reader.py 20.9 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
from . import core
S
sneaxiy 已提交
16 17
import six
import threading
S
sneaxiy 已提交
18 19
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program
from .executor import global_scope
S
sneaxiy 已提交
20
from .data_feeder import DataFeeder, BatchedTensorProvider
S
sneaxiy 已提交
21
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
22
from .unique_name import UniqueNameGenerator
S
sneaxiy 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

__all__ = ['PyReader']


def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


S
sneaxiy 已提交
42
class PyReader(object):
S
sneaxiy 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`. 
        capacity (int): capacity of the queue maintained in PyReader object. 
        use_double_buffer (bool): whether to use double_buffer_reader to 
            speed up data feeding. 
        iterable (bool): whether the created reader object is iterable.   

    Returns:
        reader (Reader): the created reader object.

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

           image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int64')

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
           # definition of network is omitted
           executor = fluid.Executor(fluid.CUDAPlace(0))
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
S
sneaxiy 已提交
108 109 110 111 112 113 114 115
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]),
               return reader

           image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
           reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=True)

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
               fluid.core.CUDAPlace(0))
           # definition of network is omitted
           executor = fluid.Executor(fluid.CUDAPlace(0))
           executor.run(fluid.default_main_program())

           for _ in range(EPOCH_NUM):
               for data in reader():
                   executor.run(feed=data)

S
sneaxiy 已提交
141 142
    """

S
sneaxiy 已提交
143
    unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
144 145 146 147 148

    def __init__(self,
                 feed_list,
                 capacity,
                 use_double_buffer=True,
S
sneaxiy 已提交
149
                 iterable=False):
S
sneaxiy 已提交
150 151
        self._tensor_reader = None
        self._thread = None
S
sneaxiy 已提交
152 153 154
        self._iterable = iterable
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
S
sneaxiy 已提交
155
        self._feed_list = feed_list
S
sneaxiy 已提交
156 157
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
158

S
sneaxiy 已提交
159 160
    def _init_iterable(self, places):
        self._var_names = [v.name for v in self._feed_list]
S
sneaxiy 已提交
161
        self._places = _convert_places(places)
S
sneaxiy 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        self._queue = core.init_lod_tensor_blocking_queue(core.Variable(),
                                                          self._capacity)
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._places, self._use_double_buffer)

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)

        queue_name = PyReader.unique_name_generator('lod_tensor_blocking_queue')
        reader_name = PyReader.unique_name_generator('create_py_reader')
        double_buffer_name = PyReader.unique_name_generator('double_buffer')

S
sneaxiy 已提交
185
        var = global_scope().var(queue_name)
S
sneaxiy 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity)

        startup_blk = default_startup_program().current_block()
        startup_var = startup_blk.create_var(name=reader_name)

        startup_blk.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [startup_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'ranks': ranks
            })

        startup_var.desc.set_dtypes(dtypes)
        startup_var.persistable = True

        main_prog_var = _copy_reader_var_(
            default_main_program().current_block(), startup_var)

        main_prog_var.stop_gradient = True
        main_prog_var.persistable = True

        reader = monkey_patch_reader_methods(main_prog_var)
        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
            outputs={'Out': self._feed_list})

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
233 234

    def __call__(self):
S
sneaxiy 已提交
235
        assert self.iterable, "PyReader is not iterable"
S
sneaxiy 已提交
236 237 238 239 240
        assert self._tensor_reader is not None, \
            "Data source of PyReader has not set yet"

        class Iterator(object):
            def __init__(self, reader):
S
sneaxiy 已提交
241 242
                self._reader = reader._reader
                self._reset = reader._reset
S
sneaxiy 已提交
243 244 245 246

            def __iter__(self):
                return self

S
sneaxiy 已提交
247 248 249
            def __next__(self):
                return self.next()

S
sneaxiy 已提交
250
            def next(self):
S
sneaxiy 已提交
251
                ret = self._reader.read_next()
S
sneaxiy 已提交
252
                if ret:
S
sneaxiy 已提交
253 254
                    return ret
                else:
S
sneaxiy 已提交
255
                    self._reset()
S
sneaxiy 已提交
256 257
                    raise StopIteration

S
sneaxiy 已提交
258
        self._start()
S
sneaxiy 已提交
259 260
        return Iterator(self)

S
sneaxiy 已提交
261
    def _reset(self):
S
sneaxiy 已提交
262 263 264 265
        self._reader.reset()
        self._thread.join()

    def start(self):
S
add doc  
sneaxiy 已提交
266 267 268
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        
	Example:
	    .. code-block:: python
	
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

	'''
S
sneaxiy 已提交
296 297
        assert not self._iterable, "start() cannot be called when PyReader is iterable"
        self._start()
S
sneaxiy 已提交
298

S
sneaxiy 已提交
299
    def reset(self):
S
add doc  
sneaxiy 已提交
300 301 302
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        
        Example:
            .. code-block:: python

                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
329
        '''
S
sneaxiy 已提交
330 331 332 333
        assert not self._iterable, "reset() cannot be called when PyReader is iterable"
        self._reset()

    def _start(self):
S
sneaxiy 已提交
334
        def __thread_main__():
S
sneaxiy 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            try:
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
            except Exception as ex:
                self._queue.close()
                raise ex
S
sneaxiy 已提交
353 354 355 356 357

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()

S
sneaxiy 已提交
358 359 360 361 362 363 364 365 366
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
367
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
368 369 370 371

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
372
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
373 374 375

        Args:
            sample_generator (generator): Python generator that yields
376
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
377 378 379 380 381
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

        Example:
            .. code-block:: python

                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
                                                 places=[fluid.CUDAPlace(0)])
                # definition of network is omitted
                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)
    
S
sneaxiy 已提交
416 417 418 419 420 421 422 423 424
        '''
        assert batch_size > 0, "batch_size must be larger than 0"
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
S
sneaxiy 已提交
425
            self.decorate_sample_list_generator(
S
sneaxiy 已提交
426 427 428 429 430 431 432 433 434 435 436 437
                paddle.batch(
                    sample_generator,
                    batch_size=batch_size,
                    drop_last=drop_last),
                places=places)
        else:
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=sample_generator,
                drop_last=drop_last)
S
sneaxiy 已提交
438
            self.decorate_batch_generator(reader, places=places)
S
sneaxiy 已提交
439

S
sneaxiy 已提交
440
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
441 442 443 444
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
445
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
446 447 448 449
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
450 451 452 453
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
        
        Example:
            .. code-block:: python

                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
                    fluid.core.CUDAPlace(0))
                # definition of network is omitted
                executor = fluid.Executor(fluid.core.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)
                 
S
add doc  
sneaxiy 已提交
488
        '''
S
sneaxiy 已提交
489 490 491 492 493 494 495 496 497 498 499
        assert self._tensor_reader is None, \
            "Cannot reset the data source of PyReader"
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)

        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]

S
sneaxiy 已提交
500
        self.decorate_batch_generator(__tensor_reader_impl__, places)
S
sneaxiy 已提交
501

S
sneaxiy 已提交
502
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
503 504 505 506
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
507
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
508 509 510 511 512 513

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
514
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
515
                be provided when PyReader is iterable.
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

        Example:
            .. code-block:: python

                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
                            yield batch_image, batch_label
                    return generator

                image = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int32')
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_batch_generator(user_defined_generator, fluid.CUDAPlace(0))
                # definition of network is omitted
                executor = fluid.Executor(fluid.CUDAPlace(0))
                executor.run(fluid.default_main_program())

                for _ in range(EPOCH_NUM):
                    for data in reader():
                        executor.run(feed=data)

S
add doc  
sneaxiy 已提交
548
        '''
S
sneaxiy 已提交
549 550 551
        assert self._tensor_reader is None, \
            "Cannot reset the data source of PyReader"
        self._tensor_reader = reader
S
sneaxiy 已提交
552 553 554
        if self._iterable:
            assert places is not None, "Places cannot be None when py_reader is iterable"
            self._init_iterable(places)