reader.py 24.7 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core, dygraph
S
sneaxiy 已提交
16
import six
17 18
import warnings
import numpy as np
S
sneaxiy 已提交
19
import threading
20 21
import paddle
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider, ListTensorProvider
S
sneaxiy 已提交
24
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
25
from .unique_name import UniqueNameGenerator
S
sneaxiy 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

__all__ = ['PyReader']


def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


S
sneaxiy 已提交
45
class PyReader(object):
S
sneaxiy 已提交
46 47 48 49 50 51 52 53
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
54 55
            The variables should be created by :code:`fluid.layers.data()`.
            it can be None under iterable mode.
S
sneaxiy 已提交
56 57 58 59
        capacity (int): capacity of the queue maintained in PyReader object. 
        use_double_buffer (bool): whether to use double_buffer_reader to 
            speed up data feeding. 
        iterable (bool): whether the created reader object is iterable.   
60
        return_list (bool): whether the return value presented as list.
S
sneaxiy 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
    Returns:
        reader (Reader): the created reader object.

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

           image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int64')

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
           # definition of network is omitted
           executor = fluid.Executor(fluid.CUDAPlace(0))
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
S
sneaxiy 已提交
112 113 114 115 116 117 118 119
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

120 121 122 123 124 125 126 127 128 129 130
           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]),
               return reader

           image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
131
           reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True, return_list=False)
132 133 134 135 136 137 138 139 140 141 142 143 144

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
               fluid.core.CUDAPlace(0))
           # definition of network is omitted
           executor = fluid.Executor(fluid.CUDAPlace(0))
           executor.run(fluid.default_main_program())

           for _ in range(EPOCH_NUM):
               for data in reader():
                   executor.run(feed=data)

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

        3. If return_list=True, the return values would be presented as list instead of dict`.

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            EPOCH_NUM = 3
            ITER_NUM = 5
            BATCH_SIZE = 10

            def reader_creator_random_image(height, width):
                def reader():
                    for i in range(ITER_NUM):
                        yield np.random.uniform(low=0, high=255, size=[height, width]),
                return reader

            image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
            reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True, return_list=True)

            user_defined_reader = reader_creator_random_image(784, 784)
            reader.decorate_sample_list_generator(
                paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                fluid.core.CPUPlace())
            # definition of network is omitted
            executor = fluid.Executor(fluid.core.CPUPlace())
            executor.run(fluid.default_main_program())

            for _ in range(EPOCH_NUM):
                for data in reader():
                    executor.run(feed={"image": data[0]})
S
sneaxiy 已提交
178 179
    """

S
sneaxiy 已提交
180
    unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
181 182

    def __init__(self,
183 184
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
185
                 use_double_buffer=True,
186 187
                 iterable=True,
                 return_list=False):
S
sneaxiy 已提交
188 189
        self._tensor_reader = None
        self._thread = None
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        self._feed_list = feed_list
        if not capacity:
            raise ValueError("Please give value to capacity.")
        # force to use iterable mode under dygraph mode
        if in_dygraph_mode():
            if not iterable:
                warnings.warn(
                    "Please NOTE: dygraph can support iterable mode only.")
            self._iterable = True
            if not return_list:
                warnings.warn(
                    "Please NOTE: dygraph can support return as list only.")
            self._return_list = True
        else:
            self._iterable = iterable
            self._return_list = return_list
            if not self._feed_list:
                raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
208 209 210 211
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
212

S
sneaxiy 已提交
213
    def _init_iterable(self, places):
214 215 216 217
        if in_dygraph_mode():
            self._var_names = []
        else:
            self._var_names = [v.name for v in self._feed_list]
S
sneaxiy 已提交
218
        self._places = _convert_places(places)
S
sneaxiy 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        self._queue = core.init_lod_tensor_blocking_queue(core.Variable(),
                                                          self._capacity)
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._places, self._use_double_buffer)

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)

        queue_name = PyReader.unique_name_generator('lod_tensor_blocking_queue')
        reader_name = PyReader.unique_name_generator('create_py_reader')
        double_buffer_name = PyReader.unique_name_generator('double_buffer')

S
sneaxiy 已提交
242
        var = global_scope().var(queue_name)
S
sneaxiy 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity)

        startup_blk = default_startup_program().current_block()
        startup_var = startup_blk.create_var(name=reader_name)

        startup_blk.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [startup_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'ranks': ranks
            })

        startup_var.desc.set_dtypes(dtypes)
        startup_var.persistable = True

        main_prog_var = _copy_reader_var_(
            default_main_program().current_block(), startup_var)

        main_prog_var.stop_gradient = True
        main_prog_var.persistable = True

        reader = monkey_patch_reader_methods(main_prog_var)
        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
            outputs={'Out': self._feed_list})

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
290 291

    def __call__(self):
S
sneaxiy 已提交
292
        assert self.iterable, "PyReader is not iterable"
S
sneaxiy 已提交
293 294 295 296 297
        assert self._tensor_reader is not None, \
            "Data source of PyReader has not set yet"

        class Iterator(object):
            def __init__(self, reader):
S
sneaxiy 已提交
298 299
                self._reader = reader._reader
                self._reset = reader._reset
300
                self._return_list = reader._return_list
S
sneaxiy 已提交
301 302 303 304

            def __iter__(self):
                return self

S
sneaxiy 已提交
305 306 307
            def __next__(self):
                return self.next()

S
sneaxiy 已提交
308
            def next(self):
309 310 311 312 313 314 315 316 317 318 319 320
                if not in_dygraph_mode():
                    if self._return_list:
                        ret = self._reader.read_next_list()
                        ret = ret[0] if ret is not None and len(
                            ret) > 0 else None
                    else:
                        ret = self._reader.read_next()
                    if ret:
                        return ret
                    else:
                        self._reset()
                        raise StopIteration
S
sneaxiy 已提交
321
                else:
322 323 324 325 326 327 328 329 330
                    ret = self._reader.read_next_list()
                    if ret and ret[0]:
                        return [
                            dygraph.base.to_variable(np.array(v))
                            for v in ret[0]
                        ]
                    else:
                        self._reset()
                        raise StopIteration
S
sneaxiy 已提交
331

S
sneaxiy 已提交
332
        self._start()
S
sneaxiy 已提交
333 334
        return Iterator(self)

S
sneaxiy 已提交
335
    def _reset(self):
S
sneaxiy 已提交
336 337 338 339
        self._reader.reset()
        self._thread.join()

    def start(self):
S
add doc  
sneaxiy 已提交
340 341 342
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        
	Example:
	    .. code-block:: python
	
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

	'''
370 371 372
        if not in_dygraph_mode():
            assert not self._iterable, "start() cannot be called when PyReader is iterable"
            self._start()
S
sneaxiy 已提交
373

S
sneaxiy 已提交
374
    def reset(self):
S
add doc  
sneaxiy 已提交
375 376 377
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        
        Example:
            .. code-block:: python

                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
404
        '''
405 406 407
        if not in_dygraph_mode():
            assert not self._iterable, "reset() cannot be called when PyReader is iterable"
            self._reset()
S
sneaxiy 已提交
408 409

    def _start(self):
S
sneaxiy 已提交
410
        def __thread_main__():
S
sneaxiy 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            try:
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
            except Exception as ex:
                self._queue.close()
                raise ex
S
sneaxiy 已提交
429 430 431 432 433

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()

S
sneaxiy 已提交
434 435 436 437 438 439 440 441 442
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
443
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
444 445 446 447

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
448
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
449 450 451

        Args:
            sample_generator (generator): Python generator that yields
452
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
453 454 455 456 457
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        Example:
            .. code-block:: python

                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
                                                 places=[fluid.CUDAPlace(0)])
                # definition of network is omitted
                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)
    
S
sneaxiy 已提交
492 493
        '''
        assert batch_size > 0, "batch_size must be larger than 0"
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        if not in_dygraph_mode():
            has_lod = False
            for f in self._feed_list:
                if f.lod_level != 0:
                    has_lod = True
                    break

            if has_lod:
                self.decorate_sample_list_generator(
                    paddle.batch(
                        sample_generator,
                        batch_size=batch_size,
                        drop_last=drop_last),
                    places=places)
            else:
                reader = BatchedTensorProvider(
                    feed_list=self._feed_list,
                    place=core.CPUPlace(),
                    batch_size=batch_size,
                    generator=sample_generator,
                    drop_last=drop_last)
                self.decorate_batch_generator(reader, places=places)
        else:
S
sneaxiy 已提交
517
            self.decorate_sample_list_generator(
S
sneaxiy 已提交
518 519 520 521 522 523
                paddle.batch(
                    sample_generator,
                    batch_size=batch_size,
                    drop_last=drop_last),
                places=places)

S
sneaxiy 已提交
524
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
525 526 527 528
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
529
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
530 531 532 533
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
534 535 536 537
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        
        Example:
            .. code-block:: python

                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
                    fluid.core.CUDAPlace(0))
                # definition of network is omitted
                executor = fluid.Executor(fluid.core.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)
                 
S
add doc  
sneaxiy 已提交
572
        '''
S
sneaxiy 已提交
573 574
        assert self._tensor_reader is None, \
            "Cannot reset the data source of PyReader"
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        if not in_dygraph_mode():
            with program_guard(Program(), Program()):
                feeder = DataFeeder(
                    feed_list=self._feed_list, place=core.CPUPlace())
                paddle_reader = feeder.decorate_reader(
                    reader, multi_devices=False)

            def __tensor_reader_impl__():
                for slots in paddle_reader():
                    yield [slots[var.name] for var in self._feed_list]
        else:
            provider = ListTensorProvider(reader, places)

            def __tensor_reader_impl__():
                for slots in provider():
                    yield slots[0]
S
sneaxiy 已提交
591

S
sneaxiy 已提交
592
        self.decorate_batch_generator(__tensor_reader_impl__, places)
S
sneaxiy 已提交
593

S
sneaxiy 已提交
594
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
595 596 597 598
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
599
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
600 601 602 603 604 605

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
606
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
607
                be provided when PyReader is iterable.
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

        Example:
            .. code-block:: python

                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
                            yield batch_image, batch_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_batch_generator(user_defined_generator, fluid.CUDAPlace(0))
                # definition of network is omitted
                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)

S
add doc  
sneaxiy 已提交
640
        '''
S
sneaxiy 已提交
641 642 643
        assert self._tensor_reader is None, \
            "Cannot reset the data source of PyReader"
        self._tensor_reader = reader
S
sneaxiy 已提交
644 645 646
        if self._iterable:
            assert places is not None, "Places cannot be None when py_reader is iterable"
            self._init_iterable(places)