manipulation.py 68.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18
from ..fluid.layer_helper import LayerHelper
Z
zhiboniu 已提交
19
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_, device_guard, dygraph_only
W
Wilber 已提交
20
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28
from ..fluid.layers import cast  # noqa: F401
from ..fluid.layers import slice  # noqa: F401
from ..fluid.layers import transpose  # noqa: F401
from ..fluid.layers import unstack  # noqa: F401
29

30 31
from ..fluid.layers import scatter_nd  # noqa: F401
from ..fluid.layers import shard_index  # noqa: F401
L
Leo Chen 已提交
32
from ..fluid import layers
33
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
34
import paddle
W
wanghuancoder 已提交
35
from paddle import _C_ops
36

37 38
__all__ = []

W
Wilber 已提交
39

Z
zhiboniu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
@dygraph_only
def tolist(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function translate the paddle.Tensor to python list.

    Args:
        x(Tensor): ``x`` is the Tensor we want to translate to list

    Returns:
        list: A list that contain the same value of current Tensor.

    Returns type:
        list: dtype is same as current Tensor

    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


setattr(core.VarBase, 'tolist', tolist)


76 77 78 79 80 81
def concat(x, axis=0, name=None):
    """

    This OP concatenates the input along the axis.

    Args:
82
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
L
liuyuhui 已提交
83
            float32, float64, int32, int64, uint8. All the Tensors in ``x`` must have same data type.
84 85 86 87
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
88 89 90 91 92
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
93
        Tensor: A Tensor with the same data type as ``x``.
94 95 96 97 98 99

    Examples:
        .. code-block:: python
            
            import paddle
            
100 101 102 103 104 105
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
106 107 108
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
109 110 111
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
112 113 114 115 116 117 118 119 120 121 122 123
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        input(list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.

        name (str, optional): The default value is None. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
    if in_dygraph_mode():
W
wanghuancoder 已提交
155
        return _C_ops.broadcast_tensors(input, num_inputs)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
                invalid = (output_shape_r[i] != shape[i] and
                           output_shape_r[i] != 1 and shape[i] != 1)
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
194
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
            helper.create_variable_for_type_inference(dtype=helper.input_dtype(
            )))
        i += 1

    inputs = {'X': input}
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out},
        attrs={})

    return out


Y
yaoxuefeng 已提交
219
def flip(x, axis, name=None):
W
Wilber 已提交
220
    """
Y
yaoxuefeng 已提交
221
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
222 223

    Args:
Y
yaoxuefeng 已提交
224
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
225
            should be float32, float64, int32, int64, bool.
226
        axis (list|tuple): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
227 228 229 230
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
231
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
232 233 234 235 236 237

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
238 239 240 241

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
242
          img = paddle.to_tensor(x)
Y
yaoxuefeng 已提交
243 244 245
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
246 247
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
248 249
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
250 251 252
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
253
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
254 255 256 257 258 259 260
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
261
        inputs={"X": x},
W
Wilber 已提交
262
        outputs={"Out": out},
Y
yaoxuefeng 已提交
263
        attrs={"axis": axis})
W
Wilber 已提交
264
    return out
265 266


267
def flatten(x, start_axis=0, stop_axis=-1, name=None):
268
    r"""
269 270 271 272
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

273 274 275 276
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, please 
    use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
306
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
307
                      float64, int8, int32, int64, uint8.
308 309 310 311 312 313
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
314
        Tensor: A tensor with the contents of the input tensor, with input \
315 316 317 318
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
319
        ValueError: If x is not a Tensor.
320 321 322 323 324 325 326 327 328
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
329

Y
yaoxuefeng 已提交
330 331
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
332

333 334
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
335 336 337 338

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
339 340
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
341
        raise ValueError("The input x should be a Tensor")
342

343 344 345 346
    if not in_dygraph_mode():
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64', 'uint8'],
            'flatten')
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
W
wanghuancoder 已提交
365 366
        dy_out, _ = _C_ops.flatten_contiguous_range(x, 'start_axis', start_axis,
                                                    'stop_axis', stop_axis)
367 368
        return dy_out

369
    helper = LayerHelper('flatten', **locals())
370 371 372 373 374 375 376 377 378 379 380 381
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

W
wanghuancoder 已提交
407 408
    dy_out, _ = _C_ops.flatten_contiguous_range_(x, 'start_axis', start_axis,
                                                 'stop_axis', stop_axis)
409 410 411
    return dy_out


Y
yaoxuefeng 已提交
412
def roll(x, shifts, axis=None, name=None):
413
    """
Y
yaoxuefeng 已提交
414 415 416
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
417 418 419
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
420
        x (Tensor): The x tensor as input.
421
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
422 423
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
424 425

    Returns:
Y
yaoxuefeng 已提交
426
        Tensor: A Tensor with same data type as `x`.
427 428 429

    Examples:
        .. code-block:: python
C
Chen Long 已提交
430
            
431 432
            import paddle

433 434 435
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
436
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
437
            print(out_z1)
Y
yaoxuefeng 已提交
438 439 440 441
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
442
            print(out_z2)
Y
yaoxuefeng 已提交
443 444 445
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
446
    """
Y
yaoxuefeng 已提交
447
    origin_shape = x.shape
448 449
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
450 451 452 453 454 455 456 457 458 459
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
460 461 462
    else:
        axis = []

463
    if in_dygraph_mode():
W
wanghuancoder 已提交
464
        return _C_ops.roll(x, 'axis', axis, 'shifts', shifts)
465

466 467 468
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
    check_type(shifts, 'shifts', (list, tuple), 'roll')
Y
yaoxuefeng 已提交
469
    out = helper.create_variable_for_type_inference(x.dtype)
470 471 472

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
473
        inputs={'X': x},
474
        outputs={'Out': out},
Y
yaoxuefeng 已提交
475
        attrs={'axis': axis,
476 477
               'shifts': shifts})
    return out
478 479


L
Leo Chen 已提交
480
def stack(x, axis=0, name=None):
481
    """
L
Leo Chen 已提交
482 483 484 485 486 487 488
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
524
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
525 526 527 528 529 530 531 532

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
533
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
534
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
535 536 537 538 539
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
540
    Returns:
L
Leo Chen 已提交
541
        Tensor: The stacked tensor with same data type as input.
542 543 544

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
545

546
            import paddle
547
            
L
Leo Chen 已提交
548 549 550
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
551 552
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
553
            print(out)
L
Leo Chen 已提交
554 555 556 557 558
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
559 560


561
def split(x, num_or_sections, axis=0, name=None):
562 563
    """
    Split the input tensor into multiple sub-Tensors.
564
    
565
    Args:
566 567 568 569 570 571 572 573 574 575 576
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
577
    Returns:
578
        list(Tensor): The list of segmented Tensors.
579
    
580 581
    Example:
        .. code-block:: python
582
            
583 584
            import paddle
            
L
Leo Chen 已提交
585 586
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
587

L
Leo Chen 已提交
588 589 590 591
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
592 593

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
594 595 596
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
597 598

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
599 600 601
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
602
            
L
Leo Chen 已提交
603
            # axis is negative, the real axis is (rank(x) + axis)=1
604
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
605 606 607
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
608
    """
609 610
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
611 612


L
Leo Chen 已提交
613
def squeeze(x, axis=None, name=None):
614
    """
L
Leo Chen 已提交
615
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
616 617 618 619
    
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
620

L
Leo Chen 已提交
621 622 623
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
624 625 626 627 628 629

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
630 631
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
632
          Output:
L
Leo Chen 已提交
633
            out.shape = [3, 5]
634 635 636 637

        Case2:

          Input:
L
Leo Chen 已提交
638 639 640 641 642 643 644 645 646 647
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
648
          Output:
L
Leo Chen 已提交
649
            out.shape = [3, 5]
650

L
Leo Chen 已提交
651
        Case4:
652 653

          Input:
L
Leo Chen 已提交
654 655
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
656
          Output:
L
Leo Chen 已提交
657
            out.shape = [1, 3, 5]
658 659

    Args:
660
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
661
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
662 663 664
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
665 666 667
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
668
        Tensor: Squeezed Tensor with the same data type as input Tensor.
669 670 671

    Examples:
        .. code-block:: python
672

673
            import paddle
L
Leo Chen 已提交
674 675 676
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
677 678

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
679
            print(output.shape)  # [5, 10]
680

681 682 683 684
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

685
    """
L
Leo Chen 已提交
686 687 688 689 690 691
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
692

L
Leo Chen 已提交
693
    return layers.squeeze(x, axis, name)
694 695


696
@inplace_apis_in_dygraph_only
697 698 699 700 701 702 703 704 705 706 707 708
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

W
wanghuancoder 已提交
709
    out, _ = _C_ops.squeeze2_(x, 'axes', axis)
710
    return out
711 712


Z
Zhang Ting 已提交
713 714 715 716 717
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
718
           dtype="int64",
Z
Zhang Ting 已提交
719
           name=None):
720
    r"""
Z
Zhang Ting 已提交
721 722 723 724 725 726 727 728 729 730 731
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
732 733
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

747
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
748 749 750 751 752 753 754
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

755
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
756 757 758 759 760 761 762 763 764 765 766 767
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
768
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
769
    if in_dygraph_mode():
W
wanghuancoder 已提交
770
        out, inverse, indices, counts = _C_ops.unique(
Z
Zhang Ting 已提交
771
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
792
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
793 794 795 796 797
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
798
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
799 800 801 802 803 804 805 806
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
807 808
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
809
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
810
        dtype=attr_dtype, stop_gradient=True)
811 812 813 814 815 816 817 818
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


836
def unsqueeze(x, axis, name=None):
837
    """
838 839 840
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
841

842 843 844 845
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

846
    Args:
847 848 849 850 851 852
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
853 854

    Returns:
855
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
856 857 858

    Examples:
        .. code-block:: python
859

860 861
            import paddle

862 863 864 865 866 867 868 869
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
870

L
Leo Chen 已提交
871
            axis = paddle.to_tensor([0, 1, 2])
872 873
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
874 875 876 877 878 879

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
880
            
881 882
    """

883
    return layers.unsqueeze(x, axis, name)
884 885


886
@inplace_apis_in_dygraph_only
887 888 889 890 891
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
892 893 894 895 896 897 898 899 900
    if isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, Variable):
        axis = axis.numpy().tolist()
    elif isinstance(axis, (list, tuple)):
        axis = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in axis
        ]
W
wanghuancoder 已提交
901
    out, _ = _C_ops.unsqueeze2_(x, 'axes', axis)
902
    return out
903 904


905
def gather(x, index, axis=None, name=None):
906
    """
907 908
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
909 910 911 912 913 914

    .. code-block:: text


                Given:

915
                x = [[1, 2],
916 917 918
                     [3, 4],
                     [5, 6]]

919 920
                index = [1, 2]
                axis=[0]
921 922 923

                Then:

924
                out = [[3, 4],
925 926
                       [5, 6]] 

927
    Args:
928
        x (Tensor): The source input tensor with rank>=1. Supported data type is
929 930
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
931
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
932
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
933 934
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
935 936

    Returns:
937 938
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
939 940 941 942 943 944
    Examples:

        .. code-block:: python

            import paddle

945 946
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
947 948
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
949
    """
950 951
    if axis is None:
        axis = 0
952

953
    if in_dygraph_mode():
954
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
W
wanghuancoder 已提交
955
        return _C_ops.gather(x, index, None, "axis", axis, "overwrite", False)
956 957 958 959 960

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
961

962 963 964
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

965
    helper = LayerHelper('gather', **locals())
966
    dtype = helper.input_dtype('x')
967
    out = helper.create_variable_for_type_inference(dtype)
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    if not isinstance(axis, Variable):
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index},
            attrs={'axis': axis,
                   'overwrite': False},
            outputs={"Out": out})
    else:
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index,
                    "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out})

985
    return out
myq406450149's avatar
myq406450149 已提交
986 987 988 989


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
990

myq406450149's avatar
myq406450149 已提交
991
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
992

myq406450149's avatar
myq406450149 已提交
993
    Args:
994 995 996
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. 
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
997
    Returns:
998
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
999 1000 1001

    Example:
        .. code-block:: python
1002

myq406450149's avatar
myq406450149 已提交
1003
            import paddle
1004
            import numpy as np
myq406450149's avatar
myq406450149 已提交
1005
            # input is a variable which shape is [3, 4, 5]
1006 1007 1008
            np_input = np.random.rand(3, 4, 5).astype('float32')
            input = paddle.to_tensor(np_input)
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
1009 1010 1011
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
1012
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
1027
    if in_dygraph_mode():
W
wanghuancoder 已提交
1028
        return _C_ops.unbind(input, num, 'axis', axis)
1029 1030 1031 1032 1033 1034

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
1045 1046


S
ShenLiang 已提交
1047 1048 1049 1050 1051 1052
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
1053
    
S
ShenLiang 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle

1095 1096 1097
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1120
        return _C_ops.scatter(x, index, updates, 'overwrite', overwrite)
S
ShenLiang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


1136
@inplace_apis_in_dygraph_only
1137 1138 1139 1140 1141
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
W
wanghuancoder 已提交
1142
    return _C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
1143 1144


1145
def scatter_nd_add(x, index, updates, name=None):
1146
    r"""
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
        x (Tensor): The x input. Its dtype should be float32, float64.
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
    return layers.scatter_nd_add(x, index, updates, name=None)


1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
1231
    
1232 1233 1234 1235 1236 1237 1238 1239
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1240
            x = paddle.to_tensor(x_np)
1241

1242
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1260 1261
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1262 1263

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1264
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1265 1266 1267

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1268
    Args:
L
lilong12 已提交
1269 1270 1271 1272 1273
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1274
    Returns:
L
lilong12 已提交
1275 1276
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1277 1278
    Examples:
        .. code-block:: python
L
lilong12 已提交
1279

L
lilong12 已提交
1280
            import paddle
L
lilong12 已提交
1281

1282
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1283
            out = paddle.tile(data, repeat_times=[2, 1])
1284
            np_out = out.numpy()
L
lilong12 已提交
1285
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1286 1287

            out = paddle.tile(data, repeat_times=[2, 2])
1288
            np_out = out.numpy()
L
lilong12 已提交
1289 1290
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1291
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1292
            out = paddle.tile(data, repeat_times=repeat_times)
1293
            np_out = out.numpy()
L
lilong12 已提交
1294 1295
            # [[1, 2, 3], [1, 2, 3]]
    """
1296
    if in_dygraph_mode():
W
wanghuancoder 已提交
1297
        return _C_ops.tile(x, 'repeat_times', repeat_times)
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1308
                type_tuple = (int, np.int32, np.int64)
1309 1310
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1311

L
lilong12 已提交
1312 1313
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1314
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1315 1316
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1317
            "must set its stop_gradient to be True by "
1318 1319 1320
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1321

L
lilong12 已提交
1322 1323 1324
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1325 1326 1327 1328 1329 1330 1331 1332
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1333
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1334 1335 1336 1337 1338
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1339
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1351 1352


L
lilong12 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1362
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

1373 1374
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1375
            out = paddle.expand_as(data_x, data_y)
1376
            np_out = out.numpy()
L
lilong12 已提交
1377 1378
            # [[1, 2, 3], [1, 2, 3]]
    """
1379
    if in_dygraph_mode():
W
wanghuancoder 已提交
1380
        return _C_ops.expand_as_v2(x, 'target_shape', y.shape)
1381

L
lilong12 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
1392
    inputs = {"X": [x]}
L
lilong12 已提交
1393

1394
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1395 1396
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
1397 1398 1399 1400 1401
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out})
L
lilong12 已提交
1402 1403 1404
    return out


1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1434
        return _C_ops.expand_v2(x, 'shape', shape)
1435 1436 1437 1438 1439 1440 1441 1442 1443

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1444
                type_tuple = (int, np.int32, np.int64)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


1492 1493 1494 1495 1496
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1497
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1498 1499 1500


    Args:
L
lilong12 已提交
1501 1502 1503 1504
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1505 1506 1507
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1508
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1509 1510 1511 1512 1513 1514

    Examples:
        .. code-block:: python

            import paddle

1515
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1516
            out = paddle.expand(data, shape=[2, 3])
1517
            print(out)
1518 1519
            # [[1, 2, 3], [1, 2, 3]]
    """
1520
    if in_dygraph_mode():
W
wanghuancoder 已提交
1521
        return _C_ops.expand_v2(x, 'shape', shape)
1522

1523 1524 1525 1526 1527 1528 1529 1530
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1531
                type_tuple = (int, np.int32, np.int64)
1532 1533 1534
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

1535
    check_variable_and_dtype(
1536 1537
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
1538
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1539
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1540 1541
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1542
                         "some_var.stop_gradient = True, supporting "
1543 1544
                         "some_var as the input.")

1545 1546 1547
    inputs = {"X": [x]}
    attrs = {}

1548
    helper = LayerHelper('expand', **locals())
1549 1550 1551 1552 1553

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
1554
                attrs_expand_shape.append(-2)
1555 1556 1557
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1558
                    "All elements in shape of expand must be positive or -1.")
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1575 1576


1577 1578 1579 1580
def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

1581 1582 1583 1584 1585
    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode. 
    If you want to use the Tensor copy version, please use `Tensor.clone` like 
    ``reshape_clone_x = x.reshape([-1]).clone()``.

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
1616
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

1632 1633
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
1634

1635 1636 1637
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
1638

1639 1640
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
1641
            # the shape of out_2 is [4, 12].
1642

1643
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
1644 1645 1646
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
1647 1648 1649 1650 1651
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

1652 1653
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1654 1655


1656
@inplace_apis_in_dygraph_only
1657 1658 1659 1660 1661
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
1662 1663 1664 1665 1666
    if isinstance(shape, (list, tuple)):
        shape = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in shape
        ]
W
wanghuancoder 已提交
1667
        out, _ = _C_ops.reshape2_(x, None, 'shape', shape)
1668 1669 1670
        return out
    elif isinstance(shape, Variable):
        shape.stop_gradient = True
W
wanghuancoder 已提交
1671
        out, _ = _C_ops.reshape2_(x, shape)
1672
        return out
1673 1674


1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1694 1695 1696 1697 1698 1699 1700
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1701 1702 1703 1704

            * Case 1:
                index = [[1]]

1705 1706
                gather_nd(x, index)
                         = [x[1, :, :]]
1707 1708 1709 1710 1711 1712 1713
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1714 1715
                gather_nd(x, index)
                         = [x[0, 2, :]]
1716 1717 1718 1719 1720
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1721 1722
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
1738
            
1739 1740
            import paddle
            
1741 1742 1743
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
1744 1745 1746 1747 1748 1749
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
    Args:
        x (Tensor): An N-D ``Tensor``. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
1830
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
1831 1832 1833 1834 1835 1836
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """

    return paddle.fluid.layers.strided_slice(
        input=x, axes=axes, starts=starts, ends=ends, strides=strides)