reader.py 69.5 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24 25 26
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
from .dataloader import BatchSampler, Dataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess
S
sneaxiy 已提交
27
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
28
from .unique_name import UniqueNameGenerator
29
import logging
30
import warnings
Z
Zeng Jinle 已提交
31
from .dataset import DatasetBase, InMemoryDataset
S
sneaxiy 已提交
32

33
### Dygraph DataLoader configs ###
34
import os
35 36
import multiprocessing
import signal
37

38
# NOTE: queue has a different name in python2 and python3
39
if six.PY2:
40 41 42
    import Queue as queue
else:
    import queue
43

44 45 46
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

Z
Zeng Jinle 已提交
47 48 49
__all__ = ['PyReader', 'DataLoader']

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51 52 53 54 55 56 57 58 59 60 61
KEEP_DATA_LOADER_ORDER = True


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


Z
Zeng Jinle 已提交
78 79 80
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
81

Z
Zeng Jinle 已提交
82 83
    def __call__(self):
        return self
S
sneaxiy 已提交
84

Z
Zeng Jinle 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()


class DataLoader(object):
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

    DataLoader only supports map-style dataset(can get a sample from
    dataset with a given index) currently, for a map-style dataset,
    please see :code:`paddle.io.Dataset`.

    batch_sampler please see :code:`paddle.io.BatchSampler`

    Args:  
        dataset(Dataset): the dataset to load data from, should be an
            instance of subclass of :code:`paddle.io.Dataset`.
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.data()`.
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
        places(list(Place)|tuple(Place)): a list of Place, to put data
            onto, :attr:`places` must be set in both static graph and 
            dynamic graph mode, in dynamic graph mode, place number must
            be 1. Default None.
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
            value on each device would be a dict of str -> LoDTensor, where
            the key of the dict is the name of each fed variables. If 
            :attr:`return_list=True`, the return value on each device would
            be a list(LoDTensor). :attr:`return_list` can only be True
            in dynamic graph mode. Default False.
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
        batch_size(int): sample number in a mini-batch, a substitution
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
        DataLoader: an iterable object for data iterating

    Examples:
        
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            USE_GPU = False # whether use GPU to run model

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

            # get places
            places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()

            # -------------------- static graph ---------------------

            def simple_net(image, label):
                fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
                cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                loss = fluid.layers.reduce_mean(cross_entropy)
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
                return loss

            image = fluid.data(name='image', shape=[None, IMAGE_SIZE], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')

            loss = simple_net(image, label)

            exe = fluid.Executor(places[0])
            exe.run(fluid.default_startup_program())

            prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)

            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

            loader = DataLoader(dataset,
                                feed_list=[image, label],
                                places=places,
                                batch_size=BATCH_SIZE, 
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
                for i, data in enumerate(loader()):
                    l = exe.run(prog, feed=data, fetch_list=[loss], return_numpy=True)
                    print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))

            # -------------------------------------------------------
                
            # --------------------- dygraph mode --------------------

            class SimpleNet(fluid.dygraph.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')

                def forward(self, image, label=None):
                    return self.fc(image)

            with fluid.dygraph.guard(places[0]):
                simple_net = SimpleNet()
                opt = fluid.optimizer.SGD(learning_rate=1e-3,
                                          parameter_list=simple_net.parameters())

                loader = DataLoader(dataset,
                                    places=places[0],
                                    batch_size=BATCH_SIZE,
                                    shuffle=True,
                                    drop_last=True,
                                    num_workers=2)

                for e in range(EPOCH_NUM):
                    for i, (image, label) in enumerate(loader()):
                        out = simple_net(image)
                        loss = fluid.layers.cross_entropy(out, label)
                        avg_loss = fluid.layers.reduce_mean(loss)
                        avg_loss.backward()
                        opt.minimize(avg_loss)
                        simple_net.clear_gradients()
                        print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))

            # -------------------------------------------------------

    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
                 return_list=False,
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

        assert places is not None, "places cannot be None"
        self.places = _convert_places(places)
        if in_dygraph_mode():
            assert len(self.places) == 1, \
                    "Number of places must be 1 in dygraph mode"

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
317 318 319
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

        if batch_sampler is not None:
            assert isinstance(batch_sampler, BatchSampler), \
                "batch_sampler should be None or subclass instance " \
                "of paddle.io.BatchSampler"
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
        else:
            assert batch_size is not None and batch_size > 0, \
                "batch_size should be a positive value when " \
                "batch_sampler is not given"
            self.batch_sampler = BatchSampler(
                dataset=dataset,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)

    def __len__(self):
        return len(self.batch_sampler)

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
360 361 362 363 364
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
365
                       return_list=False,
366 367
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
368
        """
369 370 371
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
372 373 374 375 376 377 378 379
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
380
        
Z
Zeng Jinle 已提交
381 382 383 384 385 386 387 388 389 390 391 392
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
393
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
407
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
408 409
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
410 411 412 413 414 415
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
416 417 418 419 420 421 422
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
423 424 425 426

        Returns:
            loader (DataLoader): the created DataLoader object.

427
        Examples 1:
Z
Zeng Jinle 已提交
428 429
            
            .. code-block:: python
S
sneaxiy 已提交
430

Z
Zeng Jinle 已提交
431 432
                import paddle.fluid as fluid
                import numpy as np
433

Z
Zeng Jinle 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
489

Z
Zeng Jinle 已提交
490
                    return __reader__
491

Z
Zeng Jinle 已提交
492 493 494 495 496
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
497

Z
Zeng Jinle 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
517

518 519
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
520

Z
Zeng Jinle 已提交
521 522
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
523

Z
Zeng Jinle 已提交
524 525
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
526

Z
Zeng Jinle 已提交
527 528 529 530 531 532 533 534 535
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
536

Z
Zeng Jinle 已提交
537 538
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
539

Z
Zeng Jinle 已提交
540
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
541

Z
Zeng Jinle 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

        Examples 2:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

                x = fluid.data(name='x', shape=[None], dtype='float32')  
                y = x * x

                def run_inference(drop_last): 
                    loader = fluid.io.DataLoader.from_generator(feed_list=[x],
                            capacity=8, drop_last=drop_last)
                    loader.set_batch_generator(batch_generator, fluid.cpu_places())

                    exe = fluid.Executor(fluid.CPUPlace())
                    prog = fluid.CompiledProgram(fluid.default_main_program())
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
602
        """
603 604 605 606 607 608
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
609
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
610 611 612 613 614 615

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
616

Z
Zeng Jinle 已提交
617 618 619 620 621 622 623
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
624

Z
Zeng Jinle 已提交
625 626 627
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
628

Z
Zeng Jinle 已提交
629 630 631
        Examples:

            .. code-block:: python
632

Z
Zeng Jinle 已提交
633
                import paddle.fluid as fluid
634

635 636
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
637

Z
Zeng Jinle 已提交
638 639 640 641 642
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
643

Z
Zeng Jinle 已提交
644 645 646
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
647

S
sneaxiy 已提交
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
674 675
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
676 677 678
            )
        self._iterable = True
        if not return_list:
679 680
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
681 682 683 684 685 686 687
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
688 689
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

715 716 717 718 719 720 721 722 723 724
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

725 726 727 728 729 730 731 732 733 734 735
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
736
            core._erase_process_pids(id(self))
737

738 739 740 741 742 743 744 745 746
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
747
            core.Variable(), self._capacity, False)
748
        self._reader = None
749 750
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
751
            self._need_check_feed, self._places, self._use_double_buffer, True)
752 753 754

    def _start(self):
        if self._use_multiprocess:
755 756 757
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
758
            self._data_queue = multiprocessing.Queue(self._capacity)
759 760 761
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
762 763 764 765 766 767 768 769 770 771 772
            self._process = multiprocessing.Process(
                target=self._reader_process_loop)
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
773 774
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
775 776 777 778

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
779
                target=self._reader_thread_loop_for_multiprocess)
780 781 782
            self._thread.daemon = True
            self._thread.start()
        else:
783 784
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")

821 822 823 824 825 826 827 828 829
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

830 831 832 833 834
    def _reader_process_loop(self):
        try:
            # set signal handler
            core._set_process_signal_handler()

835 836 837 838
            # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
            # some shared memory objects may have been applied for but have not yet
            # been put into the inter-process Queue. This part of the object needs
            # to be cleaned up when the process ends.
839
            CleanupFuncRegistrar.register(_cleanup_mmap)
840 841 842 843 844

            for batch in self._batch_reader():
                tensor_list = core._convert_to_tensor_list(batch)
                self._data_queue.put(tensor_list)
                core._remove_tensor_list_mmap_fds(tensor_list)
845 846 847 848 849 850 851
            self._data_queue.put(None)
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            six.reraise(*sys.exc_info())

852
    def _reader_thread_loop_for_multiprocess(self):
853 854 855 856 857 858 859
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
860 861 862 863 864 865 866
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
867 868 869 870
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
871
                self._exit_thread_unexpectedly()
872 873
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
874
                )
875
                six.reraise(*sys.exc_info())
876 877

            if not self._thread_done_event.is_set():
878
                if tensor_list is not None:
879 880
                    try:
                        array = core.LoDTensorArray()
881 882
                        for tensor in tensor_list:
                            array.append(tensor)
883 884 885
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
886
                        self._exit_thread_unexpectedly()
887 888
                        six.reraise(*sys.exc_info())
                else:
889
                    self._exit_thread_expectedly()
890

891
    def _reader_thread_loop_for_singleprocess(self):
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
                        self._check_input_array(item)
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
945 946
        if places is None:
            places = _current_expected_place()
947 948
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
949
            "Number of places must be 1 in imperative mode"
950 951 952
        return self


Z
Zeng Jinle 已提交
953
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
954
    def __init__(self,
955 956
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
957
                 use_double_buffer=True,
958
                 iterable=True,
959 960
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
961
        self._tensor_reader = None
Z
Zeng Jinle 已提交
962
        self._places = None
S
sneaxiy 已提交
963
        self._thread = None
964
        self._queue = None
965
        self._feed_list = feed_list
966 967 968
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
969 970
        if not capacity:
            raise ValueError("Please give value to capacity.")
971 972 973 974
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
975 976 977 978
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
979

Z
Zeng Jinle 已提交
980
    def _wait_thread_ends(self):
981
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
982 983 984 985 986 987 988 989
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
990 991 992 993 994 995
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
996 997
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
998
        self._reader = None
S
sneaxiy 已提交
999
        self._reader = core.create_py_reader(
1000
            self.queue, self._var_names, self._shapes, self._dtypes,
1001 1002
            self._need_check_feed, self._places, self._use_double_buffer,
            self._drop_last)
S
sneaxiy 已提交
1003 1004 1005 1006 1007 1008 1009

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1010
        need_check_feed = []
S
sneaxiy 已提交
1011 1012 1013 1014 1015 1016 1017

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1018
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1019

Z
Zeng Jinle 已提交
1020 1021 1022 1023
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1024

S
sneaxiy 已提交
1025
        var = global_scope().var(queue_name)
1026 1027 1028 1029 1030 1031 1032
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1033

1034
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1035

1036
        dtype_int = [int(t) for t in dtypes]
1037
        block.append_op(
S
sneaxiy 已提交
1038 1039
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1040
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1041 1042 1043
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1044 1045
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1046 1047 1048
                'ranks': ranks
            })

1049 1050 1051
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1063

1064
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1079 1080
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1081 1082 1083 1084 1085 1086 1087 1088

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1089

Z
Zeng Jinle 已提交
1090 1091
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1092
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1093
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1094

Z
Zeng Jinle 已提交
1095
        self._init_iterable()
S
sneaxiy 已提交
1096
        self._start()
Z
Zeng Jinle 已提交
1097 1098 1099 1100
        return self

    def __next__(self):
        try:
1101 1102
            if self._return_list:
                return self._reader.read_next_list()
1103
            else:
1104
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1105 1106 1107 1108 1109 1110
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1111 1112
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1113 1114

    def reset(self):
1115 1116
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError((
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."))

1129 1130
        return arr

Z
Zeng Jinle 已提交
1131 1132 1133
    def _start(self):
        def __thread_main__():
            try:
1134 1135 1136 1137
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1138 1139 1140 1141
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1142
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1155
                self._queue.kill()
Z
Zeng Jinle 已提交
1156 1157 1158 1159 1160 1161 1162
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1163

S
sneaxiy 已提交
1164
    def _reset(self):
1165
        self._queue.close()
1166
        self._exited = True
Z
Zeng Jinle 已提交
1167 1168 1169 1170
        thread = self._thread
        if thread is not None:
            thread.join()

1171
        self._exited = False
1172 1173
        self._reader.reset()

Z
Zeng Jinle 已提交
1174 1175 1176 1177 1178 1179
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1180 1181 1182 1183 1184 1185 1186
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1187 1188 1189 1190 1191
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1192 1193 1194 1195 1196 1197 1198
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1199 1200 1201
        return self

    def set_sample_list_generator(self, reader, places=None):
1202 1203 1204 1205
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1206

1207 1208 1209
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1249
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1250 1251 1252 1253 1254
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1255 1256 1257 1258
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1278 1279 1280 1281 1282
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1294 1295
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1296 1297 1298 1299 1300 1301 1302 1303

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1304 1305
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1333 1334 1335 1336 1337
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1338 1339 1340
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1341 1342 1343
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1344 1345
               return reader

G
guofei 已提交
1346 1347 1348
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1349 1350 1351 1352

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1353 1354 1355 1356 1357 1358
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1359 1360
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1361
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1416 1417

    def start(self):
S
add doc  
sneaxiy 已提交
1418 1419 1420
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1421
        
G
guofei 已提交
1422 1423
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1424
    
H
Huihuang Zheng 已提交
1425 1426 1427 1428
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1429 1430 1431 1432 1433 1434
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1435
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1436 1437 1438 1439
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1440
                executor = fluid.Executor(fluid.CPUPlace())
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1451 1452
	    '''
        self._loader.start()
S
sneaxiy 已提交
1453

S
sneaxiy 已提交
1454
    def reset(self):
S
add doc  
sneaxiy 已提交
1455 1456 1457
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1458 1459 1460 1461
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1462 1463 1464 1465
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1466 1467 1468 1469 1470 1471
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1472
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1473 1474 1475 1476
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1477
                executor = fluid.Executor(fluid.CPUPlace())
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1488
        '''
Z
Zeng Jinle 已提交
1489
        self._loader.reset()
S
sneaxiy 已提交
1490

S
sneaxiy 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1500
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1501 1502 1503 1504

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1505
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1506 1507 1508

        Args:
            sample_generator (generator): Python generator that yields
1509
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1510 1511 1512 1513 1514
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1515 1516 1517 1518

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1519 1520 1521
                import paddle.fluid as fluid
                import numpy as np

1522 1523 1524
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1525 1526 1527 1528 1529
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1541 1542
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1543 1544 1545 1546 1547
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1548 1549 1550 1551
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1552 1553 1554

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1555
                        executor.run(feed=data, fetch_list=[loss])
1556
    
S
sneaxiy 已提交
1557
        '''
Z
Zeng Jinle 已提交
1558 1559
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1560

S
sneaxiy 已提交
1561
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1562 1563 1564 1565
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1566
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1567 1568 1569 1570
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1571 1572 1573 1574
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1575 1576 1577 1578
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1579 1580 1581 1582
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1583 1584 1585 1586
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1587 1588 1589 1590 1591
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1602 1603
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1604 1605 1606 1607 1608
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1609 1610 1611 1612 1613
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1614 1615 1616

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1617
                        executor.run(feed=data, fetch_list=[loss])
1618
                 
S
add doc  
sneaxiy 已提交
1619
        '''
Z
Zeng Jinle 已提交
1620
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1621

S
sneaxiy 已提交
1622
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1623 1624 1625 1626
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1627
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1628 1629 1630 1631 1632 1633

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1634
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1635
                be provided when PyReader is iterable.
1636 1637 1638 1639

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1640 1641 1642
                import paddle.fluid as fluid
                import numpy as np

1643 1644 1645
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1646 1647 1648 1649 1650
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1651 1652 1653 1654 1655 1656 1657 1658

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1659 1660
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1661 1662 1663
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1664 1665
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1666 1667 1668
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1669 1670 1671 1672 1673
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1674 1675 1676

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1677
                        executor.run(feed=data, fetch_list=[loss])
1678

S
add doc  
sneaxiy 已提交
1679
        '''
Z
Zeng Jinle 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
        assert isinstance(dataset,
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

        if isinstance(dataset,
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()