framework.py 74.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23
import sys
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29 30
try:
    from . import core
31
except ImportError as e:
P
peizhilin 已提交
32 33 34 35 36 37 38 39 40 41 42 43
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
44
except Exception as e:
45
    raise e
46
from . import unique_name
Y
Yu Yang 已提交
47

48
__all__ = [
49 50 51 52
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
53
    'name_scope',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

62 63 64 65 66 67 68 69 70 71
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
112

113 114 115 116
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
117 118
          with name_scope("attention"):
             ...
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
138 139 140
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
141 142 143 144


def grad_var_name(var_name):
    """
145 146
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
147 148 149
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
150

151
def convert_np_dtype_to_dtype_(np_dtype):
152 153
    """
    Convert the data type in numpy to the data type in Paddle
154

155
    Args:
156
        np_dtype(np.dtype): the data type in numpy.
157

158 159
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
160 161

    """
162 163
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
164
        return core.VarDesc.VarType.FP32
165
    elif dtype == np.float64:
166
        return core.VarDesc.VarType.FP64
167
    elif dtype == np.float16:
168
        return core.VarDesc.VarType.FP16
169
    elif dtype == np.int32:
170
        return core.VarDesc.VarType.INT32
171
    elif dtype == np.int16:
172
        return core.VarDesc.VarType.INT16
173
    elif dtype == np.int64:
174
        return core.VarDesc.VarType.INT64
175
    elif dtype == np.bool:
176
        return core.VarDesc.VarType.BOOL
177 178
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
179 180
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
181 182
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
183
    else:
M
minqiyang 已提交
184
        raise ValueError("Not supported numpy dtype %s" % dtype)
185 186 187


def dtype_is_floating(dtype):
188 189 190
    """
    Check the data type is floating or not.
    Args:
191
        dtype(np.dtype|core.VarDesc.VarType): data type.
192 193 194 195 196
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
197
    if not isinstance(dtype, core.VarDesc.VarType):
198 199
        dtype = convert_np_dtype_to_dtype_(dtype)

200 201 202 203
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
204 205


Y
Yang Yang(Tony) 已提交
206
def _debug_string_(proto, throw_on_error=True):
207 208 209 210 211 212 213 214 215 216 217
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
218
    error_fields = list()
Y
Yang Yang(Tony) 已提交
219
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
220 221
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
222 223 224
    return proto.__str__()


X
Xin Pan 已提交
225
class Variable(object):
226
    """
227 228 229
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
230
    two variables in different blocks could have the same name.
231

232 233
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
234

235
    Most of a Variable's member variables can be setted to be None. It mean
236
    it is not available or will be specified later.
237 238

    Args:
239
        block(Block): The block that the variable belongs to.
240 241
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
242 243
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
244
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
245
            Some kinds of variable do not contain shape, just set it to None.
246 247 248
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
249
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
250
            series data.
251
            Default: None
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
274 275
    """

Y
Yu Yang 已提交
276 277
    def __init__(self,
                 block,
Y
Yu Yang 已提交
278
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
279 280 281 282
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
283
                 capacity=None,
Q
QI JUN 已提交
284
                 persistable=None,
F
fengjiayi 已提交
285
                 error_clip=None,
Y
Yu Yang 已提交
286
                 stop_gradient=False,
F
fengjiayi 已提交
287
                 is_data=False,
Y
Yu Yang 已提交
288
                 **kwargs):
Y
Yu Yang 已提交
289
        self.block = block
F
fengjiayi 已提交
290
        self.error_clip = error_clip
Y
Yu Yang 已提交
291 292

        if name is None:
Y
Yu Yang 已提交
293
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
294
        is_new_var = False
M
minqiyang 已提交
295
        name = cpt.to_text(name)
M
minqiyang 已提交
296
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
297 298

        if self.desc is None:
M
minqiyang 已提交
299
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
300
            is_new_var = True
Y
Yu Yang 已提交
301

Y
Yu Yang 已提交
302 303 304 305 306 307 308 309
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
310
        if shape is not None:
Y
Yu Yang 已提交
311
            if is_new_var:
312
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
313 314 315 316 317 318 319 320
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
321
        if dtype is not None:
322
            if not isinstance(dtype, core.VarDesc.VarType):
323
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
324
            if is_new_var:
F
fengjiayi 已提交
325
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
326
            else:
F
fengjiayi 已提交
327
                old_dtype = self.dtype
Q
QI JUN 已提交
328
                if dtype != old_dtype:
Y
Yu Yang 已提交
329 330 331 332 333
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
334 335

        if lod_level is not None:
Y
Yu Yang 已提交
336
            if is_new_var:
337
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
338 339 340 341 342 343 344
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
345 346 347 348 349 350 351 352 353 354 355
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

356 357 358 359 360 361 362 363
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
364
        self.block.vars[name] = self
Y
Yu Yang 已提交
365
        self.op = None
Y
Yu Yang 已提交
366
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
367
        self.is_data = is_data
X
Xin Pan 已提交
368 369 370
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
Y
Yu Yang 已提交
371

372
    def _numpy(self):
X
Xin Pan 已提交
373
        tensor = self._ivar.var.get_tensor()
374 375 376
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
377
        self._ivar._run_backward()
378 379

    def _gradient(self):
X
Xin Pan 已提交
380
        return np.array(self._ivar._grad())
381

382
    def __str__(self):
Y
Yang Yang(Tony) 已提交
383 384
        return self.to_string(True)

F
update  
fengjiayi 已提交
385
    def to_string(self, throw_on_error, with_details=False):
386 387 388 389
        """
        Get debug string.

        Args:
390 391
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
392
            with_details(bool): more details about variables and parameters
393 394
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
395

396 397
        Returns:
            str: The debug string.
398
        """
F
update  
fengjiayi 已提交
399 400
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
401
        protostr = self.desc.serialize_to_string()
402
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
403 404 405 406
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
407 408
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
409
        return res_str
410 411 412

    __repr__ = __str__

W
Wu Yi 已提交
413
    def _set_desc(self, input):
414 415 416 417 418 419 420 421 422
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
423 424
        self.desc = input

425 426 427 428
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
429 430 431 432
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
433 434
    @property
    def name(self):
M
minqiyang 已提交
435
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
436

T
typhoonzero 已提交
437 438 439 440
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
441 442 443
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
444
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
445 446

    @property
F
fengjiayi 已提交
447 448
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
449 450 451

    @property
    def lod_level(self):
452
        return self.desc.lod_level()
Y
Yu Yang 已提交
453

Y
Yu Yang 已提交
454 455 456 457
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
458
    def _set_error_clip(self, error_clip):
459 460 461 462 463 464 465 466 467
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
468 469
        self.error_clip = error_clip

Y
Yu Yang 已提交
470

F
fengjiayi 已提交
471 472 473
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
474

475 476
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
477 478 479 480
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
481
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
482 483 484 485 486
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
487 488 489 490
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
491 492 493 494 495 496 497 498 499
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
500
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
501 502 503 504 505 506
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
507 508 509 510 511 512 513 514
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
515 516
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
517 518
        return self.op_proto_map[type]

519 520 521 522
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
523
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
524
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
525 526
        }

F
fengjiayi 已提交
527

X
Xin Pan 已提交
528
class Operator(object):
529
    """
530 531 532 533 534 535 536
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
537
        type(str): The type of operator. Default None.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
558
        Block.append_op or Block._prepend_op instead.
559 560 561 562 563 564 565 566 567 568

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
569
    """
570 571 572
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
573 574
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
575
    }
576

Y
Yu Yang 已提交
577 578
    def __init__(self,
                 block,
Y
Yu Yang 已提交
579
                 desc,
Y
Yu Yang 已提交
580 581 582 583 584
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
585
        self.desc = desc
G
gongweibao 已提交
586 587 588 589 590
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
591 592 593 594
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
595 596
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
597 598 599

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
600 601
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
602

G
gongweibao 已提交
603 604
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
605

F
fengjiayi 已提交
606 607 608 609 610
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
611
        self.desc.set_type(type)
F
fengjiayi 已提交
612
        proto = OpProtoHolder.instance().get_op_proto(type)
613

614 615 616
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
617 618
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
619
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
620 621
                    return True
            return False
Q
QI JUN 已提交
622

Y
Yang Yang(Tony) 已提交
623 624 625 626 627 628 629
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
630 631 632 633
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
634 635
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
636 637 638
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
639
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
640
                            in_arg_names.append(arg)
641 642
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
643
                        else:
M
minqiyang 已提交
644
                            in_arg_names.append(cpt.to_text(arg.name))
645
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
646 647
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
648

Y
Yu Yang 已提交
649
        if outputs is not None:
650
            for m in proto.outputs:
Q
qingqing01 已提交
651 652 653 654 655 656
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
657
            for out_proto in proto.outputs:
Q
qingqing01 已提交
658 659
                if out_proto.name not in outputs:
                    continue
660 661 662 663
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
664 665
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
666 667 668
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
669
                    out_arg_names.append(cpt.to_text(arg.name))
670 671
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
672

G
gongweibao 已提交
673 674
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
675
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
676
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
677
                attr_name = attr.name
G
gongweibao 已提交
678
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
679
                    continue
G
gongweibao 已提交
680
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
681 682
                self._update_desc_attr(attr_name, attr_val)

683
        self.desc.check_attrs()
W
Wu Yi 已提交
684
        if self._has_kernel(type):
Q
QI JUN 已提交
685
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
686
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
687 688 689
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
690
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
691
            if inputs is not None:
X
Xin Pan 已提交
692 693 694 695 696 697
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
698
            if outputs is not None:
X
Xin Pan 已提交
699 700 701 702 703
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
704

W
Wu Yi 已提交
705
    def _has_kernel(self, op_type):
706 707
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
708
    def to_string(self, throw_on_error):
709
        """
710 711
        Get debug string.

712
        Args:
713 714
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
715

716 717
        Returns:
            str: The debug string.
718 719

        """
720
        protostr = self.desc.serialize_to_string()
721
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
722 723 724 725
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
726 727 728

    __repr__ = __str__

F
fengjiayi 已提交
729 730 731 732 733
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
734
        """
735
        Get the input arguments according to the input parameter name.
736

737 738
        Args:
            name(str): The input parameter name.
739

740 741 742
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
743
        """
F
fengjiayi 已提交
744 745
        return self.desc.input(name)

W
Wu Yi 已提交
746
    def _rename_input(self, old_name, new_name):
747 748 749 750 751 752 753 754 755 756
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
757
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
758

W
Wu Yi 已提交
759
    def _rename_output(self, old_name, new_name):
760 761 762 763 764 765 766 767 768 769
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
770
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
771

F
fengjiayi 已提交
772 773 774 775
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
776 777 778 779 780 781 782 783
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
784
    def output(self, name):
785
        """
786
        Get output arguments by the output parameter name.
787

788 789
        Args:
            name(str): The output parameter name.
790

791 792 793
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
794
        """
F
fengjiayi 已提交
795 796 797 798 799 800
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

801 802 803 804 805 806 807 808
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
809
    def has_attr(self, name):
810
        """
811 812
        Whether this Operator has the attribute with name or not.

813
        Args:
814
            name(str): the attribute name.
815

816 817
        Returns:
            bool: True if has this attribute.
818 819

        """
F
fengjiayi 已提交
820 821 822
        return self.desc.has_attr(name)

    def attr_type(self, name):
823
        """
824
        Get the type of attribute by attribute's name.
825

826 827
        Args:
            name(str): the attribute name.
828

829 830
        Returns:
            core.AttrType: the attribute type.
831
        """
F
fengjiayi 已提交
832 833
        return self.desc.attr_type(name)

W
Wu Yi 已提交
834
    def _set_attr(self, name, val):
835 836 837 838 839 840 841 842 843 844
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
858 859
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
860 861
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
862
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
863 864 865 866
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
867
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
868

F
fengjiayi 已提交
869 870 871 872 873
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
874
        """
875 876
        Get the attribute by name.

877
        Args:
878
            name(str): the attribute name.
879

880 881
        Returns:
            bool|int|str|float|list: The attribute value. The return value
882 883
            can be any valid attribute type.
        """
F
fengjiayi 已提交
884
        return self.desc.attr(name)
Y
Yu Yang 已提交
885

W
Wu Yi 已提交
886
    def _block_attr_id(self, name):
887
        """
G
gongweibao 已提交
888
        Get the block attribute's id by name.
889

890 891
        Args:
            name(str): the attribute name.
892

893 894
        Returns:
            int: the block index.
895
        """
W
Wu Yi 已提交
896
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
897

W
Wu Yi 已提交
898
    def _block_attr(self, name):
G
gongweibao 已提交
899 900 901 902 903 904 905 906 907 908
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
909
        id = self._block_attr_id(name)
G
gongweibao 已提交
910 911 912
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
913
    def _blocks_attr(self, name):
G
gongweibao 已提交
914 915 916 917 918 919 920 921 922 923
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
924
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
925 926 927 928 929
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
930
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
931 932 933 934 935 936 937 938 939 940
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
941
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
942

J
JiayiFeng 已提交
943
    def all_attrs(self):
F
fengjiayi 已提交
944
        """
945 946 947
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
948
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
949 950 951 952
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
953 954
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
955
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
956 957 958
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
959
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
960 961 962 963
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
964 965
        return attr_map

Y
Yu Yang 已提交
966

Y
Yu Yang 已提交
967
class Block(object):
968 969 970 971 972 973 974 975 976 977 978 979 980 981
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
982
        use `Program._create_block()` to create a block.
983 984 985 986 987 988 989 990 991 992 993 994 995 996

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
997
    def __init__(self, program, idx):
Y
Yu Yang 已提交
998
        self.desc = program.desc.block(idx)
999
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1000
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1001
        self.program = program
1002
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1003

1004
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1005 1006
        return self.to_string(True)

F
fengjiayi 已提交
1007 1008
    def to_string(self, throw_on_error, with_details=False):
        """
1009 1010
        Get debug string.

F
fengjiayi 已提交
1011 1012
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1013
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1014
            with_details(bool): more details about variables and parameters
1015 1016
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1017

1018 1019
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1020 1021 1022 1023
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1024
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1025 1026
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1027
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1028
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1029
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1030
            for op in self.ops:
F
fengjiayi 已提交
1031 1032
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1033 1034 1035
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1036 1037
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1038 1039
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1040 1041 1042

    __repr__ = __str__

Y
Yu Yang 已提交
1043 1044
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1045
        return self.desc.parent
Y
Yu Yang 已提交
1046

Y
Yu Yang 已提交
1047 1048 1049 1050
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1051
    def _set_forward_block_idx(self, idx):
1052 1053 1054 1055 1056 1057 1058 1059 1060
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1061
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1062

Y
Yu Yang 已提交
1063 1064
    @property
    def idx(self):
Y
Yu Yang 已提交
1065
        return self.desc.id
Y
Yu Yang 已提交
1066

Q
Qiao Longfei 已提交
1067
    def var(self, name):
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1081
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1082 1083 1084
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1085 1086
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1087
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1088
        return v
Q
Qiao Longfei 已提交
1089

X
Xin Pan 已提交
1090
    def _find_var_recursive(self, name):
1091 1092 1093 1094 1095 1096 1097
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1098
            Variable: the Variable with the giving name. Or None if not found.
1099
        """
Y
Yu Yang 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1124
        return None
Y
Yu Yang 已提交
1125

X
Xin Pan 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1145

Q
Qiao Longfei 已提交
1146
    def all_parameters(self):
1147
        return list(self.iter_parameters())
1148

1149
    def iter_parameters(self):
M
minqiyang 已提交
1150
        return (item[1] for item in six.iteritems(self.vars)
1151
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1152

Y
Yu Yang 已提交
1153
    def create_var(self, *args, **kwargs):
1154
        var = Variable(block=self, *args, **kwargs)
1155 1156
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1157
        return var
Y
Yu Yang 已提交
1158

Q
Qiao Longfei 已提交
1159 1160 1161
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1162
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1163 1164
        """
        Rename variable in vars and ops' inputs and outputs
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1177
        """
M
minqiyang 已提交
1178 1179
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1180

T
typhoonzero 已提交
1181
        if not self.has_var(name):
1182
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1183 1184
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1185
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1186 1187 1188 1189 1190 1191 1192
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1193
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1194 1195 1196 1197
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1198
        orig_var_type = v.type
M
minqiyang 已提交
1199
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1200
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1201
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1202
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1203 1204 1205 1206
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1207
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1208 1209 1210 1211 1212 1213 1214
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1215
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1216 1217
            var = Variable(
                self,
T
typhoonzero 已提交
1218
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1219 1220 1221 1222
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1223
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1224 1225 1226
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1227
        self._sync_with_cpp()
1228
        return var
T
typhoonzero 已提交
1229

W
Wu Yi 已提交
1230 1231
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1232
        self.desc._remove_var(cpt.to_bytes(name))
1233 1234
        del self.vars[name]

Y
Yu Yang 已提交
1235 1236
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1237
        param = Parameter(global_block, *args, **kwargs)
1238
        if 'initializer' in kwargs:
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1259
        return param
Y
Yu Yang 已提交
1260

Y
Yu Yang 已提交
1261
    def append_op(self, *args, **kwargs):
1262 1263 1264 1265 1266 1267
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1268
        op_desc = self.desc.append_op()
1269
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
1270
        if _in_imperative_mode():
X
Xin Pan 已提交
1271
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc)
Y
Yu Yang 已提交
1272 1273 1274
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1275
    def _insert_op(self, index, *args, **kwargs):
1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1285 1286
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1287 1288 1289 1290
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1291
    def _remove_op(self, index):
1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1301 1302
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1303 1304
        del self.ops[index]

W
Wu Yi 已提交
1305
    def _slice_ops(self, start, end):
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1316
        return self.ops[start:end]
Y
Yancey1989 已提交
1317

W
Wu Yi 已提交
1318 1319
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1320
        op = Operator(self, op_desc, *args, **kwargs)
X
Xin Pan 已提交
1321
        if _in_imperative_mode():
X
Xin Pan 已提交
1322
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc)
Q
qiaolongfei 已提交
1323
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1324 1325
        return op

W
Wu Yi 已提交
1326
    def _sync_with_cpp(self):
1327
        """
1328 1329
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1330
        """
Q
Qiao Longfei 已提交
1331 1332 1333 1334 1335
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1336
        # sync variables removed from c++ end
1337
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1338
            if not self.desc.find_var(cpt.to_bytes(var)):
1339 1340
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1341
        # sync operators from cpp
1342 1343 1344 1345
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1362 1363 1364 1365 1366

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1367
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1368 1369 1370 1371 1372 1373 1374

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1388 1389 1390 1391
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1392
    def _copy_param_info_from(self, other):
1393
        """
1394 1395
        Copy the information of parameters from the other block.

1396
        Args:
1397 1398 1399 1400 1401
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1402 1403 1404 1405 1406

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1407 1408
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1409
        for p in other.iter_parameters():
1410 1411 1412
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1413
                raise ValueError("_copy_param_info_from should be invoked with "
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1426
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1427
                error_clip=p.error_clip,
1428 1429 1430
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1431
    def _clone_variable(self, var):
1432 1433
        """
        Clone a variable into current block.
1434

1435 1436 1437 1438
        Args:
            var: the variable to be cloned.

        Returns:
1439
            Variable: the new  variable cloned from 'var' in current block.
1440 1441
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1442 1443 1444 1445 1446
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1447 1448
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1449
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1450 1451 1452 1453 1454 1455
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1456 1457
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1458 1459 1460 1461 1462 1463 1464
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1465 1466
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1467
        return ret_var
1468

Y
Yu Yang 已提交
1469 1470

class Program(object):
D
dzhwinter 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1482
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1483 1484

    Returns:
Y
yuyang18 已提交
1485
        A empty program.
D
dzhwinter 已提交
1486 1487

    Examples:
Y
yuyang18 已提交
1488 1489 1490 1491 1492 1493
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1494 1495 1496

    """

1497 1498
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1499 1500
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1501
        self._seed = 0
Y
yuyang18 已提交
1502
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1503
        self._op_role_var = []
T
tangwei12 已提交
1504 1505 1506 1507

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1508
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1509
        self._endpoints = []
1510
        self._trainers_endpoints = []
T
tangwei12 已提交
1511
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1512 1513 1514

    @property
    def op_role(self):
Y
yuyang18 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1528 1529 1530 1531 1532 1533 1534 1535
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1536 1537 1538 1539 1540 1541 1542
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1543 1544 1545 1546
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1547
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1548 1549

    @contextlib.contextmanager
W
Wu Yi 已提交
1550
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1551 1552 1553 1554 1555 1556 1557
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1558
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1559 1560 1561 1562

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1563
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1564 1565
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1566 1567 1568
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1569 1570
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1571 1572 1573 1574
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1575
        yield
X
Xin Pan 已提交
1576 1577
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1578

1579
    @contextlib.contextmanager
X
Xin Pan 已提交
1580
    def _lr_schedule_guard(self, is_with_opt=False):
1581 1582 1583 1584 1585 1586 1587
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1588 1589 1590 1591
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1592 1593 1594 1595 1596 1597 1598

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1599 1600 1601 1602

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1603 1604
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1605 1606
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1607 1608 1609
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1610 1611
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1612

1613
    def __str__(self):
Y
yuyang18 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1623 1624
        return self.to_string(True)

F
fengjiayi 已提交
1625 1626 1627
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1628

F
fengjiayi 已提交
1629
        Args:
Y
yuyang18 已提交
1630 1631
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1632

Y
yuyang18 已提交
1633 1634 1635 1636
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1637 1638
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1639 1640 1641 1642

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1653 1654
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1655 1656
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1657

W
Wu Yi 已提交
1658
    def _get_desc(self):
Y
yuyang18 已提交
1659 1660 1661 1662 1663 1664 1665
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1666 1667
        return self.desc

X
version  
Xin Pan 已提交
1668 1669 1670
    def _version(self):
        return self.desc._version()

1671
    def clone(self, for_test=False):
Y
yuyang18 已提交
1672 1673 1674
        """
        Create a new, duplicated program.

1675

Y
yuyang18 已提交
1676 1677 1678 1679
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1680

Y
yuyang18 已提交
1681 1682 1683 1684
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1685 1686 1687 1688 1689
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1690 1691

        Args:
Y
yuyang18 已提交
1692 1693
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1694

D
dzhwinter 已提交
1695
        Returns:
Y
yuyang18 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1749 1750
        """
        if for_test:
X
Xin Pan 已提交
1751
            p = self._inference_optimize(prune_read_op=False)
1752
        else:
1753
            p = Program()
G
gongweibao 已提交
1754 1755
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1756
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1757 1758 1759
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1760 1761 1762 1763

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1764
            p._sync_with_cpp()
1765

W
Wu Yi 已提交
1766
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1767
        p._copy_data_info_from(self)
1768
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1769
        return p
1770

W
Wu Yi 已提交
1771
    def _prune(self, targets):
Y
yuyang18 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1787 1788 1789 1790 1791 1792
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1793 1794
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1795
                    # and we need to find the current op that generate this
1796 1797 1798 1799 1800 1801 1802 1803
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1804
                    t = t.op
1805 1806 1807 1808
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1809
                else:
1810 1811
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1812 1813 1814 1815

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1816 1817 1818
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1819
        res._sync_with_cpp()
1820 1821
        return res

X
Xin Pan 已提交
1822
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1823
        """
F
fengjiayi 已提交
1824 1825 1826 1827 1828
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1829
        3. change the :code:`is_test`
Y
yuyang18 已提交
1830 1831 1832
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1833
        Args:
X
Xin Pan 已提交
1834 1835
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1836

Y
yuyang18 已提交
1837 1838 1839 1840 1841 1842
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1843
        res = Program()
1844
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1845 1846 1847 1848

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1849
        if prune_read_op:
1850 1851 1852 1853 1854 1855 1856 1857 1858
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1859
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1860 1861

        # change all `is_test` attributes to True
M
minqiyang 已提交
1862
        for i in six.moves.range(res.desc.num_blocks()):
1863
            block = res.desc.block(i)
M
minqiyang 已提交
1864
            for j in six.moves.range(block.op_size()):
1865 1866
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1867
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1868 1869 1870
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1871
        res._sync_with_cpp()
1872 1873
        return res

1874 1875
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1876 1877 1878 1879 1880 1881 1882
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1883
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1884 1885 1886 1887

        Returns:
            Program: A deserialized program desc.
        """
1888 1889
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1890
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1891
        p._sync_with_cpp()
1892
        return p
Y
Yu Yang 已提交
1893

D
dzhwinter 已提交
1894 1895
    @property
    def random_seed(self):
Y
yuyang18 已提交
1896 1897 1898 1899 1900 1901
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1902 1903
        return self._seed

Q
qiaolongfei 已提交
1904 1905
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1906 1907 1908
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1909 1910
        return self.desc.num_blocks()

D
dzhwinter 已提交
1911 1912 1913 1914 1915 1916
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1917
    def __repr__(self):
1918
        return self.__str__()
1919

Y
Yu Yang 已提交
1920
    def global_block(self):
Y
yuyang18 已提交
1921 1922 1923
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1924 1925
        return self.blocks[0]

Q
Qiao Longfei 已提交
1926
    def block(self, index):
Y
yuyang18 已提交
1927 1928 1929 1930 1931 1932 1933 1934
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1935 1936
        return self.blocks[index]

Y
Yu Yang 已提交
1937
    def current_block(self):
Y
yuyang18 已提交
1938 1939 1940 1941
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1942 1943
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1944
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1955
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1956 1957 1958
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1959 1960 1961 1962
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1963
    def _rollback(self):
Y
yuyang18 已提交
1964 1965 1966 1967 1968
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1969 1970
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1971
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1982 1983 1984
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1985
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1986

W
Wu Yi 已提交
1987
    def _copy_param_info_from(self, other):
1988
        """
1989
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1990

Y
yuyang18 已提交
1991 1992 1993
        Notes: This is a very low level API. Users should not invoke it
        directly.

1994 1995 1996 1997 1998 1999 2000
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2001
            raise TypeError("_copy_param_info_from should be invoked with "
2002 2003 2004
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2005
            raise ValueError("_copy_param_info_from should be invoked with two "
2006
                             "program, with represent the same topology")
W
Wu Yi 已提交
2007
        self.global_block()._copy_param_info_from(other.global_block())
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2028
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2029 2030
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2031

Y
yuyang18 已提交
2032 2033 2034
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2035 2036 2037 2038 2039 2040 2041
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2042
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2043 2044 2045
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2046
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2047
                             "program, with represent the same topology")
2048
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2049 2050 2051
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2052
    def list_vars(self):
Y
yuyang18 已提交
2053 2054 2055 2056 2057 2058
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2059
        for each_block in self.blocks:
2060
            for each_var in list(each_block.vars.values()):
2061 2062
                yield each_var

Y
Yu Yang 已提交
2063

Y
Yu Yang 已提交
2064
class Parameter(Variable):
2065
    """
2066
    Parameter is derived from Variable. A parameter is a persistable
2067
    Variable, and will be updated by optimizers after each iteration.
2068
    The training of a neural network is essentially the updating of
2069 2070
    its parameters.

2071
    Relative to a general Variable, a Parameter has several its own
2072 2073
    member variables:

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2086 2087
    """

Y
Yu Yang 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2098 2099 2100

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2101 2102 2103 2104
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2105 2106
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2107
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2108

W
wanghaoshuang 已提交
2109
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2110

F
fengjiayi 已提交
2111 2112 2113
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2114 2115 2116
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2117

F
update  
fengjiayi 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2132
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2133
            for attr_name in additional_attr:
2134 2135
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2136 2137
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2138 2139 2140 2141
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2142

Y
Yu Yang 已提交
2143
# program is a global instance.
Y
Yu Yang 已提交
2144 2145
_main_program_ = Program()
_startup_program_ = Program()
2146

2147

2148
def default_startup_program():
Y
Yu Yang 已提交
2149
    """
Y
yuyang18 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2159

Y
Yu Yang 已提交
2160 2161 2162
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2163
    return _startup_program_
2164

2165

2166
def default_main_program():
Y
Yu Yang 已提交
2167
    """
Y
yuyang18 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2177

Y
Yu Yang 已提交
2178 2179 2180
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2181
    return _main_program_
Y
Yu Yang 已提交
2182 2183 2184 2185 2186


def switch_main_program(program):
    """
    Switch the main program to a new program.
2187

Y
Yu Yang 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2202
    Switch the startup program to a new program
Y
Yu Yang 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2218 2219 2220
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2221

Y
Yu Yang 已提交
2222
    Examples:
Y
yuyang18 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2233

Y
Yu Yang 已提交
2234
    Examples:
Y
yuyang18 已提交
2235 2236 2237 2238 2239 2240

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2241

Y
Yu Yang 已提交
2242
    Args:
Y
yuyang18 已提交
2243
        main_program(Program): New main program inside `with` statement.
2244
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2258 2259


W
Wu Yi 已提交
2260
def _get_var(name, program=None):
X
xuwei06 已提交
2261
    """
Y
yuyang18 已提交
2262
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2263

X
xuwei06 已提交
2264 2265 2266
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2267
        If None, default_global_program() will be used.
X
xuwei06 已提交
2268 2269 2270 2271 2272 2273 2274

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2275
    assert isinstance(program, Program)
X
xuwei06 已提交
2276 2277

    return program.global_block().var(name)
2278 2279 2280 2281 2282 2283 2284 2285 2286


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace