
gongweibao 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1105
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1106 1107 1108 1109 1110
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1111
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1122
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1123

J
JiayiFeng 已提交
1124
    def all_attrs(self):
F
fengjiayi 已提交
1125
        """
1126 1127 1128
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1129
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1130 1131 1132 1133
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1134 1135
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1136
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1137 1138 1139
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1140
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1141 1142 1143 1144
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1145 1146
        return attr_map

Y
Yu Yang 已提交
1147

Y
Yu Yang 已提交
1148
class Block(object):
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1163
        use `Program._create_block()` to create a block.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1178
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1179
        self.desc = program.desc.block(idx)
1180
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1181
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1182
        self.program = program
1183
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1184

1185
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1186 1187
        return self.to_string(True)

F
fengjiayi 已提交
1188 1189
    def to_string(self, throw_on_error, with_details=False):
        """
1190 1191
        Get debug string.

F
fengjiayi 已提交
1192 1193
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1194
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1195
            with_details(bool): more details about variables and parameters
1196 1197
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1198

1199 1200
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1201 1202 1203 1204
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1205
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1206 1207
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1208
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1209
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1210
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1211
            for op in self.ops:
F
fengjiayi 已提交
1212 1213
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1214 1215 1216
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1217 1218
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1219 1220
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1221 1222 1223

    __repr__ = __str__

Y
Yu Yang 已提交
1224 1225
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1226
        return self.desc.parent
Y
Yu Yang 已提交
1227

Y
Yu Yang 已提交
1228 1229 1230 1231
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1232
    def _set_forward_block_idx(self, idx):
1233 1234 1235 1236 1237 1238 1239 1240 1241
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1242
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1243

Y
Yu Yang 已提交
1244 1245
    @property
    def idx(self):
Y
Yu Yang 已提交
1246
        return self.desc.id
Y
Yu Yang 已提交
1247

Q
Qiao Longfei 已提交
1248
    def var(self, name):
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1262
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1263 1264 1265
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1266 1267
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1268
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1269
        return v
Q
Qiao Longfei 已提交
1270

X
Xin Pan 已提交
1271
    def _find_var_recursive(self, name):
1272 1273 1274 1275 1276 1277 1278
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1279
            Variable: the Variable with the giving name. Or None if not found.
1280
        """
Y
Yu Yang 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1305
        return None
Y
Yu Yang 已提交
1306

X
Xin Pan 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1326

Q
Qiao Longfei 已提交
1327
    def all_parameters(self):
1328
        return list(self.iter_parameters())
1329

1330
    def iter_parameters(self):
M
minqiyang 已提交
1331
        return (item[1] for item in six.iteritems(self.vars)
1332
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1333

Y
Yu Yang 已提交
1334
    def create_var(self, *args, **kwargs):
1335
        var = Variable(block=self, *args, **kwargs)
1336 1337
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1338
        return var
Y
Yu Yang 已提交
1339

Q
Qiao Longfei 已提交
1340 1341 1342
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1343
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1344 1345
        """
        Rename variable in vars and ops' inputs and outputs
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1358
        """
M
minqiyang 已提交
1359 1360
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1361

T
typhoonzero 已提交
1362
        if not self.has_var(name):
1363
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1364 1365
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1366
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1367 1368 1369 1370 1371 1372 1373
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1374
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1375 1376 1377 1378
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1379
        orig_var_type = v.type
M
minqiyang 已提交
1380
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1381
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1382
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1383
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1384 1385 1386 1387
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1388
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1389 1390 1391 1392 1393 1394 1395
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1396
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1397 1398
            var = Variable(
                self,
T
typhoonzero 已提交
1399
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1400 1401 1402 1403
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1404
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1405 1406 1407
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1408
        self._sync_with_cpp()
1409
        return var
T
typhoonzero 已提交
1410

W
Wu Yi 已提交
1411 1412
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1413
        self.desc._remove_var(cpt.to_bytes(name))
1414 1415
        del self.vars[name]

Y
Yu Yang 已提交
1416 1417
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1418
        param = Parameter(global_block, *args, **kwargs)
1419
        if 'initializer' in kwargs:
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1440
        return param
Y
Yu Yang 已提交
1441

Y
Yu Yang 已提交
1442
    def append_op(self, *args, **kwargs):
1443 1444 1445 1446 1447 1448
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
M
minqiyang 已提交
1449
        if _in_imperative_mode():
1450 1451 1452 1453 1454 1455 1456 1457
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1458 1459 1460 1461
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1462 1463 1464
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1465 1466 1467 1468 1469 1470 1471 1472 1473
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1474
            self.ops.append(op)
M
minqiyang 已提交
1475

1476 1477
        return op

W
Wu Yi 已提交
1478
    def _insert_op(self, index, *args, **kwargs):
1479 1480 1481 1482 1483 1484 1485 1486 1487
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1488 1489
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1490 1491 1492 1493
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1494
    def _remove_op(self, index):
1495 1496 1497 1498 1499 1500 1501 1502 1503
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1504 1505
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1506 1507
        del self.ops[index]

W
Wu Yi 已提交
1508
    def _slice_ops(self, start, end):
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1519
        return self.ops[start:end]
Y
Yancey1989 已提交
1520

W
Wu Yi 已提交
1521
    def _prepend_op(self, *args, **kwargs):
M
minqiyang 已提交
1522
        if _in_imperative_mode():
1523 1524 1525 1526 1527 1528 1529
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1530 1531 1532
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1533 1534 1535 1536 1537 1538 1539 1540
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1541
            self.ops.insert(0, op)
1542

Y
Yu Yang 已提交
1543 1544
        return op

W
Wu Yi 已提交
1545
    def _sync_with_cpp(self):
1546
        """
1547 1548
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1549
        """
Q
Qiao Longfei 已提交
1550 1551 1552 1553 1554
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1555
        # sync variables removed from c++ end
1556
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1557
            if not self.desc.find_var(cpt.to_bytes(var)):
1558 1559
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1560
        # sync operators from cpp
1561 1562 1563 1564
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1581 1582 1583 1584 1585

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1586
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1587 1588 1589 1590 1591 1592 1593

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1607 1608 1609 1610
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1611
    def _copy_param_info_from(self, other):
1612
        """
1613 1614
        Copy the information of parameters from the other block.

1615
        Args:
1616 1617 1618 1619 1620
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1621 1622 1623 1624 1625

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1626 1627
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1628
        for p in other.iter_parameters():
1629 1630 1631
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1632
                raise ValueError("_copy_param_info_from should be invoked with "
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1645
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1646
                error_clip=p.error_clip,
1647 1648 1649
                name=v.name)
            self.vars[new_p.name] = new_p

1650
    def _clone_variable(self, var, force_persistable=True):
1651 1652
        """
        Clone a variable into current block.
1653

1654 1655
        Args:
            var: the variable to be cloned.
1656 1657 1658
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1659 1660

        Returns:
1661
            Variable: the new  variable cloned from 'var' in current block.
1662 1663
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1664 1665 1666 1667 1668
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1669 1670
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1671
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1672 1673 1674 1675 1676 1677
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1678
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1679
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1680 1681 1682 1683 1684 1685 1686
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1687
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1688
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1689
        return ret_var
1690

Y
Yu Yang 已提交
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1787
    def remove_input_by_id(self, node_id):
1788 1789 1790 1791 1792 1793
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1794
        self.node.remove_input(node_id)
1795

1796
    def remove_input(self, node):
1797 1798 1799 1800
        """
        Remove a node from inputs.

        Args:
1801
            node(IrNode): the node being removed.
1802
        """
1803
        self.node.remove_input(node.node)
1804

1805
    def append_input(self, node):
1806 1807 1808 1809
        """
        Append a node in inputs.

        Args:
1810
            node(IrNode): the node being appended.
1811
        """
1812
        self.node.append_input(node.node)
1813 1814 1815 1816 1817 1818 1819 1820

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1821
    def remove_output_by_id(self, node_id):
1822 1823 1824 1825 1826 1827
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1828
        self.node.remove_output(node_id)
1829

1830
    def remove_output(self, node):
1831 1832 1833 1834
        """
        Remove a node from outputs.

        Args:
1835
            node(IrNode): the node being removed.
1836
        """
1837
        self.node.remove_output(node.node)
1838

1839
    def append_output(self, node):
1840 1841 1842 1843
        """
        Append a node in outputs.

        Args:
1844
            node(IrNode): the node being appended.
1845
        """
1846
        self.node.append_output(node.node)
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2101 2102
class IrGraph(object):
    """
2103
    Python IrGraph. Beneath it is a core.Graph, which is used for
2104
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2105 2106
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2107 2108 2109 2110
    """

    def __init__(self, graph, for_test=False):
        """
2111 2112
        Construct an IrGraph using core.Graph.

2113 2114 2115 2116 2117 2118 2119 2120 2121
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2122 2123 2124 2125
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2126 2127 2128
        Warns:
            The method only clones the graph structure, not its attributes.

2129 2130 2131
        Returns:
            IrGraph: A new and duplicated graph.
        """
2132
        g = self.graph.clone()
2133 2134
        return IrGraph(g, self._for_test)

2135
    def is_test(self):
2136 2137 2138
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2139 2140
        return self._for_test

W
WangZhen 已提交
2141
    def all_nodes(self):
2142 2143 2144
        """
        Return all nodes included in the graph as a set.
        """
2145
        return {IrNode(node) for node in self.graph.nodes()}
2146

2147
    def all_var_nodes(self):
2148 2149 2150
        """
        Return all variable nodes included in the graph as a set.
        """
2151
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2152

2153
    def all_persistable_nodes(self):
2154 2155 2156
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2157 2158 2159 2160 2161
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2162
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2163

2164
    def all_op_nodes(self):
2165 2166 2167
        """
        Return all operator nodes included in the graph as a set.
        """
2168
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2169

2170
    def _find_var_node(self, key):
W
WangZhen 已提交
2171
        """
2172 2173 2174 2175 2176 2177 2178
        Get a variable node by the `key` from this graph. The key
        can be a node name or a node id.

        WARNS:
            There are some nodes may have the same name. So, be
            cautious about using this method when you find the
            target var node by its name.
2179

W
WangZhen 已提交
2180
        Args:
2181 2182
            key(str|int): The str type denotes that the target variable node's name.
            And the int type denotes that the target variable node's id.
2183

W
WangZhen 已提交
2184
        Raises:
2185
            ValueError: If this graph doesn't have a variable with the giving name or id.
2186

W
WangZhen 已提交
2187
        Returns:
2188
            IrVarNode: the variable node with the giving name or id.
W
WangZhen 已提交
2189 2190
        """
        target_var_node = None
2191
        var_nodes = self.all_var_nodes()
2192 2193 2194 2195 2196 2197 2198 2199
        if isinstance(key, six.string_types):
            for var_node in var_nodes:
                if var_node.name() == key:
                    target_var_node = var_node
        elif isinstance(key, int):
            for var_node in var_nodes:
                if var_node.id() == key:
                    target_var_node = var_node
W
WangZhen 已提交
2200
        if target_var_node is None:
2201
            raise ValueError("var_node %s not in this graph" % key)
W
WangZhen 已提交
2202 2203
        return target_var_node

2204
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2216
            IrVarNode: the created persistable variable node.
2217
        """
2218 2219 2220 2221 2222
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2223
        return IrVarNode(self.graph.create_var_node(var_desc))
2224 2225

    def create_var_node(self, name, var_type, shape, var_dtype):
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2237
            IrVarNode: the created variable node.
2238 2239
        """

2240 2241 2242 2243
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2244
        return IrVarNode(self.graph.create_var_node(var_desc))
2245 2246

    def create_var_node_from_desc(self, var_desc):
2247 2248 2249 2250 2251 2252 2253 2254
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2255
            IrVarNode: the created variable node.
2256
        """
2257
        return IrVarNode(self.graph.create_var_node(var_desc))
2258 2259

    def create_op_node(self, op_type, attrs, inputs, outputs):
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2270
            IrOpNode: the created operator node.
2271
        """
2272 2273
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2274
        for attr, value in six.iteritems(attrs):
2275
            self._update_desc_attr(op_desc, attr, value)
2276
        for input_name, var_nodes in six.iteritems(inputs):
2277 2278 2279 2280
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2281
        for output_name, var_nodes in six.iteritems(outputs):
2282 2283 2284 2285
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2286
        return IrOpNode(self.graph.create_op_node(op_desc))
2287 2288

    def create_op_node_from_desc(self, op_desc):
2289 2290 2291 2292 2293 2294 2295
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2296
            IrOpNode: the created operator node.
2297
        """
2298
        return IrOpNode(self.graph.create_op_node(op_desc))
2299 2300

    def update_input_link(self, old_input_node, new_input_node, op_node):
2301 2302 2303 2304
        """
        Update the input's link of a operator node.

        Args:
2305 2306 2307
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2308
        """
2309 2310
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2311
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2312 2313 2314 2315
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2316
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2317 2318

    def link_to(self, node_in, node_out):
2319 2320 2321 2322
        """
        Connect two nodes.

        Args:
2323 2324
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2325
        """
2326
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2327
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2328 2329
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2330 2331

    def safe_remove_nodes(self, remove_nodes):
2332 2333 2334 2335 2336 2337 2338
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2339
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2340 2341 2342 2343
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2344 2345
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2346

Z
Zhen Wang 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
    def resolve_hazard(self):
        def _to_node(nodes, node_name):
            target_node = None
            for n in nodes:
                if n.name() == node_name:
                    target_node = n
            assert target_node is not None, "Cannot find the target node in the giving set."
            return target_node

        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
                            _to_node(node.inputs, each_var_name)
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
                            _to_node(node.outputs, each_var_name)
                        ]
                    else:
                        var_nodes[each_var_name].append(
                            _to_node(node.outputs, each_var_name))
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2375
    def has_circle(self):
2376 2377 2378 2379 2380 2381
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2382 2383 2384
        return core.has_circle(self.graph)

    def graph_num(self):
2385 2386 2387 2388 2389 2390
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2391 2392 2393
        return core.graph_num(self.graph)

    def topology_sort(self):
2394 2395 2396 2397 2398 2399
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2400
            list(IrNode): nodes in topology order.
2401
        """
2402
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2403
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2404 2405

    def build_adjacency_list(self):
2406 2407 2408 2409
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2410
            dict{IrNode: set(IrNode)}: the adjacency list.
2411
        """
2412 2413 2414 2415 2416
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2417

2418 2419 2420 2421 2422 2423 2424 2425
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2426
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2427 2428 2429 2430 2431
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2432 2433 2434 2435 2436 2437 2438 2439 2440
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2441
        remove_ctr_vars = set()
2442
        if remove_ctr_var:
2443
            for node in self.all_var_nodes():
2444 2445 2446
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2447 2448
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2449 2450
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2451 2452 2453 2454 2455 2456
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2468 2469 2470
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2471
        WARN: When the graph includes backward operator nodes, the
2472 2473 2474 2475 2476 2477
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2478
        convert_pass = core.get_pass('graph_to_program_pass')
2479 2480
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2501
class Program(object):
D
dzhwinter 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2513
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2514 2515

    Returns:
Y
yuyang18 已提交
2516
        A empty program.
D
dzhwinter 已提交
2517 2518

    Examples:
Y
yuyang18 已提交
2519 2520 2521 2522 2523 2524
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2525 2526 2527

    """

2528 2529
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2530 2531
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2532
        self._seed = 0
Y
yuyang18 已提交
2533
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2534
        self._op_role_var = []
T
tangwei12 已提交
2535

2536 2537
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2538
        self._is_distributed = False
2539
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2540
        self._is_chief = False
2541 2542 2543
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2544
        self._endpoints = []
2545 2546 2547
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2548
        self._trainers_endpoints = []
2549
        # the distributed lookup table names
T
tangwei12 已提交
2550
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2551
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2552
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2553
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2554 2555

    @property
D
dzhwinter 已提交
2556
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2557 2558
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2559
        return self.__is_mem_optimized
D
dzhwinter 已提交
2560

D
dzhwinter 已提交
2561 2562 2563
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2564 2565 2566

    @property
    def op_role(self):
Y
yuyang18 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2580 2581 2582
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2583
    def op_role(self, role):
Y
yuyang18 已提交
2584 2585 2586 2587
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2588 2589 2590 2591 2592 2593 2594
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2595 2596 2597 2598
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2599
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2600

S
rename  
sneaxiy 已提交
2601
    @signature_safe_contextmanager
W
Wu Yi 已提交
2602
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2603 2604 2605 2606 2607 2608 2609
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2610
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2611 2612 2613 2614

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2615
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2616 2617
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2618 2619 2620
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2621 2622
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2623 2624 2625 2626
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2627
        yield
X
Xin Pan 已提交
2628 2629
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2630

S
rename  
sneaxiy 已提交
2631
    @signature_safe_contextmanager
X
Xin Pan 已提交
2632
    def _lr_schedule_guard(self, is_with_opt=False):
2633 2634 2635 2636 2637 2638 2639
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2640 2641 2642 2643
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2644 2645 2646 2647 2648 2649 2650

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2651 2652 2653 2654

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2655 2656
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2657 2658
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2659 2660 2661
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2662 2663
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2664

2665
    def __str__(self):
Y
yuyang18 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2675 2676
        return self.to_string(True)

F
fengjiayi 已提交
2677 2678 2679
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2680

F
fengjiayi 已提交
2681
        Args:
Y
yuyang18 已提交
2682 2683
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2684

Y
yuyang18 已提交
2685 2686 2687 2688
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2689 2690
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2691 2692 2693 2694

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2705 2706
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2707 2708
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2709

W
Wu Yi 已提交
2710
    def _get_desc(self):
Y
yuyang18 已提交
2711 2712 2713 2714 2715 2716 2717
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2718 2719
        return self.desc

X
version  
Xin Pan 已提交
2720 2721 2722
    def _version(self):
        return self.desc._version()

2723
    def clone(self, for_test=False):
Y
yuyang18 已提交
2724 2725 2726
        """
        Create a new, duplicated program.

2727

Y
yuyang18 已提交
2728 2729 2730 2731
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2732

Y
yuyang18 已提交
2733 2734 2735 2736
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2737 2738 2739 2740 2741
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2742 2743

        Args:
Y
yuyang18 已提交
2744 2745
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2746

D
dzhwinter 已提交
2747
        Returns:
Y
yuyang18 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2801 2802
        """
        if for_test:
X
Xin Pan 已提交
2803
            p = self._inference_optimize(prune_read_op=False)
2804
        else:
2805
            p = Program()
G
gongweibao 已提交
2806 2807
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2808
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2809 2810 2811
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2812 2813 2814 2815

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2816
            p._sync_with_cpp()
2817

W
Wu Yi 已提交
2818
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2819
        p._copy_data_info_from(self)
2820
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2821
        return p
2822

W
Wu Yi 已提交
2823
    def _prune(self, targets):
Y
yuyang18 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2839 2840 2841 2842 2843 2844
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2845 2846
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2847
                    # and we need to find the current op that generate this
2848 2849 2850 2851 2852 2853 2854 2855
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2856
                    t = t.op
2857 2858 2859 2860
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2861
                else:
2862 2863
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2864 2865 2866 2867

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2868 2869 2870
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2871
        res._sync_with_cpp()
2872 2873
        return res

X
Xin Pan 已提交
2874
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2875
        """
F
fengjiayi 已提交
2876 2877 2878 2879 2880
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2881
        3. change the :code:`is_test`
Y
yuyang18 已提交
2882 2883 2884
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2885
        Args:
X
Xin Pan 已提交
2886 2887
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2888

Y
yuyang18 已提交
2889 2890 2891 2892 2893 2894
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2895
        res = Program()
2896
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2897 2898 2899 2900

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2901
        if prune_read_op:
2902 2903 2904 2905 2906 2907 2908 2909 2910
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2911
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2912 2913

        # change all `is_test` attributes to True
M
minqiyang 已提交
2914
        for i in six.moves.range(res.desc.num_blocks()):
2915
            block = res.desc.block(i)
M
minqiyang 已提交
2916
            for j in six.moves.range(block.op_size()):
2917 2918
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2919
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2920 2921 2922
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2923
        res._sync_with_cpp()
2924 2925
        return res

2926 2927
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2928 2929 2930 2931 2932 2933 2934
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2935
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2936 2937 2938 2939

        Returns:
            Program: A deserialized program desc.
        """
2940 2941
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2942
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2943
        p._sync_with_cpp()
2944
        return p
Y
Yu Yang 已提交
2945

2946
    @staticmethod
2947
    def _construct_from_desc(desc):
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2963 2964
    @property
    def random_seed(self):
Y
yuyang18 已提交
2965 2966 2967 2968 2969 2970
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2971 2972
        return self._seed

Q
qiaolongfei 已提交
2973 2974
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2975 2976 2977
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2978 2979
        return self.desc.num_blocks()

D
dzhwinter 已提交
2980 2981 2982 2983 2984 2985
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2986
    def __repr__(self):
2987
        return self.__str__()
2988

Y
Yu Yang 已提交
2989
    def global_block(self):
Y
yuyang18 已提交
2990 2991 2992
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2993 2994
        return self.blocks[0]

Q
Qiao Longfei 已提交
2995
    def block(self, index):
Y
yuyang18 已提交
2996 2997 2998 2999 3000 3001 3002 3003
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
3004 3005
        return self.blocks[index]

Y
Yu Yang 已提交
3006
    def current_block(self):
Y
yuyang18 已提交
3007 3008 3009 3010
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
3011 3012
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3013
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3024
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3025 3026 3027
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3028 3029 3030 3031
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3032
    def _rollback(self):
Y
yuyang18 已提交
3033 3034 3035 3036 3037
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3038 3039
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3040
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3051 3052 3053
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3054
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3055

W
Wu Yi 已提交
3056
    def _copy_param_info_from(self, other):
3057
        """
3058
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3059

Y
yuyang18 已提交
3060 3061 3062
        Notes: This is a very low level API. Users should not invoke it
        directly.

3063 3064 3065 3066 3067 3068 3069
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3070
            raise TypeError("_copy_param_info_from should be invoked with "
3071 3072 3073
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3074
            raise ValueError("_copy_param_info_from should be invoked with two "
3075
                             "program, with represent the same topology")
W
Wu Yi 已提交
3076
        self.global_block()._copy_param_info_from(other.global_block())
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3093
        self._parameters_on_pservers = other._parameters_on_pservers
3094
        self._endpoints = other._endpoints
3095
        self._ps_endpoint = other._ps_endpoint
3096 3097
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3098
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3099 3100
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3101

Y
yuyang18 已提交
3102 3103 3104
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3105 3106 3107 3108 3109 3110 3111
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3112
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3113 3114 3115
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3116
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3117
                             "program, with represent the same topology")
3118
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3119 3120 3121
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3122
    def list_vars(self):
Y
yuyang18 已提交
3123 3124 3125 3126 3127 3128
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
3129
        for each_block in self.blocks:
3130
            for each_var in list(each_block.vars.values()):
3131 3132
                yield each_var

Y
Yu Yang 已提交
3133

Y
Yu Yang 已提交
3134
class Parameter(Variable):
3135
    """
3136
    Parameter is derived from Variable. A parameter is a persistable
3137
    Variable, and will be updated by optimizers after each iteration.
3138
    The training of a neural network is essentially the updating of
3139 3140
    its parameters.

3141
    Relative to a general Variable, a Parameter has several its own
3142 3143
    member variables:

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3156 3157
    """

Y
Yu Yang 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3168 3169 3170

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3171 3172 3173 3174
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3175 3176
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3177
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3178

W
wanghaoshuang 已提交
3179
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3180

F
fengjiayi 已提交
3181 3182 3183
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3184 3185 3186
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3187

F
update  
fengjiayi 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3202
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3203
            for attr_name in additional_attr:
3204 3205
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3206 3207
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3208 3209 3210 3211
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3212

Y
Yu Yang 已提交
3213
# program is a global instance.
Y
Yu Yang 已提交
3214 3215
_main_program_ = Program()
_startup_program_ = Program()
3216

3217

3218
def default_startup_program():
Y
Yu Yang 已提交
3219
    """
Y
yuyang18 已提交
3220 3221 3222 3223 3224 3225 3226 3227 3228
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3229

Y
Yu Yang 已提交
3230 3231 3232
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3233
    return _startup_program_
3234

3235

3236
def default_main_program():
Y
Yu Yang 已提交
3237
    """
Y
yuyang18 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3247

Y
Yu Yang 已提交
3248 3249 3250
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3251
    return _main_program_
Y
Yu Yang 已提交
3252 3253 3254 3255 3256


def switch_main_program(program):
    """
    Switch the main program to a new program.
3257

Y
Yu Yang 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3272
    Switch the startup program to a new program
Y
Yu Yang 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3285
@signature_safe_contextmanager
Y
Yu Yang 已提交
3286 3287
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3288 3289 3290
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3291

Y
Yu Yang 已提交
3292
    Examples:
Y
yuyang18 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3303

Y
Yu Yang 已提交
3304
    Examples:
Y
yuyang18 已提交
3305 3306 3307 3308 3309 3310

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3311

Y
Yu Yang 已提交
3312
    Args:
Y
yuyang18 已提交
3313
        main_program(Program): New main program inside `with` statement.
3314
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3328 3329


W
Wu Yi 已提交
3330
def _get_var(name, program=None):
X
xuwei06 已提交
3331
    """
Y
yuyang18 已提交
3332
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3333

X
xuwei06 已提交
3334 3335 3336
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3337
        If None, default_global_program() will be used.
X
xuwei06 已提交
3338 3339 3340 3341 3342 3343 3344

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3345
    assert isinstance(program, Program)
X
xuwei06 已提交
3346 3347

    return program.global_block().var(name)
3348 3349


S
rename  
sneaxiy 已提交
3350
@signature_safe_contextmanager
3351 3352 3353 3354
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3355

3356
    yield
P
Paddle CI 已提交
3357

3358
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3359 3360


S
rename  
sneaxiy 已提交
3361
@signature_safe_contextmanager
P
Paddle CI 已提交
3362
def _imperative_place_guard(place):
M
minqiyang 已提交
3363 3364 3365
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3366

3367
    yield
M
minqiyang 已提交
3368

M
minqiyang 已提交
3369
    _imperative_current_expected_place_ = tmp_place