reader.py 80.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21 22
import time

J
Jiabin Yang 已提交
23
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, _non_static_mode, cpu_places, _current_expected_place, _in_eager_without_dygraph_check
S
sneaxiy 已提交
24
from .executor import global_scope
25
from .data_feeder import DataFeeder, BatchedTensorProvider
26
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
27
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
28 29
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
30
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
31
from .unique_name import UniqueNameGenerator
32
from .framework import _get_paddle_place, _get_paddle_place_list
33
from paddle.fluid.framework import _set_expected_place, _current_expected_place
34
import logging
35
import warnings
S
sneaxiy 已提交
36

37
### Dygraph DataLoader configs ###
38
import os
39 40 41
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
42
import queue
43 44 45
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

46
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
47 48

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
49

50
KEEP_DATA_LOADER_ORDER = True
51
USE_PINNED_MEMORY = None
52 53 54 55 56 57 58 59 60 61
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
62 63 64 65 66 67 68 69 70 71


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
72

73 74 75 76 77 78 79 80 81
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())


Z
Zeng Jinle 已提交
121 122 123
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
124

Z
Zeng Jinle 已提交
125 126
    def __call__(self):
        return self
S
sneaxiy 已提交
127

Z
Zeng Jinle 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

143 144 145 146 147 148 149 150 151 152 153 154
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class AuToTune(object):
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
        logging.debug("User config for DataLoader: " + str(
            self.loader.num_workers))
        best_num_workers = 0
        min_cost = float("inf")
        logging.debug("Tuning Range for num_workers: 0 ~ " + str(
            self.max_num_worker))
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
                update_num = self.is_best(auto_tune_loader, best_num_workers,
                                          min_cost, self.max_num_worker)
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
            logging.debug("num_workers: " + str(num_workers) + " avg_cost: " +
                          str(avg_cost))
            num_workers += 2
        logging.info("auto_tune dataLoader best_num_workers: " + str(
            best_num_workers))
        logging.debug("AutoTuning Cost for DataLoader: " + str(time.time(
        ) - auto_tune_start) + ' seconds')

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
        if (sys.platform == 'darwin' or sys.platform == 'win32'):
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
        loader = self.loader
        batch_size = self.loader.batch_sampler.batch_size
        if isinstance(self.loader.batch_sampler,
                      paddle.io.DistributedBatchSampler):
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
                drop_last=self.loader.batch_sampler.drop_last)
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                drop_last=self.loader.batch_sampler.drop_last)
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
            logging.debug("for back num_workers: " + str(num_workers) +
                          " avg_cost: " + str(time))
            step += 1
            if (time < best_time * 0.70 * boundary):
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


Z
Zeng Jinle 已提交
272
class DataLoader(object):
273 274 275 276 277 278 279 280
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
281
    DataLoader supports map-style dataset and iterable-style dataset.
282

K
Kaipeng Deng 已提交
283 284 285 286 287 288 289
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
290

291 292 293 294 295 296
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


312 313
    Args:  
        dataset(Dataset): the dataset to load data from, should be an
314 315
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
316 317
        feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
            The Tensors should be created by :code:`paddle.static.data()`.
318 319
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
320
        places(list(Place)|tuple(Place)|list(str)|optional): a list of Place,
321 322
            to put data onto, :attr:`places` can be None, if 
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
323 324 325
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
326 327
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
328
            value on each device would be a dict of str -> Tensor, where
329
            the key of the dict is the name of each fed Tensors. If 
330
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
331
            be a list(Tensor). :attr:`return_list` can only be True
332
            in dynamic graph mode. Default True.
333 334 335
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
336
        batch_size(int|None): sample number in a mini-batch, a substitution
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
370
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
371 372 373 374 375 376

    Examples:
        
        .. code-block:: python

            import numpy as np
377 378

            import paddle
K
Kaipeng Deng 已提交
379 380
            import paddle.nn as nn
            import paddle.nn.functional as F
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

403 404
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
405
            class SimpleNet(nn.Layer):
406 407
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
408
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
409 410 411 412

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
413 414 415
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
416 417

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
418
                                batch_size=BATCH_SIZE,
419 420 421 422 423
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
424 425 426 427 428 429 430 431
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
432 433


434 435 436 437
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

438 439 440 441 442 443
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
444
                 return_list=True,
445 446 447 448 449 450 451 452 453
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
K
Kaipeng Deng 已提交
454 455
                 worker_init_fn=None,
                 persistent_workers=False):
456 457 458 459 460 461 462
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
463
        if not return_list and not _non_static_mode():
464 465 466 467
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

468 469
        if places is None:
            places = _current_expected_place()
470 471 472 473
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
474 475 476 477 478
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
479 480 481
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
482 483 484 485 486 487 488 489 490 491
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

492 493 494 495 496 497 498 499 500 501 502 503
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

504 505 506 507 508
        if batch_sampler is not None:
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
509 510 511 512
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
513
        else:
514 515
            assert batch_size > 0, \
                "batch_size should be None or a positive value when " \
516
                "batch_sampler is not given"
517
            self.batch_size = batch_size
518 519 520 521 522 523 524 525 526
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
527

528
        self.drop_last = drop_last
529 530
        self.auto_collate_batch = self.batch_sampler is not None

531
        self.pin_memory = False
J
Jiabin Yang 已提交
532
        if _non_static_mode():
533 534 535
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

K
Kaipeng Deng 已提交
536 537
        self._persistent_workers = persistent_workers
        self._iterator = None
538
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
539

540
    def __len__(self):
541 542 543
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
544
            if self.auto_collate_batch:
545
                return len(self.batch_sampler)
546 547
            else:
                return len(self.dataset)
548 549 550 551

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
552 553 554 555 556 557
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
558 559 560 561 562 563
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
564 565 566 567 568
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
569
                       return_list=False,
570 571
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
572
        """
K
Kaipeng Deng 已提交
573 574 575 576
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

577 578 579
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
580 581 582 583 584 585 586 587
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
588
        
Z
Zeng Jinle 已提交
589 590 591 592 593
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
594
        process.
Z
Zeng Jinle 已提交
595 596

        Args:  
597 598
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
612
                the name of each fed Tensors. If return_list=True, the 
Z
Zeng Jinle 已提交
613 614
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
615 616 617 618 619 620
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
621 622 623 624 625 626 627
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
628 629 630 631

        Returns:
            loader (DataLoader): the created DataLoader object.

632
        Examples 1:
Z
Zeng Jinle 已提交
633 634
            
            .. code-block:: python
S
sneaxiy 已提交
635

636 637 638
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
639
                import numpy as np
640

641 642 643 644 645
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


Z
Zeng Jinle 已提交
646 647 648 649 650 651 652 653 654 655 656
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

657 658
                paddle.enable_static()

Z
Zeng Jinle 已提交
659
                def simple_net(image, label):
660 661 662 663
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
703

Z
Zeng Jinle 已提交
704
                    return __reader__
705

Z
Zeng Jinle 已提交
706 707 708 709 710
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
711

Z
Zeng Jinle 已提交
712 713 714 715 716 717 718
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
719
                        except paddle.core.EOFException:
Z
Zeng Jinle 已提交
720 721 722 723 724 725 726 727 728 729 730
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
731

732 733
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
734

Z
Zeng Jinle 已提交
735
                # Define DataLoader 
736
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
737

Z
Zeng Jinle 已提交
738 739
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
740

Z
Zeng Jinle 已提交
741 742 743
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
744 745
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places. 
Z
Zeng Jinle 已提交
746 747
                # 
                # If DataLoader is not iterable, places can be None.
748
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
749
                set_data_source(loader, places)
S
sneaxiy 已提交
750

751 752
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
753

754
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
755

Z
Zeng Jinle 已提交
756 757 758 759 760 761
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


762 763 764 765
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
766
                '''
767
                Example in dynamic graph mode. 
Z
Zeng Jinle 已提交
768
                '''
769
                import numpy as np
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
834 835 836

            .. code-block:: python

837 838 839 840 841
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
842 843 844 845 846 847
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

848 849
                paddle.enable_static()

850 851 852 853 854 855
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

856
                x = static.data(name='x', shape=[None], dtype='float32')  
857 858 859
                y = x * x

                def run_inference(drop_last): 
860
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
861
                            capacity=8, drop_last=drop_last)
862
                    loader.set_batch_generator(batch_generator, static.cpu_places())
863

864 865
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
881
        """
J
Jiabin Yang 已提交
882
        if _non_static_mode():
883 884 885 886 887
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
888
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
889 890 891 892

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
893 894 895 896
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

Z
Zeng Jinle 已提交
897 898
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
899

Z
Zeng Jinle 已提交
900 901
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
902 903 904
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result 
                data should be converted. If places is list of string, the string in the list 
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.   
Z
Zeng Jinle 已提交
905 906 907
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
908

Z
Zeng Jinle 已提交
909 910 911
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
912

Z
Zeng Jinle 已提交
913 914 915
        Examples:

            .. code-block:: python
916

917 918 919 920
                import paddle
                import paddle.static as static

                paddle.enable_static()
921

922 923
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
924

925 926 927 928 929
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
930
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
931

932
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
933 934
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
935

S
sneaxiy 已提交
936

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
962 963
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
964 965 966
            )
        self._iterable = True
        if not return_list:
967 968
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
969 970 971 972 973 974 975
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
976 977
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
994 995
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
996 997 998 999 1000 1001 1002 1003 1004

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1026
            core._erase_process_pids(id(self))
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1037
            core.Variable(), self._capacity, False)
1038
        self._reader = None
1039 1040
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
1041 1042
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
1043 1044 1045

    def _start(self):
        if self._use_multiprocess:
1046 1047 1048
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1049
            self._data_queue = multiprocessing.Queue(self._capacity)
1050 1051 1052
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1053
            self._process = multiprocessing.Process(
1054 1055
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue))
1056 1057 1058 1059 1060 1061 1062 1063 1064
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1065 1066
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1067 1068 1069 1070

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1071 1072
                target=self._reader_thread_loop_for_multiprocess,
                args=(_current_expected_place(), ))
1073 1074 1075
            self._thread.daemon = True
            self._thread.start()
        else:
1076
            self._thread = threading.Thread(
1077 1078
                target=self._reader_thread_loop_for_singleprocess,
                args=(_current_expected_place(), ))
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1099
            if _in_eager_without_dygraph_check():
1100
                return core.eager.read_next_tensor_list(
1101 1102 1103
                    self._reader.read_next_list()[0])
            else:
                return self._reader.read_next_var_list()
1104 1105 1106 1107
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

1108 1109 1110 1111 1112 1113 1114 1115 1116
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1117 1118 1119 1120
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
        _set_expected_place(legacy_expected_place)

1121 1122 1123 1124 1125 1126 1127
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
1128 1129 1130 1131 1132 1133 1134
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1135 1136 1137 1138
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1139
                self._exit_thread_unexpectedly()
1140 1141
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1142
                )
1143
                six.reraise(*sys.exc_info())
1144 1145

            if not self._thread_done_event.is_set():
1146
                if tensor_list is not None:
1147 1148
                    try:
                        array = core.LoDTensorArray()
1149 1150
                        for tensor in tensor_list:
                            array.append(tensor)
1151 1152 1153
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
1154
                        self._exit_thread_unexpectedly()
1155 1156
                        six.reraise(*sys.exc_info())
                else:
1157
                    self._exit_thread_expectedly()
1158

1159
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1160
        try:
1161 1162 1163
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
            _set_expected_place(legacy_expected_place)

1164 1165 1166 1167
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1168
                        item = self._check_input_array(item)
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1193 1194 1195 1196
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1197 1198 1199 1200 1201 1202 1203
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
1204 1205 1206 1207 1208
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1224 1225 1226 1227
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1228
        self._batch_reader = reader
1229 1230
        if places is None:
            places = _current_expected_place()
1231 1232
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
1233
            "Number of places must be 1 in imperative mode"
1234 1235 1236
        return self


Z
Zeng Jinle 已提交
1237
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
1238
    def __init__(self,
1239 1240
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
1241
                 use_double_buffer=True,
1242
                 iterable=True,
1243 1244
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1245
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1246
        self._places = None
S
sneaxiy 已提交
1247
        self._thread = None
1248
        self._queue = None
1249
        self._feed_list = feed_list
1250 1251 1252
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1253 1254
        if not capacity:
            raise ValueError("Please give value to capacity.")
1255 1256 1257 1258
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1259 1260 1261 1262
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1263

Z
Zeng Jinle 已提交
1264
    def _wait_thread_ends(self):
1265
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1266 1267 1268 1269 1270 1271 1272 1273
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1274 1275 1276 1277 1278 1279
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1280 1281
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1282
        self._reader = None
S
sneaxiy 已提交
1283
        self._reader = core.create_py_reader(
1284
            self.queue, self._var_names, self._shapes, self._dtypes,
1285
            self._need_check_feed, self._places, self._use_double_buffer,
1286
            self._drop_last, False)
S
sneaxiy 已提交
1287 1288 1289 1290 1291 1292 1293

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1294
        need_check_feed = []
S
sneaxiy 已提交
1295 1296 1297 1298 1299 1300 1301

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1302
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1303

Z
Zeng Jinle 已提交
1304 1305 1306 1307
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1308

S
sneaxiy 已提交
1309
        var = global_scope().var(queue_name)
1310 1311 1312 1313 1314 1315 1316
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1317

1318
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1319

1320
        dtype_int = [int(t) for t in dtypes]
1321
        block.append_op(
S
sneaxiy 已提交
1322 1323
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1324
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1325 1326 1327
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1328 1329
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1330 1331 1332
                'ranks': ranks
            })

1333 1334 1335
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1347

1348
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1363 1364
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1365 1366 1367 1368 1369 1370 1371 1372

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1373

Z
Zeng Jinle 已提交
1374 1375
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1376
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1377
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1378

Z
Zeng Jinle 已提交
1379
        self._init_iterable()
S
sneaxiy 已提交
1380
        self._start()
Z
Zeng Jinle 已提交
1381 1382 1383 1384
        return self

    def __next__(self):
        try:
1385
            if self._return_list:
1386 1387 1388 1389
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1390
            else:
1391
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1392 1393 1394 1395 1396 1397
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1398 1399
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1400 1401

    def reset(self):
1402 1403
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1404 1405

    def _start(self):
1406
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1407
            try:
1408 1409 1410
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

1411 1412 1413 1414
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1415 1416 1417 1418
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1419
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1432
                self._queue.kill()
Z
Zeng Jinle 已提交
1433
                self._thread = None
1434
                logging.warning('Your reader has raised an exception!')
Z
Zeng Jinle 已提交
1435 1436
                six.reraise(*sys.exc_info())

1437 1438
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(), ))
Z
Zeng Jinle 已提交
1439 1440
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1441

S
sneaxiy 已提交
1442
    def _reset(self):
1443
        self._queue.close()
1444
        self._exited = True
Z
Zeng Jinle 已提交
1445 1446 1447 1448
        thread = self._thread
        if thread is not None:
            thread.join()

1449
        self._exited = False
1450 1451
        self._reader.reset()

Z
Zeng Jinle 已提交
1452 1453 1454 1455 1456 1457
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1458 1459 1460 1461
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1462 1463 1464 1465 1466 1467 1468
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1469 1470 1471 1472 1473
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1474 1475 1476 1477 1478 1479 1480
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1481 1482 1483
        return self

    def set_sample_list_generator(self, reader, places=None):
1484 1485 1486 1487
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1488 1489 1490 1491
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1492

1493 1494 1495
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1496 1497 1498 1499 1500

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1501 1502 1503 1504
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
1517
    r"""
Z
Zeng Jinle 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1539
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1540 1541 1542 1543 1544
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1545 1546 1547 1548
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1568 1569 1570 1571 1572
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1584 1585
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1586 1587 1588 1589 1590 1591 1592 1593

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1594 1595
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1623 1624 1625 1626 1627
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1628 1629 1630
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1631 1632 1633
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1634 1635
               return reader

G
guofei 已提交
1636 1637 1638
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1639 1640 1641 1642

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1643 1644 1645 1646 1647 1648
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1649 1650
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1651
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1706 1707

    def start(self):
S
add doc  
sneaxiy 已提交
1708 1709 1710
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1711
        
G
guofei 已提交
1712 1713
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1714
    
H
Huihuang Zheng 已提交
1715 1716 1717 1718
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1719 1720 1721 1722 1723 1724
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1725
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1726 1727 1728 1729
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1730
                executor = fluid.Executor(fluid.CPUPlace())
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1741 1742
	    '''
        self._loader.start()
S
sneaxiy 已提交
1743

S
sneaxiy 已提交
1744
    def reset(self):
S
add doc  
sneaxiy 已提交
1745 1746 1747
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1748 1749 1750 1751
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1752 1753 1754 1755
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1756 1757 1758 1759 1760 1761
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1762
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1763 1764 1765 1766
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1767
                executor = fluid.Executor(fluid.CPUPlace())
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1778
        '''
Z
Zeng Jinle 已提交
1779
        self._loader.reset()
S
sneaxiy 已提交
1780

S
sneaxiy 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1790
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1791 1792 1793 1794

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1795
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1796 1797 1798

        Args:
            sample_generator (generator): Python generator that yields
1799
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1800 1801 1802 1803 1804
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1805 1806 1807 1808

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1809 1810 1811
                import paddle.fluid as fluid
                import numpy as np

1812 1813 1814
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1815 1816 1817 1818 1819
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1831 1832
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1833 1834 1835 1836 1837
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1838 1839 1840 1841
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1842 1843 1844

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1845
                        executor.run(feed=data, fetch_list=[loss])
1846
    
S
sneaxiy 已提交
1847
        '''
Z
Zeng Jinle 已提交
1848 1849
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1850

S
sneaxiy 已提交
1851
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1852 1853 1854 1855
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1856
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1857 1858 1859 1860
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1861 1862 1863 1864
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1865 1866 1867 1868
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1869 1870 1871 1872
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1873 1874 1875 1876
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1877 1878 1879 1880 1881
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1892 1893
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1894 1895 1896 1897 1898
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1899 1900 1901 1902 1903
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1904 1905 1906

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1907
                        executor.run(feed=data, fetch_list=[loss])
1908
                 
S
add doc  
sneaxiy 已提交
1909
        '''
Z
Zeng Jinle 已提交
1910
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1911

S
sneaxiy 已提交
1912
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1913 1914 1915 1916
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1917
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1918 1919 1920 1921 1922 1923

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1924
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1925
                be provided when PyReader is iterable.
1926 1927 1928 1929

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1930 1931 1932
                import paddle.fluid as fluid
                import numpy as np

1933 1934 1935
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1936 1937 1938 1939 1940
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1941 1942 1943 1944 1945 1946 1947 1948

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1949 1950
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1951 1952 1953
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1954 1955
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1956 1957 1958
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1959 1960 1961 1962 1963
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1964 1965 1966

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1967
                        executor.run(feed=data, fetch_list=[loss])
1968

S
add doc  
sneaxiy 已提交
1969
        '''
Z
Zeng Jinle 已提交
1970 1971 1972 1973 1974
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1975
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1976
                          DatasetBase), "dataset must be type of DatasetBase"
J
Jiabin Yang 已提交
1977
        assert not _non_static_mode(
Z
Zeng Jinle 已提交
1978
        ), "DatasetLoader is not supported in dygraph mode yet"
1979 1980 1981 1982
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

1993
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
1994

1995
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1996 1997 1998
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
1999
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()