reader.py 70.5 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places, _current_expected_place
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
24
from .multiprocess_utils import multiprocess_queue_set, CleanupFuncRegistrar, _cleanup_mmap, _cleanup, _set_SIGCHLD_handler
25 26 27
from .dataloader import BatchSampler, Dataset, IterableDataset
from .dataloader.dataloader_iter import _DataLoaderIterSingleProcess, _DataLoaderIterMultiProcess, _DatasetKind, default_collate_fn
from .dataloader.batch_sampler import _InfiniteIterableSampler
S
sneaxiy 已提交
28
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
29
from .unique_name import UniqueNameGenerator
30
import logging
31
import warnings
S
sneaxiy 已提交
32

33
### Dygraph DataLoader configs ###
34
import os
35 36
import multiprocessing
import signal
37

38
# NOTE: queue has a different name in python2 and python3
39
if six.PY2:
40 41 42
    import Queue as queue
else:
    import queue
43

44 45 46
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

47
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
48 49

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
50

51
KEEP_DATA_LOADER_ORDER = True
52
USE_PINNED_MEMORY = None
53 54 55 56 57 58 59 60 61 62


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
63

64 65 66 67 68 69 70 71 72
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


Z
Zeng Jinle 已提交
88 89 90
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
91

Z
Zeng Jinle 已提交
92 93
    def __call__(self):
        return self
S
sneaxiy 已提交
94

Z
Zeng Jinle 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

110 111 112 113 114 115 116 117 118 119 120 121
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")
        return arr

Z
Zeng Jinle 已提交
122 123

class DataLoader(object):
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

    DataLoader only supports map-style dataset(can get a sample from
    dataset with a given index) currently, for a map-style dataset,
    please see :code:`paddle.io.Dataset`.

    batch_sampler please see :code:`paddle.io.BatchSampler`

    Args:  
        dataset(Dataset): the dataset to load data from, should be an
140 141 142
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
        feed_list (list(Tensor)|tuple(Tensor)): feed variable list.
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            The variables should be created by :code:`fluid.data()`.
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
        places(list(Place)|tuple(Place)): a list of Place, to put data
            onto, :attr:`places` must be set in both static graph and 
            dynamic graph mode, in dynamic graph mode, place number must
            be 1. Default None.
        return_list (bool): whether the return value on each device is 
            presented as a list. If :attr:`return_list=False`, the return
            value on each device would be a dict of str -> LoDTensor, where
            the key of the dict is the name of each fed variables. If 
            :attr:`return_list=True`, the return value on each device would
            be a list(LoDTensor). :attr:`return_list` can only be True
            in dynamic graph mode. Default False.
        batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
        batch_size(int): sample number in a mini-batch, a substitution
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
        shuffle(bool): whther to shuffle indices order before genrate
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
        drop_last(bool): whether drop the last incomplete batch dataset size
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
        collate_fn(callable): function to generate mini-batch data by merging
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
        num_workers(int): the number of subprocess to load data, 0 for no
            subprocess used and loading data in main process. Default 0
        use_buffer_reader (bool): whether to use bufferred reader. 
            If use_buffer_reader=True, the DataLoader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
        use_shared_memory (bool): whether to use shared memory to speed up
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
        timeout(int): the timeout value for getting data form output queue
            of subprocesses. Default 0.
        worker_init_fn(callable): init function which will be called with
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
        DataLoader: an iterable object for data iterating

    Examples:
        
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            USE_GPU = False # whether use GPU to run model

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

            # get places
            places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()

            # -------------------- static graph ---------------------

            def simple_net(image, label):
                fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
                cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                loss = fluid.layers.reduce_mean(cross_entropy)
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
                return loss

            image = fluid.data(name='image', shape=[None, IMAGE_SIZE], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')

            loss = simple_net(image, label)

            exe = fluid.Executor(places[0])
            exe.run(fluid.default_startup_program())

            prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)

            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

            loader = DataLoader(dataset,
                                feed_list=[image, label],
                                places=places,
                                batch_size=BATCH_SIZE, 
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
                for i, data in enumerate(loader()):
                    l = exe.run(prog, feed=data, fetch_list=[loss], return_numpy=True)
                    print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))

            # -------------------------------------------------------
                
            # --------------------- dygraph mode --------------------

            class SimpleNet(fluid.dygraph.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
                    self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')

                def forward(self, image, label=None):
                    return self.fc(image)

            with fluid.dygraph.guard(places[0]):
                simple_net = SimpleNet()
                opt = fluid.optimizer.SGD(learning_rate=1e-3,
                                          parameter_list=simple_net.parameters())

                loader = DataLoader(dataset,
                                    places=places[0],
                                    batch_size=BATCH_SIZE,
                                    shuffle=True,
                                    drop_last=True,
                                    num_workers=2)

                for e in range(EPOCH_NUM):
                    for i, (image, label) in enumerate(loader()):
                        out = simple_net(image)
                        loss = fluid.layers.cross_entropy(out, label)
                        avg_loss = fluid.layers.reduce_mean(loss)
                        avg_loss.backward()
                        opt.minimize(avg_loss)
                        simple_net.clear_gradients()
                        print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))

            # -------------------------------------------------------

300 301 302 303
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    """

    def __init__(self,
                 dataset,
                 feed_list=None,
                 places=None,
                 return_list=False,
                 batch_sampler=None,
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 collate_fn=None,
                 num_workers=0,
                 use_buffer_reader=True,
                 use_shared_memory=True,
                 timeout=0,
                 worker_init_fn=None):
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
        self.worker_init_fn = worker_init_fn

        assert isinstance(dataset, Dataset), \
            "dataset should be subclass instance of paddle.io.Dataset"
        self.dataset = dataset

        if not return_list and not in_dygraph_mode():
            assert feed_list is not None, \
                    "feed_list should be set when return_list=False"
        self.feed_list = feed_list

        assert places is not None, "places cannot be None"
        self.places = _convert_places(places)
        if in_dygraph_mode():
            assert len(self.places) == 1, \
                    "Number of places must be 1 in dygraph mode"

        assert num_workers >= 0, "num_workers should be a non-negative value"
        if num_workers > 0 and (sys.platform == 'darwin' or
                                sys.platform == 'win32'):
344 345 346
            warnings.warn(
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently." \
                " Please use signle-process mode with num_workers = 0 instead")
347 348 349 350 351 352 353 354 355 356
            num_workers = 0
        self.num_workers = num_workers

        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

357 358 359 360 361 362 363 364 365 366 367 368
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
                    "IterableDataset not support shuffle, but got shuffle={}".
                    format(shuffle))
            if batch_sampler is not None:
                raise ValueError(
                    "IterableDataset expect unspecified batch_sampler")
        else:
            self.dataset_kind = _DatasetKind.MAP

369 370 371 372 373 374 375 376 377 378 379 380
        if batch_sampler is not None:
            assert isinstance(batch_sampler, BatchSampler), \
                "batch_sampler should be None or subclass instance " \
                "of paddle.io.BatchSampler"
            assert batch_size == 1 and not shuffle and not drop_last, \
                "batch_size/shuffle/drop_last should not be set when " \
                "batch_sampler is given"
            self.batch_sampler = batch_sampler
        else:
            assert batch_size is not None and batch_size > 0, \
                "batch_size should be a positive value when " \
                "batch_sampler is not given"
381 382 383 384 385 386 387 388 389
            if isinstance(dataset, IterableDataset):
                self.batch_sampler = _InfiniteIterableSampler(dataset,
                                                              batch_size)
            else:
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last)
390

391 392 393 394 395
        self.pin_memory = False
        if in_dygraph_mode():
            self.pin_memory = True if use_pinned_memory(
            ) is None else use_pinned_memory()

396 397 398 399 400 401 402 403 404 405 406 407
    def __len__(self):
        return len(self.batch_sampler)

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
408 409 410 411 412
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
413
                       return_list=False,
414 415
                       use_multiprocess=False,
                       drop_last=True):
Z
Zeng Jinle 已提交
416
        """
417 418 419
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

Z
Zeng Jinle 已提交
420 421 422 423 424 425 426 427
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
428
        
Z
Zeng Jinle 已提交
429 430 431 432 433 434 435 436 437 438 439 440
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
441
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
455
                the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
456 457
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
458 459 460 461 462 463
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
464 465 466 467 468 469 470
            drop_last (bool): whether to drop the last batches whose number is
                less than the CPU core/GPU card number. The default value is 
                True. In training phase, users should not set drop_last=False,
                because all CPU cores/GPU cards must read data from DataLoader. 
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
                number can be tested. 
Z
Zeng Jinle 已提交
471 472 473 474

        Returns:
            loader (DataLoader): the created DataLoader object.

475
        Examples 1:
Z
Zeng Jinle 已提交
476 477
            
            .. code-block:: python
S
sneaxiy 已提交
478

Z
Zeng Jinle 已提交
479 480
                import paddle.fluid as fluid
                import numpy as np
481

Z
Zeng Jinle 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
537

Z
Zeng Jinle 已提交
538
                    return __reader__
539

Z
Zeng Jinle 已提交
540 541 542 543 544
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
545

Z
Zeng Jinle 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
565

566 567
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
568

Z
Zeng Jinle 已提交
569 570
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
571

Z
Zeng Jinle 已提交
572 573
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
574

Z
Zeng Jinle 已提交
575 576 577 578 579 580 581 582 583
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
584

Z
Zeng Jinle 已提交
585 586
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
587

Z
Zeng Jinle 已提交
588
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
589

Z
Zeng Jinle 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

        Examples 2:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
                import os

                # We use 2 CPU cores to run inference network 
                os.environ['CPU_NUM'] = '2'

                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
                def batch_generator():  
                    for i in range(3):
                        yield np.array([i+1]).astype('float32'), 

                x = fluid.data(name='x', shape=[None], dtype='float32')  
                y = x * x

                def run_inference(drop_last): 
                    loader = fluid.io.DataLoader.from_generator(feed_list=[x],
                            capacity=8, drop_last=drop_last)
                    loader.set_batch_generator(batch_generator, fluid.cpu_places())

                    exe = fluid.Executor(fluid.CPUPlace())
                    prog = fluid.CompiledProgram(fluid.default_main_program())
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
650
        """
651 652 653 654 655 656
        if in_dygraph_mode():
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
657
                                   iterable, return_list, drop_last)
Z
Zeng Jinle 已提交
658 659 660 661 662 663

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
664

Z
Zeng Jinle 已提交
665 666 667 668 669 670 671
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
672

Z
Zeng Jinle 已提交
673 674 675
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
676

Z
Zeng Jinle 已提交
677 678 679
        Examples:

            .. code-block:: python
680

Z
Zeng Jinle 已提交
681
                import paddle.fluid as fluid
682

683 684
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
685

Z
Zeng Jinle 已提交
686 687 688 689 690
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
691

Z
Zeng Jinle 已提交
692 693 694
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
695

S
sneaxiy 已提交
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
722 723
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
724 725 726
            )
        self._iterable = True
        if not return_list:
727 728
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
729 730 731 732 733 734 735
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
736 737
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None
754 755
        self._pin_memory = True if use_pinned_memory(
        ) is None else use_pinned_memory()
756 757 758 759 760 761 762 763 764

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

765 766 767 768 769 770 771 772 773 774
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

775 776 777 778 779 780 781 782 783 784 785
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
786
            core._erase_process_pids(id(self))
787

788 789 790 791 792 793 794 795 796
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
797
            core.Variable(), self._capacity, False)
798
        self._reader = None
799 800
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
801 802
            self._need_check_feed, self._places, self._use_double_buffer, True,
            self._pin_memory)
803 804 805

    def _start(self):
        if self._use_multiprocess:
806 807 808
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
809
            self._data_queue = multiprocessing.Queue(self._capacity)
810 811 812
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
813 814 815 816 817 818 819 820 821 822 823
            self._process = multiprocessing.Process(
                target=self._reader_process_loop)
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
824 825
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
826 827 828 829

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
830
                target=self._reader_thread_loop_for_multiprocess)
831 832 833
            self._thread.daemon = True
            self._thread.start()
        else:
834 835
            self._thread = threading.Thread(
                target=self._reader_thread_loop_for_singleprocess)
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

861 862 863 864 865 866 867 868 869
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

870 871 872 873 874
    def _reader_process_loop(self):
        try:
            # set signal handler
            core._set_process_signal_handler()

875 876 877 878
            # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
            # some shared memory objects may have been applied for but have not yet
            # been put into the inter-process Queue. This part of the object needs
            # to be cleaned up when the process ends.
879
            CleanupFuncRegistrar.register(_cleanup_mmap)
880 881 882 883 884

            for batch in self._batch_reader():
                tensor_list = core._convert_to_tensor_list(batch)
                self._data_queue.put(tensor_list)
                core._remove_tensor_list_mmap_fds(tensor_list)
885 886 887 888 889 890 891
            self._data_queue.put(None)
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            six.reraise(*sys.exc_info())

892
    def _reader_thread_loop_for_multiprocess(self):
893 894 895 896 897 898 899
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
900 901 902 903 904 905 906
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
907 908 909 910
            except:
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
911
                self._exit_thread_unexpectedly()
912 913
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
914
                )
915
                six.reraise(*sys.exc_info())
916 917

            if not self._thread_done_event.is_set():
918
                if tensor_list is not None:
919 920
                    try:
                        array = core.LoDTensorArray()
921 922
                        for tensor in tensor_list:
                            array.append(tensor)
923 924 925
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
926
                        self._exit_thread_unexpectedly()
927 928
                        six.reraise(*sys.exc_info())
                else:
929
                    self._exit_thread_expectedly()
930

931
    def _reader_thread_loop_for_singleprocess(self):
932 933 934 935 936
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
937
                        item = self._check_input_array(item)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
985 986
        if places is None:
            places = _current_expected_place()
987 988
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
989
            "Number of places must be 1 in imperative mode"
990 991 992
        return self


Z
Zeng Jinle 已提交
993
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
994
    def __init__(self,
995 996
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
997
                 use_double_buffer=True,
998
                 iterable=True,
999 1000
                 return_list=False,
                 drop_last=True):
S
sneaxiy 已提交
1001
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1002
        self._places = None
S
sneaxiy 已提交
1003
        self._thread = None
1004
        self._queue = None
1005
        self._feed_list = feed_list
1006 1007 1008
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1009 1010
        if not capacity:
            raise ValueError("Please give value to capacity.")
1011 1012 1013 1014
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1015 1016 1017 1018
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1019

Z
Zeng Jinle 已提交
1020
    def _wait_thread_ends(self):
1021
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1022 1023 1024 1025 1026 1027 1028 1029
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1030 1031 1032 1033 1034 1035
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1036 1037
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
1038
        self._reader = None
S
sneaxiy 已提交
1039
        self._reader = core.create_py_reader(
1040
            self.queue, self._var_names, self._shapes, self._dtypes,
1041
            self._need_check_feed, self._places, self._use_double_buffer,
1042
            self._drop_last, False)
S
sneaxiy 已提交
1043 1044 1045 1046 1047 1048 1049

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1050
        need_check_feed = []
S
sneaxiy 已提交
1051 1052 1053 1054 1055 1056 1057

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1058
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1059

Z
Zeng Jinle 已提交
1060 1061 1062 1063
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1064

S
sneaxiy 已提交
1065
        var = global_scope().var(queue_name)
1066 1067 1068 1069 1070 1071 1072
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1073

1074
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1075

1076
        dtype_int = [int(t) for t in dtypes]
1077
        block.append_op(
S
sneaxiy 已提交
1078 1079
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
1080
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
1081 1082 1083
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
1084 1085
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
1086 1087 1088
                'ranks': ranks
            })

1089 1090 1091
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1103

1104
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1119 1120
            outputs={'Out': self._feed_list},
            attrs={'drop_last': self._drop_last})
S
sneaxiy 已提交
1121 1122 1123 1124 1125 1126 1127 1128

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1129

Z
Zeng Jinle 已提交
1130 1131
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
1132
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
1133
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1134

Z
Zeng Jinle 已提交
1135
        self._init_iterable()
S
sneaxiy 已提交
1136
        self._start()
Z
Zeng Jinle 已提交
1137 1138 1139 1140
        return self

    def __next__(self):
        try:
1141 1142
            if self._return_list:
                return self._reader.read_next_list()
1143
            else:
1144
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1145 1146 1147 1148 1149 1150
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
1151 1152
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
1153 1154

    def reset(self):
1155 1156
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
1157 1158 1159 1160

    def _start(self):
        def __thread_main__():
            try:
1161 1162 1163 1164
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1165 1166 1167 1168
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1169
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
1182
                self._queue.kill()
Z
Zeng Jinle 已提交
1183 1184 1185 1186 1187 1188 1189
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1190

S
sneaxiy 已提交
1191
    def _reset(self):
1192
        self._queue.close()
1193
        self._exited = True
Z
Zeng Jinle 已提交
1194 1195 1196 1197
        thread = self._thread
        if thread is not None:
            thread.join()

1198
        self._exited = False
1199 1200
        self._reader.reset()

Z
Zeng Jinle 已提交
1201 1202 1203 1204 1205 1206
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
1207 1208 1209 1210 1211 1212 1213
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1214 1215 1216 1217 1218
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
1219 1220 1221 1222 1223 1224 1225
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1226 1227 1228
        return self

    def set_sample_list_generator(self, reader, places=None):
1229 1230 1231 1232
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1233

1234 1235 1236
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
T
tianshuo78520a 已提交
1276
            the name of each fed variables. If return_list=True, the 
Z
Zeng Jinle 已提交
1277 1278 1279 1280 1281
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
1282 1283 1284 1285
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
1305 1306 1307 1308 1309
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1321 1322
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1323 1324 1325 1326 1327 1328 1329 1330

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1331 1332
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1360 1361 1362 1363 1364
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1365 1366 1367
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1368 1369 1370
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1371 1372
               return reader

G
guofei 已提交
1373 1374 1375
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1376 1377 1378 1379

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1380 1381 1382 1383 1384 1385
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1386 1387
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1388
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1443 1444

    def start(self):
S
add doc  
sneaxiy 已提交
1445 1446 1447
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1448
        
G
guofei 已提交
1449 1450
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1451
    
H
Huihuang Zheng 已提交
1452 1453 1454 1455
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1456 1457 1458 1459 1460 1461
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1462
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1463 1464 1465 1466
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1467
                executor = fluid.Executor(fluid.CPUPlace())
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1478 1479
	    '''
        self._loader.start()
S
sneaxiy 已提交
1480

S
sneaxiy 已提交
1481
    def reset(self):
S
add doc  
sneaxiy 已提交
1482 1483 1484
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1485 1486 1487 1488
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1489 1490 1491 1492
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1493 1494 1495 1496 1497 1498
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1499
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1500 1501 1502 1503
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1504
                executor = fluid.Executor(fluid.CPUPlace())
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1515
        '''
Z
Zeng Jinle 已提交
1516
        self._loader.reset()
S
sneaxiy 已提交
1517

S
sneaxiy 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1527
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1528 1529 1530 1531

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1532
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1533 1534 1535

        Args:
            sample_generator (generator): Python generator that yields
1536
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1537 1538 1539 1540 1541
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1542 1543 1544 1545

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1546 1547 1548
                import paddle.fluid as fluid
                import numpy as np

1549 1550 1551
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1552 1553 1554 1555 1556
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1568 1569
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1570 1571 1572 1573 1574
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1575 1576 1577 1578
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1579 1580 1581

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1582
                        executor.run(feed=data, fetch_list=[loss])
1583
    
S
sneaxiy 已提交
1584
        '''
Z
Zeng Jinle 已提交
1585 1586
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1587

S
sneaxiy 已提交
1588
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1589 1590 1591 1592
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1593
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1594 1595 1596 1597
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1598 1599 1600 1601
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1602 1603 1604 1605
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1606 1607 1608 1609
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1610 1611 1612 1613
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1614 1615 1616 1617 1618
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1629 1630
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1631 1632 1633 1634 1635
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1636 1637 1638 1639 1640
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1641 1642 1643

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1644
                        executor.run(feed=data, fetch_list=[loss])
1645
                 
S
add doc  
sneaxiy 已提交
1646
        '''
Z
Zeng Jinle 已提交
1647
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1648

S
sneaxiy 已提交
1649
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1650 1651 1652 1653
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1654
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1655 1656 1657 1658 1659 1660

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1661
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1662
                be provided when PyReader is iterable.
1663 1664 1665 1666

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1667 1668 1669
                import paddle.fluid as fluid
                import numpy as np

1670 1671 1672
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1673 1674 1675 1676 1677
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1678 1679 1680 1681 1682 1683 1684 1685

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1686 1687
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1688 1689 1690
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1691 1692
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1693 1694 1695
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1696 1697 1698 1699 1700
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1701 1702 1703

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1704
                        executor.run(feed=data, fetch_list=[loss])
1705

S
add doc  
sneaxiy 已提交
1706
        '''
Z
Zeng Jinle 已提交
1707 1708 1709 1710 1711
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
1712
        assert isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

1728
        if isinstance(dataset, paddle.distributed.fleet.dataset.
Z
Zeng Jinle 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()